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Quantum loop and dimer models are archetypal examples of correlated systems with local constraints.
Obtaining generic solutions for these models is difficult due to the lack of controlled methods to solve them in the
thermodynamic limit. Nevertheless, these solutions are of immediate relevance to both statistical and quantum
field theories, as well as the rapidly growing experiments in Rydberg atom arrays and quantum moiré materials,
where the interplay between correlation and local constraints gives rise to a plethora of novel phenomena. In
a recent work [X. Ran et al., arXiv:2205.04472], it was found through sweeping cluster quantum Monte Carlo
(QMC) simulations and field theory analysis that the triangular lattice quantum loop model (QLM) hosts a rich
ground-state phase diagram with lattice nematic, vison plaquette (VP) crystals, and the Z2 quantum spin liquid
(QSL) close to the Rokhsar-Kivelson point. Here, we focus on the continuous quantum critical point separating
the VP and QSL phases and demonstrate via both static and dynamic probes in QMC simulations that this
transition is of the (2+1)D cubic* universality. In this transition, the fractionalized visons in QSL condense to
give rise to the crystalline VP phase, while leaving their trace in the anomalously large anomalous dimension
exponent and pronounced continua in the dimer and vison spectra compared with those at the conventional cubic
or O(3) quantum critical points.
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Introduction. Recently, the ground-state phase diagram of
the quantum loop model (QLM) on a triangular lattice [1–4]
has been mapped out using the sweeping cluster quantum
Monte Carlo (QMC) algorithm [5–11] (shown in Fig. 1). The
physics revealed therein [5] is profound, such as the hidden
vison plaquette (VP) crystal, which is invisible from dimer
correlations and is sandwiched between the lattice nematic
(LN) order and the Z2 quantum spin liquid (QSL) close to the
Rokhsar-Kivelson (RK) point [12–14]. Another interesting
aspect is the structure of the phase diagram when connected to
finite temperature, which is expected to be richer compared to
its square lattice loop or dimer model cousins [15–17]. How-
ever, perhaps the most intriguing aspect related to the quantum
criticality of the model is the (2+1)D cubic* transition from
the VP phase to the Z2 QSL. At this transition, the VP order
parameter, which emerges from the underlying resonance of
the dimer pairs, fractionalizes into the vison order parameter
of the O(3)/cubic Conformal Field Theory (CFT) primary
field. The condensation of these fractionalized excitations, in
turn, leads to a strong enhancement of the scaling dimension
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of the VP order parameter at the transition in an unconven-
tional manner [18–23].

Therefore, our motivation in this Letter is to elucidate the
precise nature of the intriguing and unconventional cubic*
quantum critical point (QCP) through both static and dynamic
probes. We aim to achieve a comprehensive understanding of
this QCP by combining field-theoretical interpretation with
state-of-the-art QMC simulations. We find that this transition
exhibits an anomalously large anomalous dimension when
viewed through the correlation functions of the t term (the
resonance term in the QLM Hamiltonian, explained below).
These correlation functions represent composite objects of the
fractionalized vison and correspond to the rank-2 tensor (or
tensorial magnetization) of the (2+1)D O(3)/cubic univer-
sality [24,25] with a large scaling dimension, approximately
ηT ≈ 1.42 [26–33]. On the other hand, if one measures the
correlation of the vison operator, the observed anomalous
dimension is consistent with the conventionally small values
of η ≈ 0.04 for (2+1)D O(3)/cubic universality [26–32]. This
sharp contrast clearly reveals the unconventional nature of the
cubic* transition that separates the unconventional VP phase,
which is hidden from dimer measurements, from the Z2 QSL,
where visons are the anyonic particles of the underlying topo-
logical order.

