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Second-order phase transitions appear as a divergence in one of the linear response functions. For a system
of correlated electrons, the relevant divergent response can and does involve many-particle observables, most
famously the double occupancy. Generally, evaluating the linear response function of many-particle observables
requires a many-particle generalization of the Bethe-Salpeter equation. However, here I show that the divergence
of linear response functions in dynamical mean-field theory is governed by a two-particle Bethe-Salpeter
equation, even for many-particle observables. The reason for this is that the divergence at the second-order
phase transition is produced by the self-consistent feedback of the dynamical mean field.
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Electronic correlations lead to a plethora of phases, from
metal-insulator transitions [1] and magnetism [2,3] to charge-
density waves [3–5], Wigner crystals [6–8], phase separation
[9], superconductivity [10,11], and orbital [12,13] and bond
order [14,15]. Many of these phases are already present in
variants of the Hubbard model [16,17]. Second-order phase
transitions between these correlated phases at finite temper-
ature are of special interest, since divergences occur in the
correlation and response functions at these points, associ-
ated with the vanishing second derivative of the free-energy
functional [18,19]. According to the fluctuation-dissipation
theorem, the relevant correlation functions are many-particle
observables of higher rank than the order parameter itself. For
example, for a ferromagnetic or antiferromagnetic transition,
the order parameter 〈niσ 〉 is a single-particle operator, while
the relevant correlation function 〈niσ n jσ 〉 is a two-particle
operator.

Dynamical mean-field theory [20] (DMFT) is a hugely
successful approximation for materials with correlated elec-
trons [21], based on the theoretical [22] and experimental [23]
observation that the electronic self-energy is often predom-
inantly local. This assumption also leads to simplifications
at the two-particle level [24–27], which have enabled the
calculation of dynamical two-particle correlation functions
[26,28–34] according to the Bethe-Salpeter equation. Thus,
second-order phase transitions such as the metal-insulator
transition can be analyzed at the two-particle level using the
DMFT Bethe-Salpeter equation [18,19,35–41].

However, this analysis of the Bethe-Salpeter equation ap-
pears to be limited to the two-particle correlation functions
and thus to single-particle order parameters. This excludes
the most simple realization of the metal-insulator transition,
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where the double occupancy D and its response to a change
in the Coulomb interaction strength dD/dU are the quantities
of interest [35,41,42], so the order parameter is a two-particle
operator and the divergent correlation-response function in-
volves four-particle operators, whereas the compressibility
d〈n〉/dμ does not diverge at the critical point of the particle-
hole symmetric Hubbard model [38,43,44].

More generally, considering the free energy as a function of
μ, U , and possible other parameters, thermodynamic stability
is a condition on the eigenvalues of the second derivative ma-
trix of the free energy [41], which can be expressed in terms of
mixed response functions such as ∂D/∂μ|U . Finally, in multi-
orbital systems, higher-order crystal field and magnetic order
parameters [45–48] do not always have a representation as
a single-particle observable, which follows from the addition
rules for angular momentum in many-electron systems.

Thus, it is relevant to study the response of many-particle
observables in correlated electron systems, especially with
an eye on possible divergences. For the particular case of
the double occupancy, Kowalski et al. [41] have used the
Galitskii-Migdal formula to reduce the problem to single-
particle objects, but a more general and systematic approach
is clearly beneficial.

Here, I will show that in DMFT the linear response
of many-particle correlation functions and especially their
divergence is still governed by the usual, two-particle Bethe-
Salpeter kernel. In fact, the many-particle order parameter and
applied field only show up as “capping stones” at the end
points of the two-particle Bethe-Salpeter equation. Thus, they
do not generate the divergence at the second-order transition
and their role is restricted to determining if the divergence
is picked up in a particular response function. The reason
for this remarkable simplification, from many-particle to two-
particle physics, can be traced back to the particular form of
the DMFT equations, where the self-consistent feedback of
the dynamical mean field is responsible for the second-order
phase transition [18,19,35,36]. On the other hand, going be-
yond linear response, the two-particle Bethe-Salpeter is no
longer sufficient, as expected.
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Consider a general Hubbard model of the form

H =
∑

sites a,b

∑
αβ

taα,bβc†
aαcbβ +

∑
sites a

H local[{c†
aα, caβ}], (1)

where a, b are sites in a lattice, α and β are orbital labels
(which includes spin), taα,bβ is the hopping, and H local is a
local Hamiltonian, which is a function of the creation and
annihilation operators c†

aα, caβ on that particular lattice site.
The local Hamiltonian includes many-particle terms such as
the Coulomb interaction 1

2

∑
αβγ δ Uαβγ δc†

αcβc†
γ cδ . Here, taα,bβ

and H loc are Hermitian. For a translationally invariant system,
tk,αβ denotes the Fourier transform of taα,bβ to momentum
space. The model is considered at a finite temperature T =
1/β, and factors of T are suppressed in the equations for
compactness.

