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Integer and fractional quantum anomalous Hall effects in pentalayer graphene
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We critically analyze the recently reported observation of integer (IQAHE) and fractional (FQAHE) quantum
anomalous Hall effects at zero applied magnetic field in pentalayer graphene. Our quantitative activation and
variable range hopping transport analysis of the experimental data reveals that the observed IQAHE and FQAHE
at different fillings all have similar excitation gaps of the order of 5–10 K. In addition, we also find that the
observed FQAHE manifests a large hidden background contact series resistance >10 k� of unknown origin
whereas this contact resistance is much smaller ∼500 � in the observed IQAHE. Both of these findings are
surprising as well as inconsistent with the well-established phenomenology of the corresponding high-field
integer and fractional quantum Hall effects in two-dimensional semiconductor systems.
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The recent transport observation of zero-field integer
(IQAHE) and fractional (FQAHE) quantum anomalous Hall
effects in pentalayer graphene [1], just after the report of
the same discovery in twisted MoTe2 [2,3], is an important
breakthrough. Graphene is relatively clean, allowing the pos-
sibility of seeing novel quantum Hall effect (QHE) physics,
perhaps not necessarily accessible in dirtier transition metal
dichalcogenide (TMD) materials. It should be mentioned as an
aside that the original high-field IQHE was first observed [4]
in two-dimensional (2D) Si-SiO2 metal-oxide semiconduc-
tor field-effect transistors (MOSFETs) with low mobilities
(∼103 cm2/V s) whereas the first observation [5] of a frac-
tional quantum Hall effect (FQHE) was in much cleaner 2D
GaAs-AlGaAs heterostructures with much higher mobilities
(∼105 cm2/V s). To the best of our knowledge, FQHE has
yet to be decisively reported in transport experiments on Si-
SiO2 MOSFETs because of their high disorder. It is therefore
remarkable that the zero-field version of quantum Hall effects
manifested simultaneously as IQAHE and FQAHE in both
TMD and graphene. Indeed, Ref. [1] reports the observation
of “plateaus” of quantized Hall resistance Rxy = h/νe2 at the
integer band filling ν = 1 as well as several fractional band
fillings ν = 2/3, 3/5, 2/5, 4/9, 3/7, and 4/7 accompanied
by clear dips in the longitudinal resistance. The current work
follows our earlier work on TMD [6], and focuses on a de-
tailed analysis of the experimental IQAHE/FQAHE results
presented in Ref. [1].

The qualitative differences between regular high-field
QHEs and the recently observed IQAHE/FQAHE are as fol-
lows: (1) high magnetic field versus zero magnetic field; (2)
magnetic-field-induced continuum Landau levels (LLs) ver-
sus lattice-induced flat bands with nontrivial topology (i.e.,
Chern insulators with a nontrivial Chern number); and (3)
explicit breaking of the time-reversal symmetry by an ex-
ternal magnetic field versus the spontaneous breaking of the
time-reversal symmetry in a Chern band. The interplay of con-
tinuum LLs and a lattice in the context of IQHE/FQHE has
a long history going back to the early seminal papers [7–9].

Later, ideas were proposed to create FQHE in atomic optical
lattices [10]. Occasionally, specific models for creating flat
bands, which are necessary (but not sufficient) for IQAHE, in
2D lattices were discussed, but without any embedded topol-
ogy or time-reversal symmetry breaking [11]. Finally, in 2011,
several theoretical groups proposed 2D lattice models where
the bands are both relatively flat and have intrinsic topol-
ogy (i.e., finite Chern number), leading to the specific idea
of quantum Hall effects without any applied field [12–16].
It was obvious right from the beginning (and also verified
by explicit numerical simulations) that such Chern bands,
when fractionally occupied, would manifest FQAHE. The
possibility of Chern insulators with Chern numbers larger
than one and the role of disorder in IQAHE/FQAHE in such
Chern insulators were also considered in this early theoreti-
cal literature [17,18]. More recently, a specific prediction for
the occurrence of fractional Chern insulators in twisted 2D
moiré systems was made [19]. However, the subject remained
strictly theoretical without any experimental realization for 12
years until 2023 when three groups realized Chern insulators
with observations of IQAHE/FQAHE in TMD and pentalayer
graphene moiré systems in transport experiments [1–3].

