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Susceptibility indicator for chiral topological orders emergent from correlated fermions
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Chiral topological orders formed in correlated fermion systems have been widely explored. However, the
mechanism of how they emerge from interacting fermions is still unclear. Here, we propose a susceptibility
condition. Under this condition, we show that chiral topological orders can spontaneously take place in correlated
fermion systems. The condition leads to a low-energy effective theory of bosons with strong frustration,
mimicking flat-band systems. The frustration then melts the long-range orders and results in topological orders
with time-reversal symmetry breaking. We apply the theory to strongly correlated semiconductors doped to the
metallic phase. An excitonic topological order with semionic excitations and a chiral excitonic edge state is
revealed. We also discuss the application to frustrated magnets. The theory predicts a chiral spin-liquid state,
which is numerically confirmed by our tensor network calculations. These results demonstrate an indicator for
chiral topological orders, which bridges the existing gap between interacting fermions and correlated topological
matter.
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Introduction. Chiral topological orders (TOs) breaking
time-reversal symmetry (TRS) has been a prominent topic
over the last decades [1,2], and its discovery in fractional
quantum Hall (FQH) systems [3–5] invokes some of the most
fundamental concepts in modern condensed matter physics
[6–10]. Chiral topological orders are usually formed in corre-
lated fermion systems. For example, FQH states are generated
from correlated electron states in Landau levels [3–5]; chiral
spin liquids (CSLs) are formed in frustrated magnets [11–13]
or Mott insulators [14], which again originate from strongly
correlated electronic materials. Moreover, the chiral exci-
tonic topological order (ETO) recently revealed in InAs/GaSb
quantum wells also emerges from interacting electron-hole bi-
layers [15]. These facts suggest there might be an underlying
mechanism of chiral TOs accounting for their emergence from
interacting fermions, which is yet to be addressed.

A convenient starting point to study interacting fermions is
the Fermi liquid [16]. The instabilities of Fermi liquids pro-
vide a unified description of many long-range ordered states
[17–19], including superconductors, charge density waves,
and magnetic orders, which can be understood as the conden-
sation of bosons in corresponding channels. However, chiral
TOs are disordered and characterized by long-range quantum
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entanglement, in stark contrast with ordered states [20–22].
Therefore, it is a great challenge to find out their connections
with correlated fermion systems, which demand different de-
velopments beyond the conventional theory of Fermi-liquid
instability.

Two-dimensional (2D) interacting fermions are
generally described by H = H0 + HI , where H0 =∑

r,α c†
rαhα (−i∇)cr,α and hα (−i∇) = |k|2/2mα is the

kinetic energy, with α = 1, . . . , N being the band and
spin indices. The fermion-fermion interaction reads as
HI = ∑

r,r′,α,β V (r − r′)c†
r,αcr,βc†

r′,βcr′,α , where α �= β is
allowed. g = {mα, μ, . . .} denotes the model parameters,
including the mass mα and the chemical potential μ. The key
quantity indicating possible instabilities is the susceptibility
χg,αβ (q) = −∑

k G0,α (k)G0,β (k + q) [17,18], with G0,α (k)
the bare Green’s function of fermions and k = (k, iωn).
At the random phase approximation level, the interaction
is renormalized as V ′(q) = V (q)/[1 + V (q)χg,αβ (q)]. It is
known that, when the condition 1 + V (q)χg,αβ (q, 0) = 0 is
satisfied at a single momentum point q = Q, the divergence
indicates the formation of boson condensates or long-range
orders.

In this Letter, we focus on an intriguing question, i.e., what
is the fate of bosons if the above condition is simultaneously
satisfied by an infinite number of points on a momentum
loop, i.e.,

1 + V (q)χg,αβ (q, 0) = 0, ∀q ∈ S1, (1)
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FIG. 1. (a) The correlated fermion systems satisfying the condi-
tion in Eq. (1) on a 1D manifold � = S1 embedded in 2D k space.
(b) Under Eq. (1), a low-energy effective theory takes place, which
describes the fermion pairs on a moat-shaped band with the energy
minima on S1.

given S1 a 1D loop embedded in 2D momentum space with
radius Q, as indicated by Fig. 1(a). Equation (1) essentially
implies that bosons have an equal tendency to condense on
each point of S1, implying a strong frustration effect. We
show that Eq. (1) generates a low-energy effective theory
describing interacting bosons on a moat-shaped band [23–26],
as shown in Fig. 1(b). The emergent physics mimics the flat-
band systems [27–30] along S1 in a bosonic version, finally
resulting in chiral TOs with TRS breaking. We apply the
theory to study strongly correlated semiconductors doped to
the metallic phase, which satisfies the susceptibility condition
in the particle-hole channel. Another ETO state is revealed,
which exhibits semionic anyons in the bulk and chiral ex-
citonic edge state [15]. More interestingly, by applying the
theory to frustrated quantum magnets, we predict a chiral spin
liquid, which is numerically confirmed by our tensor network
calculations. These results reveal the long-desired connections
between chiral TOs and interacting fermions.