In DMFT, this lattice Hamiltonian is replaced by an
auxiliary impurity model with the same local Hamiltonian
but with a dynamical hybridization function �ν,αβ , where
ν is a fermionic Matsubara frequency. This hybridization
might be represented as an (infinite) discrete bath to obtain
a Hamiltonian formulation of the impurity, or simply as
an action in imaginary time. For now, a hybridization of
the form �τ−τ ′,αβc†

α (τ )cβ (τ ′) is used, where �ν has been
Fourier transformed to imaginary time. The generalization
to Nambu space for superconducting phases is discussed at
the end. Given a hybridization �ν,αβ , the auxiliary impurity
model can be solved numerically [49] and its time-ordered
expectation values are denoted by 〈·〉. In particular, DMFT
works with the imaginary-time single-particle Green’s
function gαβ (τ ) = 〈cα (τ )c†

β〉 and its Fourier transform to
Matsubara frequency gν,αβ . In the following, tk, �ν , and gν

are considered as matrices in orbital space, and ·−1 denotes
the matrix inverse in this space.

The DMFT loop is closed by a prescription to find the
hybridization �ν , the dynamical mean field, which is given
by a set of self-consistency conditions,

∀ν : 0
!= fν (�ν, gν ) = gν −

∫
dk

[
g−1

ν + �ν − tk
]−1

. (2)

Here,
∫

dk = 1/Nk
∑

k denotes taking the momentum av-
erage, i.e., the local part. Equation (2) is a coupled set of
equations because the solution of the auxiliary impurity model
gν implicitly depends on �ν ′ also for ν �= ν ′.

Linear response of local observables. Linear response con-
siders the change of the expectation value of an operator B̂ to
a small perturbation H → H − AX̂ of the Hamiltonian, where
A is the magnitude of the perturbation and A and X̂ are called
conjugate variables. Two examples introduced above are the
density of orbital α, n̂α = c†

αcα , and the double occupancy
on orbital α, D̂α = c†

α↑cα↑c†
α↓cα↓, which are conjugate to the

chemical potential μ and Hubbard interaction U acting on that
orbital, respectively.

As in these examples, and in the spirit of dynamical mean-
field theory, I focus here on homogeneous local perturbations,
i.e., X̂ = ∑

sites i X̂i[{c†
iα, ciβ}], where X̂i is a local operator on

site i of arbitrary order. Similarly, only site-local observables

B̂ are considered. In that case, in DMFT, it makes sense to
identify [50] the expectation value of the impurity model
as the relevant quantity, i.e., 〈B〉 = 1

N#

∑
sites i〈Bi〉 = 〈B〉imp,

which can be measured in the impurity solver. For the linear
response to the homogeneous field A, the resulting linear
change to a local observable B is the same on all sites, i.e.,
it is a q=0 response. More generally [51], it is also possible
to consider how 〈Bb〉 depends on Âa for any pair of sites a, b,
and the corresponding q-dependent response function in mo-
mentum space. Similarly, since the perturbation is constant in
time, the linear response is also assumed to be time indepen-
dent and the response function has ω = 0. The linear response
formalism assumes that no spontaneous symmetry breaking
in space or time takes place in response to the field, but
second-order phase transitions are visible as a divergent linear
response. For single-particle operators AX̂ and B̂, the DMFT
linear response is given by the well-known Bethe-Salpeter
equation [20]. Here, I show that the approach which was pre-
viously used to prove the thermodynamic consistency [52] of
the DMFT compressibility can also be used to express the lin-
ear response of many-particle observerables in simple terms.