Given that IQAHE/FQAHE phenomena in flat-band Chern
insulators were already predicted as a matter of princi-
ple a long time ago, their observations bring up three
important theoretical questions: (1) Is the observed zero-
field IQAHE/FQAHE in 2D lattice systems adiabatically
connected to the corresponding well-established high-field
IQHE/FQHE in continuum LL systems? (2) Can the observed
experimental IQAHE/FQAHE phenomenology theoretically
quantitatively explicable using the actual TMD and pentalayer
graphene lattices? (3) Are there new fractions where FQAHE
manifest with no corresponding FQHE analogs? Our current
Letter illuminates on these questions by critically analyzing
the reported pentalayer graphene data in depth and showing
that the reported IQAHE/FQAHE in graphene has serious
quantitative disagreement with the corresponding high-field
IQHE/FQHE phenomenology, indicating that perhaps the
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observed IQAHE/FQAHE may not necessarily be adiabati-
cally connected to the high-field quantum Hall physics. This
is, at this early stage of the subject, at best a tentative conclu-
sion since experimental results are likely to improve rapidly
as sample quality improves and experimental problems are
resolved, but the subject is of sufficient importance for the
community to think about this issue.

We emphasize in this context that no theoretical
work [20–26] to date provides even a semiquantitative ex-
planation for the experimental observations of the pentalayer
graphene IQAHE/FQAHE. For example, theories either find
FQAHE both [20–22,25] or neither [27] for ν = 1/3 and 2/3
in graphene whereas Ref. [1] reports the ν = 2/3, but not
the ν = 1/3 FQAHE. At this stage we do not know whether
or not the reported existence (nonexistence) of ν = 2/3(1/3)
FQAHE is an unimportant detail. On the other hand, Ref. [1]
reports FQAHE precisely at the primary Jain fractional fillings
arising from the composite fermion theory (except for 1/3
filling) as developed for the LL FQHE.

In the rest of this Letter we present our detailed anal-
ysis of the temperature-dependent longitudinal resistance
Rxx using the experimental data in Ref. [1] to obtain the
IQAHE/FQAHE excitation gaps at various fillings. We also
find that, similar to the situation in TMD IQAHE/FQAHE [6],
pentalayer graphene data also imply a hidden (and often large)
series resistance R0 in the longitudinal resistance, whose ori-
gin remains a mystery (since four-probe measurements should
not usually manifest any contact resistance). We provide the
excitation gaps and the contact resistance for all the fillings
where Ref. [1] reports the observation of an apparent quanti-
zation of Rxy.

We start from an overall examination of the degree of
quantization for both the integer and fractional filling states.
Figure 1 plots the the Hall (Gxy) and longitudinal (Gxx) con-
ductances as a function of filling factor. The conductances
are calculated from the resistance data [shown in Fig. 3(c) of
Ref. [1]] measured in a constant current setup by Gxx/xy =
Rxx/xy/(R2

xx + R2
xy). While both the integer and fractional

plateaus are accompanied by clear dips in Gxx, the residual
resistance (and thereby the conductance) is significant (∼10
k� ) in the fractional cases, several orders of magnitude

higher compared to the integer case, which can reach as low
as ∼10 � [1]. In fact, the surprise here is why and how the
FQAHE shows up at six different fractional fillings in spite of
a huge background resistance—this certainly does not happen
in regular FQHE. The existence of a large (∼10 k� ) resid-
ual resistance concomitant with the manifestation of clear
FQAHE sharply distinguishes the lattice FQAHE from LL
FQHE, and this calls for a deeper understanding of the relative
roles of edge versus bulk transport in FQAHE to figure out
what is this mysterious R0.

To have a quantitative understanding, we focus on the
temperature dependence of the longitudinal resistance Rxx. In
ideal clean systems, because of the ballistic transport along the
chiral edge channels, the longitudinal resistance is expected to
vanish in the limit of zero temperature. As temperature rises,
thermally activated carriers in the bulk contribute to finite
resistance, which follows the thermal activation behavior with
Rxx ∝ e−�/2kBT , where � is the bulk charge excitation gap.
Additional mechanisms contributing to Rxx are Mott [28] and

FIG. 1. (a) Hall and (b) longitudinal conductances of the penta-
layer graphene/hBN as a function of filling factor ν. Gxy and Gxx

are obtained by inverting the resistances data from the source data of
Fig. 3(c) in Ref. [1]. The vertical dashed lines represent the fillings
manifesting the IQAHE/FQAHE, and the horizontal bars mark the
expected quantized Hall conductance values. Note that the measured
quantities are the resistances, and our fitting is done on Rxx (T ).

Efros-Shklovskii (ES) [29] variable range hopping (VRH)
facilitated by phonons, and the relative importance of the three
transport mechanisms in IQAHE/FQAHE is unknown.

