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We study the electronic excitation spectra in solid molecular hydrogen (phase I) at ambient temperature and 5-
to 90-GPa pressures using quantum Monte Carlo methods and many-body perturbation theory. In this range, the
system changes from a wide-gap molecular insulator to a semiconductor, altering the nature of the excitations
from localized to delocalized. Computed gaps and spectra agree with experiments, proving the ability to predict
accurately band gaps of many-body systems in the presence of nuclear quantum and thermal effects.
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Introduction. Many-body hydrogen is a fundamental sys-
tem whose physical properties have been the subject of
numerous theoretical and experimental studies. Despite more
than a century of investigations, its phase diagram under
pressure is still uncertain because of experimental difficulties
and computation inaccuracies [1–3]. Of the many crystalline
phases detected so far, only the crystalline structures of phases
I, III, and IV have been identified by x-ray diffraction [4–6],
while the structures of other phases have been predicted based
on numerical algorithms [7–9]. Similarly, characterization of
the electronic properties, such as energy gaps and excitations,
has been achieved mainly by optical probes, like absorption
[4,10] and reflection [11] or by transport measurements [12].
In the search for metallic hydrogen, the electronic gap has
been measured as a function of increasing pressure. Recently,
thanks to progress in high-brilliance x-ray sources and in
high-pressure experimental techniques [13–15], inelastic x-
ray scattering (IXS) has been successfully employed to detect
the electronic excitation spectrum and extract the value of the
electronic gap from the lower limit of the photon energy-loss
spectra in phase I [16]. From the theoretical perspective, the
accurate calculation of optical properties and band gaps is
difficult [2], since electron-phonon coupling and excitonic
effects are expected to play important roles.

Here we present a detailed theoretical ab initio study of
the electronic excitation (absorption) spectra of phase I hydro-
gen based on quantum Monte Carlo (QMC) and many-body
perturbation theory (MBPT) methods [17]. Quantum and ther-
mal effects of the protons are included using path-integral
Monte Carlo calculations within the Born-Oppenheimer
approximation. Whereas the QMC calculations focus on

the value of the minimum excitation gap, we also com-
pute the energy-loss spectra based on the Bethe-Salpeter
equation (BSE) to directly compare to experimental measure-
ments. Our calculations show that quantum nuclear effects
reduce the gap by ∼2 eV, a decrease only weakly dependant
on pressure, in contrast to excitonic effects which decrease
more rapidly with pressure from ∼2 eV at threefold com-
pression to ∼0.5 eV at 90 GPa (∼ninefold compression).
Overall agreement, reported in Fig. 1, is observed between
the QMC and BSE calculations and experiment. The remain-
ing small deviations with respect to the experimental values
can be attributed to the extrapolation procedure, in particular,
the background subtraction used to determine the energy gap
from the experimental spectra.

Our results clearly point out the limitations of self-
consistent single-electron theories like density functional
theory (DFT). Although Ref. [16] reports DFT gaps with
the HSE functional in agreement with experimental values,
those calculations, based on ideal crystal structures, rely on
large error cancellations between the quantum nuclear effects
and the systematic underestimation of band gaps of the DFT
functional underlying the calculations (see the Supplemental
Material of Ref. [16]). In addition, those calculations do not
predict the changes between hydrogen and deuterium and the
strong pressure dependence of excitonic effects.

Previous MBPT [18–21] or QMC [22–25] studies of ex-
citation gaps or optical properties have mostly focused on
the high-pressure regime close to metallization. Since direct
experimental results on structural properties are lacking in
this region, comparisons with experimental spectra [10] are
less conclusive. Further, from a theoretical point of view, most
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FIG. 1. Comparison between the room-temperature experimen-
tal data of Ref. [16] and theoretical predictions for the electronic
gap of solid hydrogen in phase I as a function of compression. We
report quasiparticle (circles) and neutral gap from QMC (triangles)
(red symbols) and from MBPT (blue symbols, triangles BSE, circles
GW), both corrected for finite-size effects. The black triangle and
the black circle corresponds to the first exciton transition and the
interband gap extracted from experimental absorption spectra at zero
pressure ρ/ρ0 = 1. The difference between the quasiparticle gap and
the neutral gap is the exciton binding energy. The solid black line
is a fit to the experimental data; the red dashed line is a fit to the
QMC-QP gaps.

of the studies are not fully satisfying; Refs. [18–21,24] com-
pletely neglect quantum nuclear motion, whereas Ref. [25] is
based on QMC energies for the ideal structures augmented by
DFT calculations for phonons in the self-consistent harmonic
approximation and electronic excitation spectra using differ-
ent functionals.

