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Exact ground states and phase diagram of the quantum compass model under an in-plane field
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We consider the square lattice S = 1/2 quantum compass model (QCM) parametrized by Jx, Jz, under a field,
h, in the x-z plane. At the special field value (h�

x, h�
z ) = 2S(Jx, Jz ), we show that the QCM Hamiltonian may

be written in a form such that two simple product states can be identified as exact ground states, below a gap.
Exact excited states can also be found. We use the staggered vector chirality to characterize the exact ground
states at (h�

x, h�
z ) and states obtained for fields within the vicinity of (h�

x, h�
z ). This gapped phase occupies most

of the in-plane field phase diagram. For some values of hx > hz and hz > hx at the edges of the phase diagram,
we have found transitions between this gapped phase and phases of weakly coupled Ising-chain states. In zero
field, the QCM is known to have an emergent subextensive ground-state degeneracy. As the field is increased
from zero, we find that this degeneracy is partially lifted, resulting in bond-oriented spin-stripe states, which are
each separated from one another and the gapped phase by first-order transitions. Our findings are important for
understanding the field dependent phase diagram of materials with predominantly directionally dependent Ising
interactions.

DOI: 10.1103/PhysRevB.109.L241116

Quantum compass models were first introduced as a model
of orbital-orbital interactions arising from a Jahn-Teller dis-
tortion [1–4], and both classical and quantum versions have
been extensively studied [5–19] with the main focus on
ground-state properties of two-dimensional models. Interest in
compass models intensified with the realization that Kitaev’s
honeycomb model [20] with bond-directional interactions, a
special case of a compass model, potentially can be realized in
materials through a superexchange mechanism [21]. In partic-
ular, iridium- and ruthenium-based systems in which ligands
form edge-sharing octahedra surrounding the transition metal
atoms have been proposed as materials which may realize a
pseudospin Kitaev model [21], with α-RuCl3 [22–24], a lay-
ered two-dimensional honeycomb material, as one of the most
promising materials. This has given rise to the class of Kitaev
materials [25–30] that one may view as particular realizations
of the broader class of quantum compass models. For Kitaev
materials, field-induced spin liquid phases are of special inter-
est due to the potential presence of anyonic excitations, and
intriguing results been observed in theoretical studies [31–45]
and in recent experiments on α-RuCl3 when an out-of-plane
field [46] is applied in the [111] direction, as well as for an
in-plane field [47–51]. The latter case is of special interest
here since we show that for the closely related square lattice
quantum compass model (QCM) a twice degenerate exact
ground-state below a gap can be found under an in-plane
field, inducing an extended phase with other nontrivial phases
in proximity. Here, we determine the complete in-plane field
phase diagram.
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The bulk of our results are focused on the QCM, and we
first note a number of interesting properties of this model.
The QCM on a lattice of linear size L, in the absence of
a magnetic field, has a subextensive ground-state degener-
acy of 2 × 2L [9] and topological soliton excitations which
are deconfined in one dimension [52]. Through a duality
transformation [8], it has been shown that the QCM is equiv-
alent to the Xu-Moore model, originally proposed to model
interactions between p + ip superconductor arrays [53]. Fur-
thermore, a duality mapping has also been established
between the Xu-Moore model and the transverse-field toric
code model [54,55]. Consequently, a duality mapping exists
between the zero field QCM and the transverse field toric
code model, and the latter model has been studied under an
in-plane field [56] as well as a transverse field [55]. Both
classical and quantum QCM models have been studied at
finite temperature [7,11], in both cases finding a transition
in the two-dimensional (2D) Ising universality class to a low
temperature ordered phase. One may also note that, it has
been shown in Ref. [57] that two decoupled copies of the
QCM can be mapped to the model of interacting Majorana
fermions of Ref. [57], relevant to 3D topological insulators
with proximity-induced superconductivity. Dualities between
each of these models demonstrate how properties of the QCM
may be understood in several different contexts. Finally, ma-
terials that likely realize the QCM have been identified in the
strong spin-orbit coupled iridates, such as Ba2IrO4 [58] and
Tb-substituted Sr2IrO4 [59,60]. The antiferromagnetic quan-
tum compass model is