Here, we fit the experimental temperature dependence
of Rxx to all three transport mechanisms in an unbiased
manner. In addition, we include an extra term, the contact
resistance R0, which was found to be essential in the TMD
IQAHE/FQAHE [6]. We remark that the exact origin of R0 is
unclear at the moment; the fact that R0 exists is apparent in the
experimental data since the measured Rxx, instead of becom-
ing vanishingly small at the FQAHE plateau, saturates to a
large value. Specifically, we adopt the fitting formula R(T ) =
R0 + Ae−�/2kBT for the thermal activation mechanism, and
R(T ) = R0 + Ae−(T0/T )1/n

for Mott (n = 3) and ES (n = 2)
VRH mechanisms, where A and T0 are model-dependent con-
stants treated as free-fitting parameters. Below we present our
fitting results for filling factors ν = 1, 2/3, 3/5, 2/5, and 4/9.
We provide our fitted results for ν = 3/7 and 4/7 also (see
Table I), but do not show the actual fittings for brevity.

At the integer filling ν = 1, Rxx increases with increasing
temperature (or decreasing T −1) and saturates at a temper-

TABLE I. Summary of the fitting parameters for thermal acti-
vation fitting of the longitudinal resistance Rxx . The parameters are
extracted from the optimal fitting result at each filling factor. � and
R0 are in units of degrees Kelvin (K) and k�, respectively.

ν 1 2/3 3/5 2/5 4/9 3/7 4/7

� 9.5 5.0 5.7 5.3 5.5 4.9 5.0
R0 0.53 12.62 13.25 16.49 12.30 12.12 10.29
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FIG. 2. Thermal activation fitting of the longitudinal resistance
Rxx at filling factor ν = 1. (a) and (b) are fittings without contact
resistance and (c) and (d) are fittings with a contact resistance R0 as
a fitting parameter. The red lines are experiment data and blue lines
are the fitting curves. Data in the shaded region are excluded from
fitting.

ature of Ts ≈ 3 K as shown in Fig. 2. Below Ts, thermal
activation fitting without R0 fails to match the overall tem-
perature dependence, as shown in Figs. 2(a) and 2(b), with
only piecewise matchings yielding drastically different gap
values depending crucially on the fitting range. With a finite
R0, the fitting appears to have a significantly better agreement
with the measured data as demonstrated in Fig. 2(d). The
temperature range close to Ts manifests a different behavior
[shown in Fig. 2(c)] likely due to the saturation effect. The
residual resistance is generally small but can vary from ∼100
to ∼10 � [1] depending on detailed parameters such as the
vertical displacement field. The extracted value for the gap is
� ≈ 9.5 K. We emphasize that our extracted (rather small)
IQAHE gap (∼9.5 K) is consistent with the experimental
finding that the IQAHE disappears for T > 2 K which argues
against a large gap. Similarly, the measured Rxx at the lowest
temperatures is ∼10–100 � at the IQAHE plateau in Ref. [1]
consistent with our fitted R0.

We further apply the Mott and ES VRH mechanisms to fit
the temperature dependence of Rxx at ν = 1. Figure 3 presents
the optimal fitting results without [Figs. 3(a) and 3(b)] and
with [Figs. 3(c) and 3(d)] a contact resistance, which clearly
demonstrates the necessity to include R0. The fact that the
VRH and thermal activation mechanisms can both fit the ex-
perimental data suggests the mechanism of finite temperature
Rxx is uncertain.

For FQAHE, the longitudinal resistances Rxx have similar
trends but differ quantitatively compared to the integer case.
We begin with the filling factor ν = 2/3, which is the most
robust fractional state. As shown in Fig. 4, Rxx first increases
and then decreases as the temperature T increases. Similar
to the integer case, inclusion of R0 is necessary to fit the
temperature dependence. We find only minor variations in
the thermal activation fitting parameters when adjusting the

FIG. 3. Variable range hopping fittings of the longitudinal resis-
tance Rxx at filling factor ν = 1. The left panels are Mott VRH fittings
(a) without and (c) with a contact resistance R0. The right panels are
ES VRH fittings (b) without and (d) with a contact resistance R0. The
figure conventions are the same as in Fig. 2.

temperature window [as shown in Figs. 4(c) and 4(d)] [30].
The optimal gap value from our fitting is � = 5.0 K, approxi-
mately half of that for the integer case. The contact resistance
R0 = 12.62 k� , on the other hand, is two orders of magni-
tude larger than the integer case. Our extracted fractional gap
∼5 K and R0 ∼ 10 k� are consistent with the experimental
FQAHE disappearing below 1 K and the experimental Rxx

manifesting a resistance of ∼10 k� around the fractional
plateau at the lowest temperatures, respectively. We perform
a similar thermal activation fitting analysis for several other
fractional filling factors. Figures 5–7 show the fitting results
for ν = 3/5, 2/5, and 4/9, respectively (ν = 3/7 and 4/7 are
not shown). The longitudinal resistances in these cases follow

FIG. 4. Thermal activation fitting of the longitudinal resistance
Rxx at filling factor ν = 2/3. (a) and (b) are fittings without contact
resistance and (c) and (d) are fittings with a contact resistance R0.
The figure conventions are the same as in Fig. 2.
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FIG. 5. Thermal activation fitting of the longitudinal resistance
Rxx at filling factor ν = 3/5. (a) and (b) are fittings without contact
resistance and (c) and (d) are fittings with a contact resistance R0.
The figure conventions are the same as in Fig. 2.

similar trend with a saturation (or turnover) temperature Ts ≈
1 K. Again, for T < Ts, thermal activation fitting with finite R0

works well in all cases yielding similar R0 values ∼10 k� .
Table I summarizes the fitting parameters from all the thermal
activation fittings. We remark that our fitting method aligns
with standard practices in the extensive FQHE literature. Al-
though using all three transport mechanisms yields somewhat
better fits, it involves too many parameters, making the fitting
less meaningful.