Derivation. For a local (i.e., impurity) expectation value
〈B〉, a change in the parameter A of the local Hamiltonian will
lead to both direct changes and indirect changes via the DMFT
self-consistent field �,

d〈B〉
dA

= ∂〈B〉
∂A

∣∣∣∣
�

+
∑
ν ′

∂〈B〉
∂�ν ′

∣∣∣∣
A

∂�ν ′

∂A
. (3)

This requires the calculation of the change of � with respect
to A, which can be determined from the fact that the DMFT
self-consistency equation has to be satisfied both before and
after applying the field. Restating the DMFT self-consistency,
Eq. (2), in terms of g−1 instead of g will lead to more compact
equations in the end [53]:

f (g−1[�[A], A],�[A])

= (g−1)−1 −
∫

dk(g−1 + � − tk )−1. (4)

Here, the square brackets denote that the mean-field � de-
pends on A and the inverse of the local Green’s function g−1

depends on A both directly and via �[A]. f is diagonal in ν,
so the ν labels are suppressed to keep the notation compact.

As stated before, the objects g−1, �, tk are matrices in
orbital space. The derivative of one of these matrices with
respect to another matrix is a rank-4 tensor in orbital space.
Furthermore, g and � carry a single fermionic frequency, so
the derivative ∂g−1/∂� has two fermionic frequencies, i.e.,
it is a matrix. It will make sense to interpret these rank-4
orbital tensors as matrices (rank-2 tensors) in a space of orbital
pairs, keeping the additional matrix structure in frequency
space as well. In this pair space, the usual single-frequency
rank-2 orbital objects are vectors. For the matrix inverse in
this pair space, the notation ·¬1 is used, while ·−1 is reserved
for the original orbital space. For matrix derivatives, there is
the useful identity ∂ (M−1)/∂x = −M−1(∂M/∂x)M−1.

L241110-2



SECOND-ORDER PHASE TRANSITIONS AND DIVERGENT … PHYSICAL REVIEW B 109, L241110 (2024)

To satisfy the self-consistency condition after the infinitesimal change in the external field A,

∀ν : 0 = dfν
dA

= ∂ fν
∂�ν

∣∣∣∣
g−1

∂�ν

∂A
+

∑
ν ′

∂ fν
∂g−1

ν

∣∣∣∣
�

∂g−1
ν

∂�ν ′

∂�ν ′

∂A
+ ∂ fν

∂g−1
ν

∣∣∣∣
�

∂g−1
ν

∂A

∣∣∣∣
�

, (5)

∀ν : 0 = ∂ fν
∂�ν

∣∣∣∣
g−1

∂�ν

∂A
+

∑
ν ′

∂ fν
∂g−1

ν

(
−δνν ′ 1̂ − ∂�ν

∂�ν ′

)
∂�ν ′

∂A
− ∂ fν

∂g−1
ν

∣∣∣∣
�

∂�ν

∂A

∣∣∣∣
�

. (6)

Here, g−1
ν = iν − �ν − �ν acts as the definition of the im-

purity self-energy �. The relevant partial derivatives of the
self-consistency condition are

∂ f

∂�

∣∣∣∣
g−1

=
∫

dk[g−1 + � − tk]−1 ∂�

∂�
[g−1 + � − tk]−1

=
∫

dk GkGk ≡ χ0,lat, (7)

∂ f

∂g−1

∣∣∣∣
�

= −(g−1)−1 ∂g−1

∂g−1
(g−1)−1

+
∫

dk[g−1 + � − tk]−1 ∂g−1

∂g−1
[g−1 + � − tk]−1

=
∫

dk GkGk − gg ≡ χ0,lat − χ0,imp ≡ χ̃0, (8)

where so-called bubbles of Green’s functions are denoted as
χ0, and these are rank-4 tensors in orbital space. They are
diagonal in frequency, since f depends on g and � at the
same frequency only. Seen as a bubble, both propagators
have the same frequency because the ω = 0 response is being
considered. In particular, χ0,lat is the bubble of lattice Green’s
functions (at q = 0, ω = 0), χ0,imp is the impurity bubble
(also at ω = 0), and χ̃0 is their difference, the nonlocal part
of the bubble. The only term connecting different Matsubara
frequencies, ∂�/∂� is related to the impurity vertex [19] F ,

∂�ν

∂�ν ′
≡ Fνν ′gν ′gν ′ = Fχ0,imp. (9)

Note that both F and χ0,imp are rank-4 tensors in orbital space,
so they are matrices in pair space and their product is the ma-
trix product in pair space, i.e., another rank-4 tensors in orbital
space. Diagrammatically, this corresponds to contracting two
legs of both objects.