Methods. Phase I of hydrogen has molecular centers on an
hcp lattice with molecular orientations being nearly isotropic.
This phase is well characterized by x-ray diffraction at room
temperature up to 120 GPa [4]. A recent investigation ex-
tended the pressure range to phase III and phase IV up to
254 GPa [5], also providing the equation of state (EOS) and
the cell geometry.

For our numerical study, we consider hydrogen molecules
in the P63/m structure with four molecules per unit cell.
As in previous studies of hydrogen [23,26], we employed
a supercell with 48 molecules (N = 96 protons) compris-
ing 3 × 2 × 2 conventional cells (orthorhombic), a workable
compromise between supercells with nearly cubic shape and
a modest number of atoms. Molecules in the supercell were
randomly oriented corresponding to the situation of phase I at
room temperature [26]. We performed structural optimization
of the molecular positions and supercell geometry at con-
stant stress using the vdW-DF1 functional within DFT. This
functional is among the best functionals for high-pressure
molecular hydrogen as benchmarked against QMC predic-
tions [27,28]. After geometry optimization we performed a
room temperature NVT-Smart Monte Carlo simulation with
both classical and quantum protons, employing energies and

forces from the DFT-vdW-DF1 functional to generate a set of
uncorrelated configurations.

This procedure was repeated at four different densities cor-
responding to compression values ρ/ρ0 = 3.15, 4.47, 6.86,
and 8.48 (rs = 2.21, 1.97, 1.71, and 1.59, respectively) in
order to investigate the pressure range between 5 and 90 GPa.
Here ρ0 = 0.0396 g/cm3 is the reference density at ambient
pressure and cryogenic temperature. Since the molecular ge-
ometry using DFT-vdW-DF1 are found to be accurate [27,28],
we did not use the more expensive CEIMC algorithm (which
relies on the QMC energies) for optimization. Details of the
thermodynamics and structures are reported in the Supple-
mental Material [29] (see also Refs. [4,16,30–56] therein).

At each density and for each different system, we se-
lected 20 independent configurations for the calculations of
the electronic excitations within QMC, 10 of which were also
employed in the BSE calculations. Electronic energies were
first averaged over the nuclear configurations and excitation
gaps were obtained from the difference of averaged energies
(see the Supplemental Material [29] for details). Such a quan-
tum average procedure becomes exact at low temperatures
where zero point motion dominates the nuclear trajectories as
is the case for hydrogen at T = 300K [22,57].

For each nuclear configuration, we first computed the fun-
damental or quasiparticle gap as

�qp = E0(Ne + 1) + E0(Ne − 1) − 2E0(Ne), (1)

adding and removing up to 6 electrons using reptation QMC
(RQMC) with a uniform positive background charge to have
charge neutrality in the supercell. To account for finite-
size effects, we have used grand canonical twist averaging
(GCTABC) and corrected for the leading-order size effects ac-
cording to �∞

qp − �L
qp = |vM (L)|/ε as described in Ref. [40].

Here, vM (L) ∼ 1/L, the Madelung constant (reported in the
table in the Supplemental Material [29]), and L is the ex-
tension of the nearly cubic supercell. Heuristically, this 1/L
dependence of the quasiparticle gap can be attributed to the
additional charge interactions of the doped systems [58,59].
For all QMC calculations, the dielectric constant ε used for
size corrections has been extracted from extrapolating the
long-range behavior of the structure factor (see the Supple-
mental Material [29]).

As a second step, we also computed the neutral electron-
hole gap as

�n = E1(Ne) − E0(Ne), (2)

where E0(Ne) and E1(Ne) indicate electronic ground and first
excited energies with Ne electrons, respectively. In practice,
�n is obtained within RQMC by promoting a single Bloch
orbital from the ground state to an excited state in the Slater
determinant of the trial wave function [60]. Kohn-Sham DFT
energies are used to determine the ordering.

Accounting for the finite-size effects of neutral excitations
is more delicate. For a fixed number of electrons, the 1/L
dependence will be absent for neutral excitations for a suf-
ficiently large supercell, since an electron and a hole will
be bound together forming a neutral object. In practice, an
apparent 1/L behavior is still observed [60,61] in situations
where the electron-hole attraction is not sufficiently strong,
so that the size of the exciton is larger or comparable with
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FIG. 2. Comparison of the measured and calculated (BSE) IXS
spectra for the lowest (blue) and highest (green) calculated compres-
sions. Closed circles with error bars are experimental data. Straight
black lines are fits to the experimental data. Vertical black lines
indicate the band gap extracted from the crossing of the fits at the two
compressions. The vertical red lines correspond to the BSE neutral
gap for the corresponding compression. Only converged parts of the
BSE spectra are shown.