The most interesting and important aspect of our results,
summarized in Table I, is that the FQAHE gap is consistently
around 5 K for all the fractional fillings, and the IQAHE
gap is within a factor of 2 of the FQAHE gap. However,
the experimental quantization is far better for ν = 1 than for
the fractional fillings, which is likely caused by the effective

FIG. 6. Thermal activation fitting of the longitudinal resistance
Rxx at filling factor ν = 2/5. (a) and (b) are fittings without contact
resistance and (c) and (d) are fittings with a contact resistance R0 as
a fitting parameter. The figure conventions are the same as in Fig. 2.

FIG. 7. Thermal activation fitting of the longitudinal resistance
Rxx at filling factor ν = 4/9. (a) and (b) are fittings without contact
resistance and (c) and (d) are fittings with a contact resistance R0 as
a fitting parameter. The figure conventions are the same as in Fig. 2.

background contact resistance R0 being orders of magnitude
larger for the fractional cases (>10 k� ) than in the integer
case (∼10–100 �). We mention that if we blindly convert
R0 ∼ 10 k� to a broadening using the actual carrier density
and the very light carrier effective mass (∼0.05me) of penta-
layer graphene, we get a huge broadening ∼500 K. The actual
transport broadening is, however, likely to be much smaller
∼10 K as reflected from the onset of the Shubnikov–de Haas
(SdH) oscillations at 0.4 T applied field. This 10 K broadening
is consistent with the IQAHE value of R0 ∼ 100 �.

The biggest puzzle is perhaps the almost constancy of
the gap values across all observed FQAH states. Since the
observed fractions are precisely (except for the absence of
the 1/3 state) the primary Jain sequence ν = p/(2p + 1) or
(p + 1)/(2p + 1) with p = 1, 2, 3 . . ., exactly as occurring
in the continuum high-field 2D GaAs LL FQHE exper-
iments [31–33], it is reasonable to assume an adiabatic
continuity between the continuum LL and the flat-band lat-
tice systems. By contrast, however, the composite fermion
theory in the continuum system, which is well verified both
experimentally [32,33] and theoretically [34,35], specifically
predicts that the excitation gap should scale as 1/(2p + 1)
whereas the experimental pentalayer graphene FQAH gaps in
Table I show no dependence on p (or ν). For example, the
composite fermion theory [36,37] as applied to the current
graphene FQAHE would predict the gap at 2/3 to be three
times the gap at 4/9 (and this is exactly what is observed
experimentally in LL FQHE [33]) whereas our FQAHE anal-
ysis in Table I finds the gap at 4/9 to be slightly larger. It is
possible that the flat-band lattice FQAHE represents a distinct
type of topological order different from its continuum LL
counterpart since the lattice version, in principle, has many
additional topological invariants imposed by lattice transla-
tional symmetries [38,39]. It is too soon to decide whether
some deep significance should be attached to the excitation
gap being almost a constant for all the FQAH states (Ta-
ble I) or this is simply an artifact of the system being highly
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FIG. 8. (a)–(d) Mott and (e)–(h) ES VRH fittings of the longitudinal resistance Rxx at fractional filling factors with (a), (e) for ν = 2/3,
(b), (f) for ν = 3/5, (c), (g) for ν = 2/5, and (d), (h) for ν = 4/9. The figure conventions are the same as in Fig. 2.

disordered, particularly since the observed FQAHE sequence
in graphene is precisely the same as the primary Jain se-
quence predicted for the continuum FQHE. We do, however,
believe that our Table I represents an important empirical
fact about FQAHE which future theories must be able to
explain.

We also perform VRH fittings for the fractional cases con-
sidered above. The fitting results are shown in Fig. 8 with the
Mott fittings in the top row and ES fittings in the bottom row.
Both VRH models are able to fit the Rxx data. The extracted
R0 values are consistent with the thermal activation results

in Table I. It is clear from these results that we cannot un-
ambiguously pin down the nature of the transport mechanism
and therefore should be cautious about adopting the gap value
extracted from the thermal activation fitting, accepting them
as tentative findings until future results in better samples with
much lower values of R0 are reported.
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