2469-9950/2024/109(24)/L241109(7) L241109-1 ©2024 American Physical Society

https://orcid.org/0000-0003-3489-3292
https://orcid.org/0000-0001-5749-1574
https://orcid.org/0000-0003-0678-9770
https://orcid.org/0000-0001-9771-7494
https://ror.org/02zhqgq86
https://ror.org/05hfa4n20
https://ror.org/00wk2mp56
https://ror.org/05d5m2r55
https://ror.org/013q1eq08
https://ror.org/013q1eq08
https://ror.org/04ttadj76
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.L241109&domain=pdf&date_stamp=2024-06-07
https://arxiv.org/abs/2205.04472
https://doi.org/10.1103/PhysRevB.109.L241109


RAN, YAN, WANG, RONG, QI, AND MENG PHYSICAL REVIEW B 109, L241109 (2024)

FIG. 1. Quantum loop model on the triangular lattice and its
phase diagram. (a) a1 and a2 are the triangular lattice primitive
vectors. The t and V terms are the kinetic and potential terms in the
Hamiltonian Eq. (1), respectively. (b) The transition between the LN
and VP crystals is first order [5], while the transition between VP and
the Z2 QSL is continuous and of (2+1)D cubic* universality [5]. The
correlation functions of the VP and vison order parameters around
the cubic* QCP (Vc = 0.59(2)) are shown in Figs. 2 and 3. The
schematic plot in the VP phase is the real-space vison correlations
with the red (grey) color conveying its positive (negative) value in
each triangle. The darker color stands for larger absolute values
of the correlation functions. The schematic plot in the QSL phase
shows two visons connected by a string (the green dashed line),
which represents the path P of the vison-vison correlation function
vγ (0)vγ (r) = (−1)NP , with NP the number of dimers cut along P.
Here we set the vison in the lower triangle v1(0) = 1 as the reference
to fix the gauge.

In addition to these purely theoretical motivations, the
QLM that we studied here has been widely treated as the low-
energy effective model for many frustrated magnets [1–4,9–
11,18,34–52] and blockaded cold-atom arrays [53–57] in
condensed matter and cold atom experiments [57,58]. In
the Rydberg array, static characteristics can be easily ob-
tained via the snapshot technique [57–60], while dynamic
information can be measured through real-time evolution
[61–64]. Similarly, static and dynamic information for quan-
tum magnets can be detected by neutron scattering or nuclear
magnetic resonance experiments [36,38,40,41,65–67], and
our computational scheme of QMC + stochastic analytic
continuation (SAC) [68–71] for the frustrated spin model,
QDM, and QLM models has provided consistent static and
dynamic information that has been used to explain experi-
ments [9–11,19,22,23,39,40,72–75]. Based on these previous
experiences, in this Letter, our QMC static correlations reveal
different scaling dimensions at the cubic* QCP, correspond-
ing to the different constituent operators in the CFT data
for ηT and η. At the same time, our QMC+SAC dynamic
measurements exhibit continua of the dimer and vison spectra
as the dynamic signature of the Z2 topological order and its
associated vison condensation in the vicinity of the cubic*
QCP.

Model and Methods. The Hamiltonian of the QLM on a
triangular lattice is defined as

H.c.

(1)

where α denotes all the rhombi (with three orientations)
on the triangular lattice, as shown in Fig. 1(a). The local

constraint of the fully packed QLM requires two dimers to
touch every site in any configuration. The kinetic term is
controlled by t , which generates dimer pair resonance on
every flippable plaquette while respecting the local constraint,
and V is the repulsion (V > 0) or attraction (V < 0) between
dimers facing each other. The RK point is located at V =
t = 1 and has an exact Z2 QSL solution [1]. We set t = 1
as the energy unit and perform simulations for system sizes
L = 8, 12, 16, 20, 24 with the inverse temperature β = 1

T =
L using the sweeping cluster QMC methods [6,8–10,76], and
utilize the SAC scheme [9,10,19,23,39,40,68,71–74] to obtain
both the dimer and vison spectral functions in real frequency
for L = 6, 12 systems from imaginary time correlation func-
tions with τ ∈ [0, β = 200].