H = J
∑

r

(
Ŝx

r Ŝx
r+ex

+ Ŝz
rŜz

r+ez

) −
∑

r

h · Ŝr. (1)

Here, we set g = h̄ = μB = 1. Furthermore, we parametrize
the field term as h = h(cos φxz, 0, sin φxz ) and define |h| = h
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FIG. 1. Exact ground state of the QCM under in-plane field
h∗

xz = 2JS
√

2. Colored bonds represent Ising interactions.

as the field strength. We use N = Lx × Lz to denote the num-
ber of sites in the model, and we shall refer to the JŜxŜx

coupling as a x bond and the JŜzŜz coupling as a z bond. In
zero field, a unitary transformation around the y axis on every
second site relates J to −J . However, since our focus is on
ground states in the presence of a field, the sign of J matters,
and we exclusively focus on the antiferromagnetic (AF) model
with J > 0. We set J = 1.

Exact ground and excited states. The exact ground states
for the QCM can be found by the following simple argument.
If we consider the Hamiltonian, Eq. (1) for general S, we can
write the field term in the form −∑

r(hxŜx
r + hzŜz

r ). Follow-
ing Refs. [61,62], we then see that with φxz = π/4, where
hx = hz, we can absorb the field term into the interaction term
at the special field value h�

x = h�
z = 2JS with |h�

xz| = 2JS
√

2.
For an Lx × Lz lattice with periodic boundary conditions in
both directions and both Lx and Lz even, we can then write
at h�

xz

H = Hp − 2NJS2

Hp = J
∑

r

[(
S − Ŝx

r

)(
S − Ŝx

r+ex

) + (
S − Ŝz

r

)(
S − Ŝz

r+ez

)]
.

(2)

Hp is here positive semidefinite, and it follows that if a prod-
uct state |P〉 can be found where each site is in an eigenstate
of Ŝα|α〉 = S|α〉 (α = x, z) such that Hp|P〉 = 0, then |P〉 is
not only an eigenstate, but a ground state. For the QCM it
is straightforward to see that if Lx and Lz are both even, and
periodic boundary conditions (PBC) are applied, then the two
simple product states with |x〉 on one sublattice and |z〉 on
the other, as shown in Fig. 1, are eigenstates of Hp with
eigenvalue 0, and therefore degenerate ground states with
E0 = −2NJS2. This construction trivially generalizes to the
case where Jx �= Jz where the same ground states appear at
(h�

x, h�
z ) = 2S(Jx, Jz ). It is exact for any finite Lx × Lz torus

under PBC, but does not hold for open boundary conditions
(OBC) nor when Lx or Lz are odd. It is interesting to note
that the above argument is only superficially related to the
remarkable extension of the Lieb-Schultz-Mattis (LSM) theo-
rem for quantum spin chains [63,64] to the case of an applied
field [65,66], showing that magnetization plateaus can appear,
associated with a gapped state, when conserved quantities
such as the total magnetization

∑
j Sz

j are present. In contrast,
for the QCM, the magnetization is not conserved, and since
we can generalize to the case Jx �= Jz, any special symmetry
axis does not appear important. We also note that similar

product states formed with Sα|αm〉 = m|αm〉 with 0 < m < S
will be eigenstates at the field value hx = hz = 2Jm, but not
ground states. In the following, we provide strong numerical
evidence for a sizable gap at h�

xz and demonstrate that the two
product states are the only ground states at h�

xz under periodic
boundary conditions (PBC) with Lx, Lz even. We expect that,
for large systems, lifting these constraints will not change the
physics due to the presence of a gap, and we explore the full
phase diagram using infinite projected entangled pair states
(iPEPS), without imposing PBC.