Emergence of chiral TO under the susceptibility condition.
We assume Eq. (1) is satisfied at g = gcri and study the general
fermion model. By introducing the auxiliary bosons Or,αβ , HI

can be decomposed into the boson-fermion interaction,

SI =
∫

dτ
∑
r,r′

[O†
r,αβV (r − r′)c†

r′,βcr′,α + H.c.] + · · · , (2)

where the repeated indices are summed and “· · · ” denotes the
boson bilinear terms. Introducing the operator br,a ≡ br,αβ =∑

r′ V (r − r′)Or′,αβ , where a is the boson flavor with a =
1, . . . , N2, and integrating out the fermions [31,32], we obtain
Z = ∫

Db�Dbe−Seff . The effective action of the bosons Seff

reads as

Seff = −Tr ln[−G−1(τ, r)] − Tr[b†
rV

−1(r − r′)br′ ], (3)

where br is the matrix with entries br,αβ . G−1(τ, r) =
G−1

0 (τ, r) − 	(τ, r) is the renormalized Green’s func-
tion, with G−1

0 (τ, r) = [−∂τ − h(−i∇)]. 	(τ, r) = br + b†
r

is the self-energy, which can be treated perturbatively at
g = gcri [31].

To second-order perturbation, the action of bosons is
obtained as S0,eff = ∑

a S(a)
0,eff, and the a-flavor sector is

described by

S(a)
0,eff = −

∑
q

[χg,a(q) + V −1(q)]b†
q,abq,a. (4)

The saddle-point equation, δS0,(a)
eff /δbq,a = 0, can be derived,

which exactly reproduces the identity in Eq. (1). Thus, Eq. (1)
states that there are an infinite number of saddle-point solu-
tions and quantum fluctuations are non-negligible. Thus, we
take into account the long-wave fluctuations around the saddle
points. A generic momentum q can be measured in local
Cartesian coordinates with the origin Q and the unit vector
tangential to S1 [Fig. 1(a)], i.e., p = q − Q. Then, making an
expansion with respect to |p| and iνn leads to the low-energy
effective theory [32],

S(a)
0,eff =

∑
iνn,q

[
−iνn + (|q| − Q)2

2m̃a
− μ̃a

]
b†

q,abq,a, (5)

where m̃a, μ̃a are the effective mass and chemical potential of
the a-flavor bosons, which are dependent on g. Interestingly,
we observe from Eq. (5) that the kinetic energy of bosons is
minimized for |q| = Q, namely, on the loop S1. Moreover,
quadratic dispersion takes place for q deviating from S1, lead-
ing to the moat band shown in Fig. 1(b). For g = gcri where
Eq. (1) is satisfied, μ̃a = 0 can be rigorously proved [32]. This
is a reflection of the fact that the bosons are about to condense
at g = gcri. However, as will be clear in the following, the
condensation will be suppressed by a quantum fluctuation.

To the fourth order, similar derivations as above lead to the
following effective action:

S(a)
I,eff = Ua

∑
q1,q2,q3

b†
q1,abq1−q2+q3,ab†

q3,abq2,a. (6)

The coupling constant Ua = 4
∑

k G2
0,α (k)G2

0,β (k) is generally
positive. Collecting both Eqs. (5) and (6), we arrive at the
effective Hamiltonian of bosons,

Heff =
∑

q

[
(|q| − Q)2

2m̃
− μ̃

]
b†

qbq + U
∑

r

b†
rbrb†

rbr, (7)

where the flavor a is implicit. μ̃ can be formally canceled by
shifting the zero of energy. Clearly, Eq. (7) describes interact-
ing bosons on the moat band, as indicated in Fig. 1(b).