Inserting these results into Eq. (6) and using the pair-
frequency space notation (i.e., bubbles and vertices are
matrices, derivatives with respect to A are vectors) gives

0 =
∑
ν ′

[
χ0,lat

νν ′ − χ̃0
νν ′ −

(
χ̃0 ∂�

∂�

)
νν ′

]
∂�ν ′

∂A
− χ̃0 ∂�ν

∂A
,

0 =
∑
ν ′

(χ0,imp − χ̃0Fχ0,imp)νν ′
∂�ν ′

∂A
− χ̃0 ∂�ν

∂A
. (10)

Isolating ∂�/∂A gives

(χ0,imp − χ̃0Fχ0,imp)
∂�

∂A
= χ̃0 ∂�

∂A
, (11)

∂�

∂A
= (χ0,imp)¬1(1̂ − χ̃0F )¬1χ̃0 ∂�

∂A
, (12)

with 1̂ the unit matrix in pair-frequency space. Finally,

d〈B〉
dA

= ∂〈B〉
∂A

∣∣∣∣
�

+ ∂〈B〉
∂�

∣∣∣∣
A

(χ0,imp)¬1(1̂ − χ̃0F )¬1χ̃0 ∂�

∂A
.

(13)

Here, ∂�/∂A is the connected time-ordered correlator
〈T Acc†〉 − 〈A〉〈T cc†〉 with the fermionic legs amputated
[54], while ∂〈B〉/∂� is the connected time-ordered corre-
lator 〈T Bcc†〉 − 〈B〉〈T cc†〉 and (χ0,imp)¬1 corresponds to
amputating both its fermionic legs. Both depend on a single
fermionic frequency (and ω = 0). Finally, ∂〈B〉/∂A is the
connected time-ordered correlator 〈T BA〉 − 〈B〉〈A〉. The in-
gredients of Eq. (13) are illustrated in Fig. 1, while Fig. 2
contains a diagrammatic representation of Eq. (13) itself,
where the geometric series (1̂ − χ̃0F )¬1 has been expanded
up to second order in the nonlocal Bethe-Salpeter kernel
[19] χ̃0F .

Second-order phase transitions. Looking at Eq. (13), none
of the impurity correlation functions can be responsible for the
divergence, since the impurity model is a finite system at finite
temperature, whose expectation values are smooth functions
of the model parameters. Instead, the inversion in Eq. (13) is
the origin of divergences [19]. Exactly at the critical point,
one of the eigenvalues of the nonlocal Bethe-Salpeter kernel
χ̃0F is equal to 1, so the inverse in Eq. (13) is divergent, and
the associated eigenvector V describes the order parameter
of the transition. This can be seen as a matrix generalization of
the Stoner criterion, where χ̃0 describes how many electronic
fluctuations are available while F is the effective interaction
between correlated electrons.

In the pair-frequency space view, the second term in
Eq. (13) is a scalar product of the form vector-matrix-vector.
The matrix which is inverted in Eq. (13) is independent of A
and B, i.e., it is always a two-particle kernel, even when A
and B are many-particle operators, and a single eigenvector
V describes the divergent linear response of any observables
with respect to any applied field. The overlap between the
eigenvector V and the two capping vertices ∂〈B〉/∂� and
∂�/∂A determines if a particular response function d〈B〉/dA

FIG. 1. Diagrammatic representation of contributors to the re-
sponse. The black lines with arrows indicate fermionic propagators.
Note that some of the fermionic propagators are amputated and some
are not (see main text for definitions). The operators A and B are
denoted by small blue and red dots, respectively.
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FIG. 2. Diagrammatic representation of the linear response. The
geometric series is shown up to second order, higher-order terms
have additional vertices, and particle-hole propagators inserted.
Lines with arrows represent the nonlocal propagator G̃, and a pair
of these lines represents a nonlocal bubble χ̃0.

is divergent at the critical point. In particular, symmetry
can lead to vanishing overlap, thereby avoiding a divergent
response.

The Supplemental Material [55] shows the antiferromag-
netic transition [56,57] as an example, where the linear
response with respect to the staggered field (A = hAF) is di-
vergent at U = Uc while the linear response with respect to
the interaction strength (A = U ) is not. The reason is that
for the antiferromagnetic transition, the relevant eigenvector
V is spin antisymmetric and thus has nonzero overlap with
∂�/∂h which is also spin antisymmetric, but zero overlap
with ∂�/∂U which is spin symmetric.