Methods. For an in-plane field there is no sign problem and
Monte Carlo methods are applicable, but we have found it
advantageous to use iPEPS [67–69] directly in the thermo-
dynamic limit for the two-dimensional lattice, to obtain high
precision results for the field dependent phase diagram of the
QCM at zero temperature. For details, see the Supplemental
Material [70]. In addition, we use exact diagonalization (ED)
of small clusters, and infinite-size density matrix renormal-
ization group (iDMRG) [71–78] on infinitely long cylinders
in the x direction, of circumference up to Lz = 10. Typically,
we use iDMRG with a bond dimension up to D = 1000 and
ε = 10−11. The locations of quantum critical points (QCP)
are first determined from the susceptibility of the ground
state energy per spin e0 with respect to a parameter p, de-
fined as χ e

p = − ∂2e0
∂ p2 . In finite systems, at a quantum critical

point, χ e is known to scale as [79–81] χ e ∼ N2/ν−d−z, and
is therefore likely to diverge at a QCP, with ν and z the
correlation and dynamical critical exponents and d the spatial
dimension.

For the remainder of our results, we specialize our cal-
culations to the case of S = 1/2. In light of our exact
solution mentioned previously, and the bond-directional or-
dering of the QCM in zero field, we define the vector bond
chirality

X y
α = 〈�Sr × �Sr+eα

〉y, α = x, z (3)

along with a nematic order parameter

φ = 〈
Sx

r Sx
r+ex

− Sz
rSz

r+ez

〉
. (4)

quantifying the degree of orthogonality and bond-directional
alignment of neighboring spins respectively. We have also
found it useful to denote the vector chirality averaged over
bond directions as X y = 1

2 (X y
x + X y

z ).
Phases under [101] field. Our iPEPS, iDMRG, and ED cal-

culations can clearly distinguish two phase transitions when
varying the strength of the in-plane field along the constant
angle φxy = π

4 as shown in Fig. 2. The high-field phase is
a trivial polarized state (PS). Upon lowering the field, at
the upper critical field hc2

xz = 1.626, the PS transitions into
a phase with substantial vector chirality (SVC). This can be
seen in Fig. 2(b), where, at hc2

xz , |X y| increases, seemingly
continuously, from zero in the PS, while a divergence in
|χ e

hxz
| is observed. Within the SVC phase, bond correlations

of the form 〈SαSα〉, with α = (x, y, z), tend to zero as the
state approaches the exactly solved states (shown in Fig. 1), at
h∗

xz = 2JS
√

2. ED results for the gaps, in Fig. 2(c), show that
the SVC phase is gapped with a twofold degenerate ground
state. A second transition into a low-field region with stripe
ordering, occurs as the field is lowered below hc1

xz = 0.540.
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FIG. 2. Results from ED with PBC on a 4 × 6 lattice, iDMRG
with Lz = 10, and iPEPS versus field strength, hxz, for a field in
the [101] direction (φxz = π/4). (a) χ e

hxz
ED, iPEPS, and iDMRG.

(b) |X y| from ED with a small pinning field 0.005hz on a single
site, iPEPS, and iDMRG. (c) φ and bond correlations from iPEPS.
(d) First five lowest energy gaps, 
i, as obtained from ED. Solid
vertical lines indicate hc1

xz = 0.540 and hc2
xz = 1.626 separating the

low field L, R, SVC, and polarized (PS) states. The dotted vertical
line indicates the exactly solvable point, h�

xz = 2SJ
√

2.

Within the low field region, the line hx = hz for hxz < hc1
xz is

a first-order critical line, terminating at hc1
xz , separating phases

of x-aligned and z-aligned stripe states [70] that we denote by
L and R (see Fig. 4). As the field is lowered further to hxz = 0,
we find that the nematic order parameter, shown in Fig. 2(c),
saturates to φ = 0.123, in agreement with previous quantum
Monte Carlo calculations [10,11].

