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We investigate the electronic structure and topological properties of iron-based superconductors LaFe2As2

using density functional theory plus dynamical mean-field theory. We find that the uncollapsed tetragonal
LaFe2As2 is in a nontrivial Z2 topological phase and has topological Dirac surface states near the Fermi
energy which suggests there could be Majorana zero modes in the superconducting LaFe2As2. In light of
the nontrivial topological properties and superconductivity of LaFe2As2 and CaKFe4As4, we predict a new
iron-based compound LaBaFe4As4 and find it possesses two sets of topological Dirac surface states near the
Fermi energy despite of a trivial Z2 topological index. These topological surface states are induced by a nontrivial
high-order topological index Z8, a new mechanism that is distinct from all-known iron-based superconductors.
Our study not only demonstrates that both LaBaFe4As4 and uncollapsed tetragonal LaFe2As2 can be good
platforms for exploring topological superconductivity but also paves a new way to realize it with a nontrivial
high-order topological index.
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Iron-based superconductors [1–12] have attracted new
research interests in recent years due to the observation
of topological surface states and Majorana zero modes in
some of them [13–20]. For examples, topological Dirac
surface states and Majorana zero modes (MZMs) were
found in Fe(Se,Te), (Li,Fe)OHFeSe, and CaKFe4As4 [21–24].
Li(Fe,Co)As was found to possess both topological insulator
(TI) surface states and topological Dirac semimetal (TDS) sur-
face states [25]. The coexistence of topological surface states
and superconductivity in these iron-based superconductors
make them good platforms for studying surface topological
superconductivity [24,26,27] and bulk topological supercon-
ductivity [28–30]. It is interesting to look for more iron-based
superconductors which can serve as good platforms for ex-
ploring topological superconductivity and MZMs.

In 2019, Akira Iyo et al. successfully synthesized both
uncollapsed tetragonal (UT) and collapsed tetragonal (CT)
LaFe2As2 (UT-LFA and CT-LFA). They found supercon-
ductivity in UT-LFA with Tc ∼ 12.1 K but not in CT-LFA
[31]. Several groups have reported the correlation strength
[32–34] and electronic structures of LaFe2As2, featuring
the absence of hole Fermi surfaces (FS) around � point
[34–37]. However, the topological properties of LaFe2As2 are
still unknown. If UT-LFA has nontrivial band topology and
topological surface states, it can also harbor MZMs on its
surface.

Doping is a common way to fine tune the electronic
structures and other properties of materials. 50% doping at
the alkaline earth metal site of a 122-type iron-based super-
conductor (e.g., CaFe2As2) can result in a new 1144-type
iron-based superconductor (e.g. CaKFe4As4) [38–42]. The
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1144-type iron-based superconductors possess high Tc around
30 K [43] and have received lots of attention on their special
magnetism [41,44,45] and topological states [46]. Even more
interesting, using angle-resolved photoemission spectroscopy
and scanning tunneling microscopy/spectroscopy measure-
ment as well as electronic structure calculations, Wenyao Liu
et al. found topological Dirac surface states and MZMs in
CaKFe4As4 [23]. This finding inspires us to design a new
1144-type iron-based superconductor which has both high-Tc

and topological surface states.
In this paper, we carry out density functional theory

plus dynamical mean-field theory (DFT+DMFT) calcula-
tions of the electronic structures and topological properties of
LaFe2As2 and the newly designed LaBaFe4As4. We find that
the superconducting uncollapsed tetragonal LaFe2As2 is in a
nontrivial topological phase and has topological Dirac surface
states near the Fermi energy on the (001) surface, which
suggests that Majorana zero modes could emerge on its (001)
surface. We further design a new 1144-type LaBaFe4As4

compound and find that it has both the topological insulator
surface states and topological Dirac semimetal surface states
near the Fermi energy on the (001) surface, similar to the
aforementioned Li(Fe,Co)As. Moreover, we find that, due to
the unique electronic structure of LaBaFe4As4, the double
topological insulator surface states emerge from a nontrivial
high-order topological index Z8, instead of a trivial strong
topological index ν0 of Z2, which is very rare. Our study not
only indicates that both the uncollapsed tetragonal LaFe2As2

and the newly designed LaBaFe4As4 can be good platforms
for exploring topological superconductivity, but also provides
a new mechanism to realize them using nontrivial high-order
topological index.

We first discuss the electronic structure and topological
property of UT-LFA. As shown in Fig. S1(a) in Ref. [47] (see
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FIG. 1. The crystal structure (a), three-dimensional Brillouin zone (BZ) and projected (001) surface BZ (b), DFT+DMFT band structure
with SOC (c), band topology along �-Z (d) and surface states [(e) and (f)] based on the DFT+DMFT tight-binding (TB) model of uncollapsed
tetragonal LaFe2As2. (d) The fatbands and irreducible representations along �-Z based on the DFT+DMFT TB model, where the black dashed
line represents the Fermi curve, the orange, brown, purple, and cyan colors represent the As-4pz, Fe-3dxy, Fe-3dxz/yz, and La-5dx2−y2 orbital
characters, respectively. In order to highlight the hybridization between the As-4pz-dominated band and Fe-3dxz/yz-dominated band, we enlarge
the orange solid circles by a factor of 3 compared to the others. [(e) and (f)] The surface states on the As-terminated (001) surface (e) and
La-terminated (001) surface (f) based on the DFT+DMFT TB model.

also Refs. [48–74] therein), our DFT+DMFT band structure
without considering spin-orbit coupling (SOC) is consistent
with Ref. [34]. Here we focus on the band structure with
SOC and the topological property which has not been reported
previously. There are two equivalent time-reversal invariant
points (TRIPs) M points and four equivalent N points in the
Brillouin zone (BZ) of UT-LFA [Fig. 1(b)]. These six points
yield a trivial parity product. Based on the Fu-Kane criterion
on the Z2 invariant of materials with inversion symmetry [63],
we only need to know the band inversions and parity changes
between � and Z points to determine its strong topological
index of Z2, i.e., ν0. For this purpose, a Fermi curve is de-
fined for the topological index of interest, and its energy (the
nominal “Fermi energy”) becomes momentum-dependent for
metals [21] (see details in Ref. [47]).