the size of the supercell. In order to quantitatively correct for
finite-size effects, additional information about the extension
of electron-hole pairs is needed. An estimate of the excitonic
length scale is lX = ε/μ, where μ is the band mass describing
the (extended) electron-hole excitation around the minimal
gap (see the Supplemental Material [29]). Leading-order size
effects of neutral excitations are then estimated as [60]

�∞
n − �L

n = max

[ |vM (L)|
ε

− |vM (2lX )|
ε

, 0

]
. (3)

For a subset of the configurations described above, we
performed MBTP calculations on top of the DFT-LDA band
structure. We employed both the GW and the BSE approach
to compute the excitation spectra averaged over 10 config-
urations including both temperature and nuclear quantum
effects. Whereas the GW approach addresses quasiparticle
excitations, the BSE approach computes e-h spectra, including
excitonic effects.

To have a direct comparison between the QMC and the
BSE, we have performed the BSE calculations at vanish-
ing momentum transfer. The IXS experiment measures the
dynamic structure factor S(q, ω) = −q2/(4π2n)Imε−1

M (q, ω),
where n is the average electron density and εM (q, ω) is
a macroscopic dielectric function which can be directly
computed within the BSE. In our comparison to the IXS spec-
tra, we examine the loss function at vanishing momentum:
− limq→0 Imε−1

M (q, ω). Since the excitons in solid molecular
hydrogen have a Frenkel-like nature with very little dispersion
[62], q → 0 is a good approximation of the spectral onset at
finite momentum where the experiment is conducted. Note
that the intensities in experimental IXS spectra are arbitrary
(see the Supplemental Material [29] for theoretical and com-
putational details). Values of the optical gap and the transition
matrix elements computed using the BSE were averaged over
nuclear configurations to obtain the spectra shown in Fig. 2. A

FIG. 3. Absorption spectra from BSE (solid) and IPA-GW
(dashed) at ρ/ρ0 = 8.48 (green) and ρ/ρ0 = 3.15 (blue) and ex-
perimental spectra at ρ/ρ0 = 1(black) from Ref. [63]. We have
renormalized the spectra to match the experimental intensity.

0.2-eV Gaussian broadening was applied to the final averaged
spectra.

Results. We have computed quasiparticle and neutral gaps
in a compression range between threefold to ninefold using
both QMC and MBPT methods. Figure 1 reports our results
and compares them with the experimental data of Ref. [16].
Over the whole range of compression, the system remains
in the insulating state but the character of the neutral exci-
tation changes from localized to delocalized. Quasiparticle
and neutral gaps from QMC calculations are slightly larger
than the GW and BSE results, respectively. For the exciton
binding energies Eb (defined as the difference between the
neutral/BSE and the quasiparticle/GW gaps), the agreement
between QMC and MBPT methods is much better. See Table I
in the the Supplemental Material [29]. A measure of localiza-
tion of e-h pairs is the increase in the exciton binding energy
from 0.5 eV at ninefold compression to 2 eV at our lowest
compression.

In general, we expect the quasiparticle/GW gap to describe
the onset of the continuum formed by interband transitions. A
linear fit to the quasiparticle gap values extrapolates very close
to the interband gap of 14.5 eV experimentally determined at
zero pressure and cryogenic temperature (ρ/ρ0 = 1) [63,64]
and to the ionization energy of the hydrogen molecule (15 eV)
[65]. The neutral/BSE gap, instead, extrapolates to the first
exciton transition measured by absorption at zero pressure
[63], which is only ∼0.2 eV lower than the free molecule
excitation [66].

The shape of the theoretical absorption spectra from the
BSE calculations shown in Fig. 3 at our lowest pressure
smoothly approaches the one measured in Ref. [63] at zero
pressure. Although the overall spectral structure seems to
be preserved, our analysis (see Fig. 7 of the Supplemental
Material [29]) shows that at our lowest density, the interband
(GW) transitions start above 11 eV so that the observed lower
onset of absorption in Fig. 3 is intrinsically connected to exci-
tonic effects described by the BSE calculations. This suggests
that the excitons at low compression are tightly bound [67],
strongly localized on an individual molecule, supporting the
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interpretation of Ref. [63] at zero pressure. At higher pressure,
the binding energy decreases and the excitation becomes de-
localized approaching pure interband transitions. This picture
is further supported by the plot of the exciton wave function
at different compressions (see Fig. 14 of the Supplemental
Material [29]) [68].