Phases under [100] field. Notably, the zero-field QCM has
the 1D gauge-like symmetries,

Pi =
∏

j

Sx
iex+ jez

and Qi =
∏

j

Sz
jex+iez

, (5)

where the Pi and Qi are incompatible. Arguments based on
symmetry analysis imply that the S = 1/2 QCM ground state
is at least twofold degenerate [82]. However, exact diagonal-
ization calculations indicate that, when Lx = Lz, 2 × 2Lx − 2
low-energy states collapse onto the twofold ground states

FIG. 3. (a) χ e
hx

and (b) |X y
x | and |X y

z | as obtained from iPEPS
calculations versus field strength, hx , for a field parallel to [100]
(φxz = 0). Solid vertical lines indicate hc1

x = 0.935 and hc2
x = 1.344

separating the SVC, Z , and polarized (PS) states. A dashed line at
hx = 0.410 indicates the limiting value of the transition between R
and SVC phases as hz → 0.

exponentially fast with increasing Lx [9], implying an emer-
gent subextensive degeneracy in the thermodynamic limit.
Following Ref. [12], we label the eigenstates of the Pi and
Qi as |R〉 and |L〉, respectively.

We have found that adiabatically evolving the |R〉 and
|L〉 states under a small [100] field, hx, produces an energy
splitting between the two states, with the |R〉-evolved state,
|R(�h)〉, having lower energy than the |L〉-evolved state, |L(�h)〉,
for hx > hz. On the other hand, for a small [001] field, hz, it
is |L(�h)〉 that has the lowest energy. Consequently, as outlined
above, there is a first-order transition between the |L(�h)〉 and
|R(�h)〉 states along the line hx = hz [70], reminiscent of the
first-order transition studied in Ref. [12]. We find that this line
of first-order transitions terminates at the critical point, hc1

xz =
0.540, discussed in the previous section. We may then view
hc1

xz as a multicritical point since the R, L, and SVC phases
all meet at this point. Furthermore, our calculations indicate
that, in zero field, the |R〉 and |L〉 states are sub-extensively
degenerate, and that these degeneracies are lifted when small
finite fields are applied [70].

With a field in the [100] direction, the high field PS
again undergoes a transition as the field is lowered below a
critical field hc2

x = 1.344, as can be seen by the sharp diver-
gence of χ e

hx
in Fig. 3(a). However, in this case, the ground

state consists approximately of alternating linear domains of
field-polarized spins and antiferromagnetically ordered spins
perpendicular to the field. The vector chirality is therefore
nonzero when evaluated on bonds connected to polarized
spins, as shown in Fig. 3(b), but only across bonds in the
[100] direction. This phase has an interesting interpretation:
columns of x-polarized spins lower the energy by aligning
with the field, while columns of z-oriented spins form strongly
coupled antiferromagnetic Ising chains. Due to the nature of
the QCM coupling, the two kinds of columns are not coupled.
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FIG. 4. (a) Phase diagram for the quantum compass model under an in-plane field. The phases are labeled as z-oriented stripe (R), x-oriented
stripe (L), staggered vector chiral (SVC), z chain (Z), and x chain (X ). We show iPEPS results (blue squares) and iDMRG (colored diamonds)
for Lz = 6, 8, 10. Solid black lines are contours of constant field strength. (b) |φ| and (c) |X y| as obtained from iPEPS for an in-plane field.
(d) Dominant ordering of states in the labeled phases; the PS state is meant to show alignment in the field direction.

This suggests that this state is effectively one-dimensional in
nature. For this reason, we refer to this phase as the z-chain
(Z) phase, since the columns of spins polarized along x direc-
tion are essentially inert, although their presence effectively
eliminates the coupling between the z chains. A sketch of the
spin alignments in the Z phase is shown in Fig. 4. As the field
is lowered further, a second transition from the Z phase to
the SVC phase occurs at hc1

x = 0.935. Finally, as hx → 0, the
iPEPS approaches the |R〉 state. With hz = 0, the transition
from the SVC phase to the R phase is not directly visible
in χ e

hx
, but the dashed line in Fig. 3 indicates the limiting

value of the transition between R and SVC phases as hz → 0,
at hx = 0.410. By symmetry of the model, for a field along
the z direction an analogous phase, X , appears along the z
axis. The X phase is dominated by rows of spins coupled by
antiferromagnetic x bonds.