Another example is the metal-insulator transition in the
particle-hole symmetric Hubbard model, where at the critical
point d〈D〉/dU is divergent [41,42] but d〈n〉/dμ is not [43]
because of frequency symmetry [19,38,44]: The eigenvector
V is frequency antisymmetric while ∂�/∂μ and ∂〈n〉/∂�

are frequency symmetric at particle-hole symmetry [58], so
their overlap with V is zero. Below the critical temperature,
the resulting hysteresis region has three coexisting solutions
(two stable) with different values of 〈D〉, but a single value
of 〈n〉.

Physically, the reason for any divergence in DMFT is a
runaway self-consistent response of � to an external pertur-
bation, and the self-consistency equation governing � only
involves single-particle operators. In linear response, taking
first derivatives thus leads to two-particle correlations only,
explaining why the two-particle kernel is sufficient.

On the other hand, the first nonlinear response,
d2〈B〉/dA1dA2, requires a three-particle equivalent of
the Bethe-Salpeter equation. It enters through the derivative
∂2�/∂A1∂A2, which can be isolated from a three-particle
equivalent of Eq. (5). This equation will contain a
three-particle impurity vertex ∂2g−1/∂�2. Subsequent higher
orders require Bethe-Salpeter equations of higher and higher
order.

Superconductivity. Superconductivity can be described in
DMFT and its cluster extensions using the Nambu formu-
lation [59–62], where the dynamical mean field also has
anomalous components of the form �an.(c†c† + cc), which
leads to anomalous components in g and in all vertices.
To find instabilities towards a superconducting phase, it is
necessary to take these anomalous processes into account
in the Bethe-Salpeter equation, even in the normal phase,
where it corresponds to the particle-particle channel of the

nonlocal Bethe-Salpeter equation (see Refs. [63,64] for a
recent discussion). For this situation, the present derivation
can be generalized by incorporating a Nambu index into the
orbital label, which leads to a treatment of the particle-particle
and particle-hole channels on equal footing. Diagrammati-
cally, propagators and capping vertices with two incoming or
outgoing fermions are then allowed. With this generalization,
the conclusions about the nature of second-order transitions in
DMFT hold, since the necessary ingredient is that the dynam-
ical mean-field couples to precisely two fermionic operators,
regardless of their Nambu index.

Extensions. The so-called extended DMFT [65–69]
(EDMFT) and its generalizations [58,70–73] introduce ad-
ditional dynamical mean fields which couple to densities or
other composite operators instead of individual fermionic
operators, e.g., a term �(τ − τ ′)n(τ )n(τ ′) in the impurity
model. This �(ω) is determined using a many-particle self-
consistency condition similar to Eq. (2), whose variation
automatically generates many-particle vertices even when
single-particle observables such as dn/dμ are considered
[52]. Thus, the two-particle Bethe-Salpeter kernel is gener-
ally insufficient to identify second-order transitions in these
extensions of DMFT.

Locality. The approach presented here is restricted to per-
turbations and operators which are impurity local and spatially
homogeneous, q=0. The generalization to commensurate q �=
0 is straightforward [51,55]. On the other hand, an extension
to nonlocal operators, e.g., the linear response to changes in tk
or the identification of bond ordering, requires more work. In
the same vein, the response to changes in temperature changes
the Matsubara frequencies themselves, which requires an ex-
tension of the current formalism.

In conclusion, I have shown that the linear response in
dynamical mean-field theory is mainly governed by the two-
particle Bethe-Salpeter equation, even when many-particle
observables are considered. In fact, the specific form of the
applied perturbation and the studied observable only appears
as capping vertices at the two ends of the Bethe-Salpeter
ladder. This generalizes previous formulas for the (density,
double occupancy)-(μ,U ) response matrix [41] to arbitrary
local observables and perturbations. The DMFT linear re-
sponse functions are equivalent to second derivatives of the
free energy [18,29,41], so this result shows that any DMFT
second-order phase transition or thermodynamic instability
must appear in the nonlocal Bethe-Salpeter kernel. Further-
more, the spatial structure of the equation is entirely captured
by the nonlocal Bethe-Salpeter kernel, so all divergent re-
sponse functions have the same correlation length close to the
phase transition.
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