According to Ref. [5], the order parameter of the VP phase
is given by the real-space t-term correlation function

〈T (0)T (r)〉 = 1
3 [〈t1(0)t1(r)〉 + 〈t2(0)t2(r)〉 + 〈t3(0)t3(r)〉],

(2)

where 〈tα (0)tα (r)〉 (α = 1, 2, 3) represent correlators on the
three rhombus directions in our triangular lattice with distance
r between two rhombi. The reason for discarding the off-
diagonal terms in Eq. (2) will be explained below Eq. (5).
The vison correlation function, constructed from the dimer
configurations, is

〈v̄(0)v̄(r)〉 = 1
2 [〈v1(0)v1(r)〉 + 〈v2(0)v2(r)〉], (3)

where vγ (γ = 1, 2) for the A (lower triangle) and B (upper
triangle) sublattices in one rhombus. For the non-Bravais lat-
tice, we only consider the diagonal terms of the correlation
matrix 〈v̄i(0)v̄ j (r)〉, and what we actually calculate is the trace
of this matrix, i.e., Tr(〈v̄i(0)v̄ j (r)〉). To obtain the vison con-
figuration from dimer configuration, one needs to fix a gauge
with the reference vison in the plaquette (0,0) and sublattice A
as v1(0) = 1, as shown in the schematic plot of Fig. 1(b). Then
we map the dimer pattern to the vison configuration through
v1(0)vγ (r) = (−1)NP , with NP being the number of dimers
cut along the path P between triangle at 0 and r, which refer
to the green dashed line in Fig. 1(b). Therefore, the vison in
each triangle holds the value ±1, as denoted by the red (+1)
and grey (−1) triangles in the schematic plots of Fig. 1(b).

In the field theoretical description [5], the cubic* CFT of
the VP-QSL transition can be described with three scalars
coupled together. The Lagrangian is

Lint = m2

( ∑
i

φ2
i

)
+ +u

( ∑
i

φ2
i

)2

+ v

( ∑
i

φ4
i

)
+ · · · ,

(4)

together with kinetic terms for the scalars, where the scalar
order parameter describing the vison modes [4,77–79] is given
by

φ j =
∑

r

(v1(r), v2(r)) · u je
iM j ·r, j = 1, 2, 3, (5)

with M j=1,2,3 the three M points of the Brillouin zone as
shown in the inset of Fig. 4(b) and v1,2(r) the vison fields in
Eq. (3). The vector φ = (φ1, φ2, φ3) encapsulates the (2+1)D
cubic order parameters of the visons. The mass term can be
roughly identified as m2 ∼ |V − Vc|, and the phase transition
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happens at m2 = 0. Conformal field theory tells us the corre-
lation of φ fields follows a power-law behavior. At the phase
transition, the quantum fluctuation of the vison field is domi-
nated by their modes at the M points. The vison correlation in
Eq. (3) therefore will follow the same power law (with spatial
modulation).

As mentioned above, the t-term operator ti can be
identified as the field theory operators, {t1, t2, t3} ∼
{φ1φ2, φ2φ3,−φ1φ3}. The symmetry group of the CFT is
the cubic(3) = S3 � (Z2)3 group, the group elements of
cubic(3) can be identified with lattice symmetries. The
precise identification of t operators is fixed by the symmetries
that they break. Here we are following the convention of
Ref. [5]. The cubic(3) group is a subgroup of O(3). It is
known, based on various theoretical works [26,32,80], that
the O(3) CFT and the cubic(3) are connected by a very
short renormalizations group flow, therefore their operators
have similar anomalous dimensions. In particular, the O(3)
group has a rank-2 symmetric traceless tensor representation,
formed by {φ1φ2, φ2φ3,−φ1φ3} and {φ2

1 − φ2
2 , φ

2
2 − φ2

3},
which is five-dimensional. In view of the subgroup cubic(3),
the triple {φ1φ2, φ2φ3,−φ1φ3} forms a three-dimensional
irreducible representation of the cubic(3) group. We can
safely use the well-known value of the critical exponents
ηT ≈ 1.42 of O(3) CFT to approximate its value at the cubic
CFT [32]. The subscript T reminds us that it corresponds
to the rank-2 tensor of O(3). Interestingly, the off-diagonal
correlator 〈t1(0)t2(r)〉 decays much faster than the diagonal
ones 〈t1(0)t1(r)〉, which is also a CFT prediction and we
show these results in Fig. S1 in the SM [81]. The anomalous
dimension of scalar {φ1, φ2, φ3} for O(3) CFT, i.e., the vison
v1,2 correlation in Eq. (3), on the other hand, is of very small
value η ≈ 0.04 [26,32].