In order to further support the interpretation of excitonic
effects in terms of free molecular excitations at the lowest
compression, we have performed QMC calculations for the
neutral gap employing localized Gaussian molecular orbitals
centered at each molecular center. For each configuration, the
lowest gap value is obtained by considering the excitation
localized on the molecule with the longest bond length, corre-
sponding to what was found in the BSE calculations. Despite
an overall offset in total energies, the value of the average
gap using Gaussian molecular orbitals matches the one from
our neutral calculation employing Bloch orbitals at the lowest
compression. At higher compressions, this agreement is lost
showing that the simple Gaussian approximation cannot de-
scribe the delocalization of the electrons in an exciton which
extends over neighboring molecules.

Let us now turn to the comparison of our neutral QMC
and BSE gaps with the experimental values extracted from
the energy-loss edge of the IXS intensity of Ref. [16] shown
in Fig. 1. We observe an excellent agreement of theory and
experiment. Insight into the origin of residual deviations can
be obtained by comparing the IXS and BSE spectra. In Fig. 2
we report the comparison of BSE, −Imε−1

M (q → 0, ω), and
IXS spectra at low and high compression, together with the
values of the BSE and experimentally extracted gaps indicated
by vertical bars. At lower pressure/compression, the onset
of energy loss is quite sharp, the BSE optical gap coincides
with the observed onset in the experimental spectra. However,
to eliminate background effects, the experimental gap value
reported in Ref. [16] and shown in Fig. 1 is obtained by a
linear extrapolation using points at higher energies. Note that
deviations of the BSE calculations with respect to experimen-
tal data at higher energies are an artifact of the limited number
of unoccupied bands taken into account in the BSE calcu-
lations. Possible bias due to the linear extrapolation roughly
coincides with the experimental errors quoted at this compres-
sion, which must be interpreted as a systematic error. Within
the BSE, the onset of energy loss is due to the sharp and
intense first excitonic peak whose intensity might be larger
than in experiment due to the vanishing momentum trans-
fer in the BSE calculations (see Fig. 8 of the Supplemental
Material [29]).

At higher pressure, where the excitonic intensities are
weaker (see Fig. 8 of the Supplemental Material [29]), the
onset is smeared out. The values of the experimental gap at
higher compressions have been estimated as the intersection
point between two slopes; the less steep one is attributed
to residual beryllium gasket background effects (see the less
steep fit of the right side of Fig. 2). In our BSE calculations,
however, we observe that the IXS spectrum begins at 5.3 eV
with a very weak first excitonic peak such that the BSE results
are within the systematic uncertainty of the experimental gap
determination.

In order to quantify the influence of thermal and quantum
nuclear effects on electronic gaps we computed the gap for

FIG. 4. Quasiparticle (QP) gap of the ideal P63/m structure
(open circles), QP gap with classical protons at room temperature
(half circle), and QP gap with quantum protons at room temperature
(solid circle). Inset: The reduction of the quasiparticle gap due to
temperature and quantum nuclear effects (solid circles) and with only
temperature effects (half-filled circles).

systems of classical protons and for the ideal P63/m structure
at the four compression values. In Fig. (4) we report �qp

for the relaxed P63/m structure, for systems of both classical
and of quantum protons at 300 K. Ideal structures have the
largest gaps, thermal effects alone (classical protons) provide
roughly ∼1-eV reduction of the gap while nuclear quantum
effects provide an additional ∼1-eV reduction of the gap,
roughly independent of compression (see the inset to Fig. 4).
We expect that the deuterium gap will be halfway between the
gap of hydrogen and that of classical protons. Note that we do
not consider any effects of quantum statistics on the molecular
rotational spectra.

Conclusion. The pressure-induced variation of solid hy-
drogen from a wide-gap insulator towards a metal has been
challenging experimentally and theoretically for decades. We
have made a theoretical study of the electronic excitation gap
and spectral properties based on QMC and MBPT methods
of phase I where quantitative comparison to IXS measure-
ments are possible. We have shown that quantum nuclear and
excitonic effects introduce sizable reductions of the gap. In
contrast to thermal and quantum nuclear effects, the reduction
of the gap due to excitonic effects decreases rapidly with
pressure. At our highest compression, quasiparticle/GW and
neutral/BSE gaps almost coincide. Therefore, the roughly
linear behavior of the closing of the gap in the range of
compressions studied here and in Ref. [16] will change
slope around 100 GPa to follow the line of the quasiparticle
gap.

Our calculations put forward a pressure-induced crossover
of the optical excitation spectra from a typical molecular crys-
tal towards a semiconductorlike behavior. At low pressure,
excitons are mainly localized on molecular centers and form
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a broad excitonic band. At high compression, energy loss and
absorption spectra are dominated by quasiparticle excitations
with weakly bound excitons, delocalized over several unit
cells. We have shown that nuclear quantum effects and intrin-
sic many-body calculations (MBPT or QMC) are needed for
a quantitative description.
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