We now examine the possible ground state of Eq. (7).
Due to the flatness of the moat band along S1, the in-
teraction U plays the dominant role. In this case, the
system can lower the energy cost from U by statistical
transmutations via the flux attachment [33–35]. Technically,
we represent the bosons as composite fermions (CFs) at-
tached to a 1-flux quantum [36–42], i.e., b(r1, . . . , rN ) =
 f (r1, . . . , rN )ei

∑
i< j arg[ri−r j ]. Although the fluxes cost the

kinetic energy 〈b|HK |b〉, where HK = (|q| − Q)2/2m̃,
the interaction energy from U , which plays the dominant
role here, is significantly reduced in such a representation be-
cause of the antisymmetric nature of  f (r1, . . . , rN ). Hence,
the fluxes that break TRS could be spontaneously generated,
as they can further lower the system energy.

The next step is to look for the ground state wave
function,  f (r1, . . . , rN ). Using b(r1, . . . , rN ) =
 f (r1, . . . , rN )ei

∑
i< j arg[ri−r j ], the Hamiltonian in the

fermionic basis describes composite fermions coupled to
the Chern-Simons (CS) flux BCS = 2πn [39–42], where n is
the fermion density [43]. Consequently, Landau quantization
is formed, and the ground state in terms of  f (r1, . . . , rN ) is
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obtained to be the lowest Landau level state. Therefore, we
arrive at the bosonic ground state wave function [32],

b(r1, . . . , rN ) = 1√
N!

detm, j
[
χ l

m(z j )
]
ei

∑
i< j arg[ri−r j ], (8)

where χ l
m(z j ) = Al,m( z

lB
)me

|z|2
4l2B L(m)

l [ |z|2
2l2

B
] is the eigenstate of the

lth Landau level (l determined by n [32]) with the normaliza-
tion factor Al,m and the complex coordinate z. Equation (8)
describes the lowest Landau level fully filled by composite
fermions, which are bosons attached to 1-flux quanta.

The state in Eq. (8) is essentially a chiral bosonic topolog-
ical order, as it can be equivalently understood as a ν = 1/2
bosonic FQH [32] due to the following reason. Starting from
a ν = 1/2 bosonic FQH under an intrinsic CS field B⊥ and
ν = φDρ0/B⊥ = 1/2, where φD is the flux quantum and ρ0

the particle number, and regarding the boson as the com-
posite fermion attached to 1-flux quantum, then the effective
field seen by the composite fermions is BCS = B⊥ − φDρ0 =
B⊥/2. Hence, the fermion filling factor is νeff=φDρ0/Beff = 1,
leading to the fully filled Landau level state in Eq. (8).

The energy of the state in Eq. (8) can then be evalu-
ated via 〈b|HK |b〉, leading to ETO = 〈b|[ (|q|−Q)2

2m̃ ]|b〉 =
π2n2

2m̃Q2 log2 4n
Q2 [24,32]. Remarkably, in the low-density regime

n → 0, ETO has a lower energy than that of all the
condensates proposed to date [32], including the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) (EFFLO ∝ n [44,45]) and
the fragmented condensate (Efrag ∝ n4/3 [46]). Notably, the
energetics obtained here is confirmed by a recent Monte Carlo
simulation [47].

Last, we recall that μ̃ = 0 has been proved in Eq. (5) for
g = gcri [32] and n ∝ 2

√
μ̃ [15]. Thus, n → 0 is always satis-

fied for g  gcri. Therefore, we arrive at the key conclusion
of this Letter, i.e., the chiral TO described by Eq. (8) will
always emerge as the possible ground state, at least in a finite
parameter region around g  gcri where Eq. (1) is satisfied.

Application 1: Excitonic topological order. We now ap-
ply the above general theory to study strongly correlated
doped semiconductors. The Hamiltonian is given by H =
H0 + HI , where H0 = ∑

k,n,σ εn(k)c†
n,k,σ cn,k,σ with spin σ .

The conduction and valence bands are described by ε±(k) =
±k2/2m ± D/2 − μ0, where μ0 is the chemical potential and
D is the band offset. We are interested in the doped metallic
state with the electron (or hole) Fermi surface, i.e., 0 < D <

2|μ0|, as indicated by Fig. 2(a). On top of H0, we consider the
short-range interband interaction between the electrons, i.e.,
HI = V

∑
k,k′,q

∑
σ,σ ′ c†

+,k+q,σ c+,k,σ c†
−,k′−q,σ ′c−,k′,σ ′ . The in-

traband interaction is negligible as it only modifies the band
dispersion via the mass renormalization.