We also compute the dynamic dimer correlation
function D(k, τ ) = 1

3N

∑L2

i, j;α=1,2,3 eik·ri j (〈ni,α (τ )n j,α (0)〉 −
〈ni,α〉〈n j,α〉), where ni,α is the dimer number operator
on bond i and α stands for the three bond orientations,
and the vison dynamic correlation function v̄(k, τ ) =

1
2N

∑L2

i, j;γ=1,2 eik·ri j (〈vi,γ (τ )v j,γ (0)〉 − 〈vi,γ 〉〈v j,γ 〉), which
averages the correlation functions of visons in A and B
sublattices. Since the value of vison in each triangle is ±1,
the second term 〈vi,γ 〉 in v̄(k, τ ) is expected to be zero, i.e.,
no background needs to be subtracted.

Numerical results. Figures 2 and 3 show the 〈T (0)T (r)〉
and 〈v̄(0)v̄(r)〉 across the cubic* QCP with system size up
to L = 24. The distance is along r = (x, 0) with x up to 12
for the periodic boundary condition. The real-space decay
behaviors is observed for both correlators in three regions: (i)
VP phase with V = 0.3. (ii) The cubic* QCP Vc = 0.59(2).
(iii) The RK point V = 1.

In the VP phase, both 〈T (0)T (r)〉 and 〈v̄(0)v̄(r)〉 exhibit
strong even-odd oscillations and with amplitude decaying
with the distance x. The oscillations derive from the hid-
den vison order and eventually vanish as V goes to 1 as
shown in Figs. 2(a) and 3(a). We note the even-odd oscil-
lation still exists at the transition point due to the finite-size
effect. The oscillations of all V are symmetric with respect to
〈T (0)T (r)〉 = 0, therefore we illustrate |〈T (0)T (r)〉| in log-
log scale in Figs. 2(b) and 2(c). Moreover, due to the gauge

FIG. 2. The static t-term correlation. (a) 〈T (0)T (r)〉 as a func-
tion of the distance r = (x, 0) with the system size L = 24, the
largest system size achieved. The log-log plot for the absolute values
of the data in (a) is shown in (b). We also show the log-log plot of the
t-term correlators with different system sizes in (c) to demonstrate
the finite-size effect of the decay behavior. (a), (b) The correlators
in the VP phase with V = 0.3 at the transition point with Vc (we
use V = 0.6 here) and at the RK point when V = 1. The dark solid
lines shown in (b) and (c) are proportional to 1/x1+ηT with the large
anomalous dimension ηT = 1.42, which corresponds to the rank-2
tensor field of the (2+1)D O(3)/cubic universality [32].

FIG. 3. The static vison correlation. (a) 〈v̄(0)v̄(r)〉 as a function
of the distance r = (x, 0) with the fixed system size L = 24. (b) The
log-log plot of only the odd value of x in (a). Similar to the t-term cor-
relators, we show the vison correlators in the VP phase (V = 0.3), at
the transition point Vc (use V = 0.61 here), and at the RK point when
V = 1. (c) The outstanding critical decay behavior with different
system sizes. Different from the t-term correlators in Figs. 2(b) and
2(c), the dark solid lines shown in (b) and (c) here are proportional
to 1/x1+η with the anomalous dimension η = 0.04 for the (2+1)D
O(3)/cubic scalar order parameter [26,32].
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choice we set manually to construct the vison configuration,
the oscillations of the vison correlation are asymmetrical with
respect to 〈v̄(0)v̄(r)〉 = 0 for different values of V . Thus,
we only use the odd value of the distance to fit the data of
|〈v̄(0)v̄(r)〉| in log-log scale, as shown in Figs. 3(b) and 3(c).

We found in the VP phase both correlation functions de-
cay to a constant value, while exhibiting power-law decay
at the cubic* QCP. Interestingly, these two correlators decay
with obvious different exponents. For the t-term correla-
tion, 〈T (0)T (r)〉 ∼ 1/x1+ηT is consistent with an anomalously
large anomalous dimension of the rank-2 tensor of cubic CFT
with ηT = 1.42, and for the vison correlation 〈v̄(0)v̄(r)〉 ∼
1/x1+η is consistent with η = 0.04, which is the (2+1)D
O(3)/cubic value of η for the order parameter. To access
the thermodynamic limit, we depict correlators with different
system sizes at the cubic* QCP in Figs. 2(c) and 3(c), and put
the small system sizes data of other values of V in the SM
[81]. All these results reveal ηT = 1.42 for 〈T (0)T (r)〉 and
η = 0.04 for 〈v̄(0)v̄(r)〉. On the other hand, inside the QSL
phase such as V = 1, the RK point, both correlators decay
exponentially as shown in Figs. 2(b) and 3(b).