Phase diagram. We have also analyzed the complete phase
diagram for a range of field values, hx, hz > 0. The results of
our calculations produce the phase diagram as shown in Fig. 4.
The most apparent feature of the phase diagram is the large
phase surrounding the point h∗

xz, where the product states |P〉,
from Fig. 1 are exact ground states. As shown in panel (c)
of Fig. 4, the vector chirality, |X y|, is found to be substantial
throughout this phase, reduced in the Z and X phases, and
approaching zero in the low field L, R regime. The nematic
order parameter, φ, is close to zero in the intermediate-field
regime for field angles near π/4 reflecting a lack of spin
alignment along bond directions. In the low-field regime, bond
alignment is found to dominate, with |X y| taking a value
near zero. Remarkably, we find that the transition between
the R and SVC phases is almost independent of hz. Likewise,
we find the transition between the L and SVC phases to be
independent of hx. The combined R and L phases therefore
form a square in the lower left part of the phase diagram,
similar to what is seen for the toric code [56]. Even though
the field is not applied along an easy axis it is natural to view

the SVC phase as a spin-flopped phase [83], and therefore to
expect all transitions between the R, L, X , and Z to be first
order. As it turns out, all our calculations are consistent with
this [70]. However, from our calculations, the transition to the
PS phase appears to be continuous.

Discussion. For the AF QCM we have shown that two exact
ground states exists at the special field value h�

x = h�
z = 2JS.

This special point has a substantial (staggered) vector chi-
rality |X y| and a sizable gap, inducing the SVC phase that
dominates a large part of the phase diagram. Although our
numerical results clearly indicate a sizable gap at h�

xz within
the SVC, establishing a rigorous proof of this gap would be of
considerable interest. Our detailed study of the model under
an in-plane magnetic field shows that, aside from the high
field PS state, there are five distinct phases in the low to
intermediate field regime, the SVC, Z , X , L, and R phases.
Excitations in these phases could be nontrivial. For instance,
in zero-field one-dimensional solitonic excitations [52] have
been noted, and it is possible that they remain deconfined
in the L and R phases, as has been observed for the toric
code under an in-plane field [56] and the X-cube fracton
model [84]. Perhaps the most surprising thing about the phase
diagram is the existence of the SVC phase and accompanying
transition to the PS phase since one might expect the system
to transition from the low field L, R phases directly to the
PS phase, without an intermediate phase. It is also important
to consider similar exact product states in Kitaev’s honey-
comb model (KHCM) [20] with antiferromagnetic couplings,
Kx, Ky, Kz. For the KHCM it is possible to again write the
Hamiltonian in the same form as Eq. (2), in terms of a Hp,
at the field (h�

x, h�
y, h�

z ) = S(Kx, Ky, Kz ) (note the factor of 2
difference with respect to the QCM). Unfortunately, for the
KHCM it is not geometrically possible to find an assignment
of the |x〉, |y〉, and |z〉 states to the lattice which is an eigenstate
of Hp with eigenvalue 0, in the same way as it is done here
for the QCM. Analogous exact product states therefore do not

L241116-4



EXACT GROUND STATES AND PHASE DIAGRAM … PHYSICAL REVIEW B 109, L241116 (2024)

exist for the KHCM. We also note that the KHCM, at the
corresponding field value of |h�| = KS

√
3 for the isotropic

model, is known to be in the polarized phase for a field
in the [111] direction and not in the candidate spin liquid
phase [36,85]. The product states discussed here are therefore
likely not pertinent for the KHCM. Despite this, it seems
likely that similar phases can be found in other materials with
predominantly directionally dependent Ising interactions, the
crucial ingredient being a low coordination number lattice
where a product eigenstate can be found. Our work motivates

further studies of materials-relevant Hamiltonians including
the isotropic Heisenberg interaction [86], which is likely
non-negligible in Ba2IrO4 [58] and Tb-substituted Sr2IrO4

[59,60].
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