Even if at low temperatures, there are virtual processes
where electrons are excited to the conduction band above
the Fermi level, leaving hole states in the valence band, as
indicated by the dashed arrows in Fig. 2(a). For strong V ,
the electrons and the holes can form excitons. When the
binding energy overcomes the excitation energy, such vir-
tual processes will be relevant, leading to the condensation
of excitons, i.e., excitonic insulators (EIs). In conventional
mean-field theory [32], we define the excitonic order parame-
ter as �q̃ = V

∑
p〈c†

+,p,σ c−,p−q̃,σ 〉 where q̃ is the net exciton

FIG. 2. (a) Plot of a semiconductor doped to the metallic phase,
with an implicit energy cutoff W = �2/2m. The dashed arrows
denote the excitation of electron-hole pairs. (b) The calculated
mean-field phase diagram. D and |μ0| are in units of W . A strong
interaction V is required to obtain the EIs, and V/W = 1 is used
in (b). (c) The calculated exciton dispersion for different values
of μ0 and D = 0.2. The dashed red curve denotes the dispersion
minimum with changing μ0. (d) The density plot of the susceptibility
in the particle-hole channel. The inset shows its dependence on q. (e)
The phase diagram of the boson model in Eq. (7). (f) The zoom-in
phase diagram obtained after considering the frustration effect. The
parameters are the same with (b). The red thick curve denotes the
critical regime where Eq. (1) is satisfied. With varying the fermion
parameters along the yellow dashed line, the parameters of the boson
theory in Eq. (7) evolve along the yellow trajectory in (e).

momentum. By solving the mean-field equations, the order
parameter �q̃ is self-consistently determined. The solution
�q̃ = 0 simply describes the electron (or hole) gas without
ordering. For the solutions where �q̃ is maximized at |q̃| = 0,
the excitons intend to exhibit zero net momentum. Such a
condensate is referred to as the zero-momentum EI, contrary
to the condensate at finite momentum, i.e., the FFLO state.

The mean-field phase diagram with varying |μ0| and D is
shown in Fig. 2(b). As shown, in a strongly doped regime with
large μ0, the system remains as the electron (or hole) gas,
because of the dominant excitation energy. For smaller μ0, the
binding energy slightly overcomes the excitation energy. In
this case, only the process indicated by the red dashed arrow
in Fig. 2(a) becomes relevant, as it has the lowest-energy
cost. Clearly, the excitons formed in this channel exhibit finite
momenta, thus leading to the FFLO EI after condensation, as
shown by Fig. 2(b). With further lowering |μ0|, the binding
energy becomes dominant, so that zero-momentum excitons
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can be readily formed, as indicated by the |q| = 0 scattering
channel in Fig. 2(a). This leads to the zero-momentum EI in
Fig. 2(b).

We then examine the excitation energy as a function of
the exciton momentum q. From Fig. 2(a), we observe that it
decreases from |q| = 0, and reaches the minimum at |q| =
Q. This fact is further manifested by the exciton energy
Eex, which can evaluated by minimizing Wex = 〈FS|�p[H −
Eex(p)]�†

p|FS〉, where �†
p = ∑

k φp(k)c†
+,k,σ c−,p−k,σ with

the variation parameter φp(k), and |FS〉 denotes the Fermi
sea [32]. As shown in Fig. 2(c), for the metallic states, the
calculated exciton dispersion exhibits a minimum at finite
momentum, leading to the moatlike band of excitons, as that
in Fig. 1(b). This indicates that there emerges a frustrated
ordering tendency along S1.

We further calculate the susceptibility χ (q, 0) in the
particle-hole channel. As shown by Fig. 2(e), χ (q, 0) ex-
hibits the same maxima along a momentum loop, as indicated
by the red dashed circle. Hence, for a proper parameter
g = gcri, 1 + V (q)χ (q, 0) = 0 can be satisfied by all q ∈
S1, leading to correlated excitons on the moat band [32].
Hence, a chiral TO formed by excitons, i.e., the ETO,
should emerge as the ground state for g ∼ gcri according to
our theory.

A comparison of the energetics between the boson conden-
sates and the ETO leads to the phase diagram corresponding
to Eq. (7), as shown in Fig. 2(e). In terms of the orig-
inal fermion model, we gradually decrease μ0 along the
dashed line in Fig. 2(f). For μ0 = μ0,cri1, where the sus-
ceptibility condition is satisfied, μ̃ ∼ 0 in Eq. (7), thus the
density n ∼ 0, as discussed above. With further decreas-
ing μ0, n increases and moves along the dashed trajectory
in Fig. 2(e). The system stays in the ETO state until the
trajectory crosses the ETO-FFLO boundary at μ0 = μ0,cri2.
This determines the ETO region of the phase diagram in
Fig. 2(f) Thus, the quantum fluctuation results in a translation-
ally invariant, long-range quantum entangled chiral excitonic
state [15,48,49].