Large anomalous dimension means a large scaling dimen-
sion as �T = 1+ηT

2 for the rank-2 tensor and � = 1+η

2 for the
scalar operators of the cubic/O(3) CFT; our results therefore
mean that at the cubic* QCP, the t1,2,3 term is a composite
of the fractionalized visons v1,2, instead of a well-defined
critical mode, and it is the proliferated visons v that give
rise to the large anomalous dimension of t , which serves as
a defining signature of the cubic* transition, different from
the conventional cubic/O(3) QCPs. Similar behavior has been
observed in the (2+1)D XY* transition between the Z2 QSL
and U(1) symmetry-breaking superfluid phase [18,20,21,23].

Such a fractionalization signature is also vividly seen from
the dynamic probes. We measure the dynamic correlation
functions D(k, τ ) and v̄(k, τ ) and obtain the dimer and vison
spectra via QMC+SAC (details of the scheme is given in
the SM [81]). Figure 4 shows the obtained spectra across the
cubic* transition. Inside the QSL phase denoted by Figs. 4(c)
and 4(f), both spectra exhibit gapped behavior and substantial
continua in a large fraction of the momenta along the high-
symmetry path. It is interesting to note that the minimal dimer
gap is larger than the minimal vison gap due to the fact that a
dimer is the composite of a pair of visons [9,82].

At the cubic* QCP, the dimer spectra remain gapped at the
M j=1,2,3 points, as shown in Fig. 4(b). However, as depicted
in Fig. 4(e), the vison spectra develop a clear gapless mode
close to the M points. Since the M points are the ordered
wave vector of the VP phase [as explained in Eq. (5)], this
critical and gapless vison mode serves as the dynamic sig-
nature of vison condensation at the cubic* transition. The
contrast between Figs. 4(b) and 4(e) explains why the dimer
correlation cannot detect the “hidden” VP order, and only the
vison spectra reveal the translational symmetry breaking of
the VP phase. Similar dynamic signature of the Z2 topological
order in QSL and the condensation of fractionalized anyons
have also been demonstrated in the (2+1)D XY* transition
[18–20,22,23,83].

Discussions. Through a combined numerical and analytic
approach, we have identified static and dynamic signatures
of the cubic* transition from the Z2 QSL to the VP crystal

FIG. 4. The dynamic dimer and vison spectra. The spectra in the
VP phase (V = 0.3), at the cubic* QCP (V = 0.6), and at the RK
point (V = 1) for L = 12 system. The β used in the simulations
is 100 and we employ QMC+SAC scheme to generate the real
frequency data. The inset in (f) shows the high-symmetry path in the
Brillouin zone along which the spectra are presented. In the dimer
spectra displayed in the left column, [(a)–(c)], a gap is observed at
the M point, suggesting that the dimer correlator cannot detect the
transition between the VP and QSL phases. Conversely, the vison
spectra in the right column, [(d)–(f)], reveal a gap closure at the M
point at the cubic* QCP in (e) and a reopening at the RK point in (f),
which clearly indicates the VP-QSL transition.

in the QLM on a triangular lattice. Both correlations and
spectra reveal that at the transition, the fractionalized vi-
son in the QSL condenses, leading to the formation of the
crystalline VP phase. This condensation leaves its trace in
the anomalously large anomalous dimension exponent and
pronounced continua in the dimer and vison spectra, distin-
guishing it from conventional cubic or O(3) quantum critical
points. These findings reveal the underlying reason why the
t-term correlation exactly corresponds to the rank-2 symmet-
ric traceless tensor of the cubic/O(3) CFT and why the VP
phase becomes invisible in dimer measurements. Moreover,
we believe our findings will guide further experiments in frus-
trated quantum magnets and blocked cold-atom arrays, where
the unconventional quantum matter and quantum phase tran-
sitions are being realized at an astonishing speed [10,11,36–
47,53,54,56,57,67].
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