Application 2: Chiral spin liquid and numerical evidence.
Our theory can also be applied to predict chiral spin liquids in
frustrated magnets. We consider the spin-1/2 J1−J2−J3 XY
model on a square lattice, which satisfies the susceptibility
condition as will be shown below. The model is defined as
H = ∑

r,r′ (Jr,r′/2)(Sx
r Sx

r′ + Sy
rSy

r′ ) where the sum evolves the
first, second, and third nearest-neighbor bonds. We fermionize
the quantum spin model using the 2D Jordan-Wigner trans-
formation [33–35,40–42], which transform the spin operator
into fermions and the lattice gauge field. The lattice gauge
field has two effects. One is to generate fluxes that minimize
the energy of fermions, and the other is to mediate fermion-
fermion interactions. Focusing on J3 = J2/2 and gradually
increasing J2, we plot the single-particle dispersion of the
fermions in Figs. 3(a)–3(c). As shown, the Dirac fermion
states emerge, and the chemical potential μ0 gradually moves
away from the Dirac points with increasing J2. For small
J2, the gauge-mediated fermion-fermion interaction has been
shown to induce pairing of fermions, whose condensation
leads to Néel order [41,42], while for large J2, another Fermi
pocket emerges around the � point [Fig. 3(c)]. Then, the

FIG. 3. (a)–(c) The dispersion of fermions along kx = ky af-
ter a 2D Jordan-Wigner transformation of the J1−J2−J3 XY
square model. J2/J1 = 0, 0.4, 0.52 for (a)–(c), respectively. (d) The
calculated in-plane Mxy and out-of-plane Mz magnetization with
increasing J2/J1. (e) The calculated chirality order χ = 〈S1 · (S2 ×
S3)〉 with S1,2,3 the spin operator defined on three sites of a square
plaquette. (f) The entanglement spectrum as a function of ky. J2/J1 =
0.4 and ky is in units of 2π/5. The bond dimension is D = 10 in the
calculations.

Fermi-surface nesting would favor spin density waves [38].
Interestingly, for intermediate J2 [Fig. 3(b)], the same low-
energy physics as that of the ETO example [Fig. 2(a)] occurs,
and the susceptibility condition is satisfied [32]. Therefore, a
chiral TO is expected to take place in between two magneti-
cally ordered states.

We then use tensor network calculations [50–62] to sim-
ulate the ground state. As shown in Fig. 3(d), in between
two in-plane magnetic orders, an intermediate phase (0.33 �
J2/J1 � 0.49) occurs, which is completely free from any in-
plane ordering. The chirality order also shows a significant
enhancement in this region, clearly indicating the sponta-
neous breaking of TRS. Moreover, the entanglement spectrum
exhibits the level counting, 1, 1, 2, 3, 5 . . . [Fig. 3(f)], con-
sistent with the SU(2)1 conformal field theory, implying the
existence of the chiral edge state. These data offer strong
evidence for the chiral spin-liquid state, justifying our analytic
predictions.

Summary and discussion. The ETO is a chiral bosonic TO
exhibiting semionic excitations in the bulk and chiral exci-
tonic edge states [15,32]. Experimental evidence was recently
reported in the semimetal phase of InAs/GaSb quantum wells
[15,48,49] with a density imbalance [63]. Here, we reveal that
ETO can even be formed in the metallic phase of doped semi-
conductors. In this case, a strong interaction V comparable
to the bandwidth W is desired. The twisted TMD bilayers
provide a promising platform, which can realize semicon-
ductors with strong correlation and remarkably flat bands
[64]. Therefore, our theory could have intimate connections
with the recently reported fractional quantum anomalous Hall
states in the twisted moiré systems [65–68].

The mechanism revealed here applies to correlated
fermionic systems, in which the number of bosons de-
pends on how many fermions are paired. In this case, the
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system can always lower its energy at the optimal density
[15] where the lowest Landau level is fully filled. In contrast,
for bosons with fixed density on a moat band, generic filling
of the Landau level is likely. Consequently, metallic states
with quasi-long-range order are expected [23]. The proposed
mechanism may also be used to predict other chiral TOs,
such as fractional Chern insulators [27,28]. The generaliza-
tion to TRS-preserving TOs and non-Abelian TOs is also an
interesting direction.
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