Compared to the DFT band structure [Fig. S1(b)] [47],
besides an overall compression of the band width, we find
that after considering electronic correlation effects, the As-4pz

orbital dominated band with a negative slope hybridizes with
the Fe-3dxz/yz orbital dominated bands along the �-Z direction
very close to the Z point and EF , opening a hybridization gap
[Figs. 1(c) and 1(d)]. This hybridization has no effect on the
parity product of � and Z points compared to the DFT results
because both bands have �−

6 symmetry/parity at Z point (the
lower �−

6 state near EF at Z point should be attributed to Fe-
3dz2 orbital as shown in Fig. 1(d) and Fig. S2 [47]). However,
it changes the nature of the band inversion which happens
between the As-4pz and the Fe-3dz2 orbital dominated bands
in DFT whereas it happens between the As-4pz and the Fe-
3dxz/yz orbital dominated bands in DFT+DMFT (see details
in Ref. [47]).

The Fermi curve in Fig. 1(d) is not well defined because it
will cross a Dirac point protected by the crystal C4v symmetry
(the crossing between the purple �6 and cyan �7 bands).
However, once the C4v symmetry is lifted by a small pertu-
bation, the Fermi curve becomes well defined and results in
a strong topological index ν0 = 1 for all the bands below this
Fermi curve. This feature of the band structure makes bulk
three-dimensional (3D) Dirac points and ν0 = 1 coexist in
UT-LFA, similar to the cases of Na3Bi [75] and β-CuI [76].
Differing from Na3Bi, the 3D Dirac points in UT-LFA belong
to the type-II and are buried in the bulk states on the (001)
surface. The nontrivial strong topological index ν0 = 1 gives
rise to Dirac-cone type topological surface states on the (001)
surface as shown in Figs. 1(e) and 1(f). By comparing the
Dirac-cone type topological surface states in Figs. 1(e) and
S1(d) [47], we notice that electronic correlation moves the
topological surface states much closer to EF as discussed in
Ref. [14], which is good for realizing topological supercon-
ducting states.

In light of the coexistence of superconductivity and non-
trivial topological properties in CaKFe4As4 [23] and UT-LFA,
we design a new iron-based superconductor LaBaFe4As4.
Based on the work of Akira Iyo et al. [43], AeAFe4As4 (Ae=
Ca, Sr; A= K, Rb, Cs) is formed as a line phase, so we can
infer the lattice parameters of LaBaFe4As4 by averaging the
experimental values of LaFe2As2 [31] and BaFe2As2 [77].
More results and details of the optimization of the internal
atomic coordinates and dynamical stabilities of the newly
designed LaBaFe4As4 are presented in Ref. [47].

Figure 2 shows the crystal structure, BZ, DFT+DMFT
density of states (DOS) and band structure of LaBaFe4As4.
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FIG. 2. The crystal structure (a), three-dimensional BZ and projected (001) surface BZ (b), DFT+DMFT density of states (c), and band
structures without SOC (d) and with SOC (e) of LaBaFe4As4. The green dashed boxes in (d) and (e) highlight the band crossing and anticrossing
of interest.

The 50% substitution of La with Ba breaks the glide symmetry
of the 122 structure [Figs. 1(a) and 2(a)] and results in the dou-
bling of the unit cell along c axis. Consequently, the number
of bands doubles and there are more FS sheets compared to
122-type iron-based compounds. Unlike CaKFe4As4 [42], a
La-5dx2−y2 orbital dominated band, appears around EF in the
band structure of LaBaFe4As4 [Figs. 3(a) and S4(f)] [47] and
influences the subsequent analysis of its topological property.
Without SOC, we observe several band crossings along �-Z
in the energy range from −0.2 to 0.2 eV, including cross-
ings between the La-5dx2−y2 orbital dominated band and the
Fe-3dxz/yz orbital dominated band, the As-4pz orbital domi-
nated band and the Fe-3dxz/yz, 3dxy, 3dx2−y2 orbitals dominated
bands [Fig. 2(d), Fig. S4 and S5(c)] [47]. With SOC, the
degenerate Fe-3dxz/yz orbital dominated band split into two
bands and hybridization gaps are opened at some crossing
points [Fig. 2(e) and 3(a)].

Similar to other iron-based compounds, we find the Fe-
3dt2g orbitals contribute much more than the Fe-3deg orbitals
around EF [Fig. 2(c)], which is also reflected in the orbital-
resolved FS [Figs. S5(d) and S5(e)] [47]. The contribution of
La-5d orbitals can also be seen around EF whereas the Ba-5d
orbitals have negligible DOS around EF .

Compared to other 1144-type iron-based superconductors
like CaKFe4As4 [42], LaBaFe4As4 has similar band struc-
ture and FS, especially the nearly ideal nesting between the
hole-like FS around � and the electron-like FS around M
[Figs. S5(a) and S5(d)] [47], which enhances Cooper pairing
and makes the superconducting gaps larger in CaKFe4As4

[38]. We also notice that even with large magnetic moments
on Eu sites, RbEuFe4As4 still possesses high Tc equal to
35 K [41] which to some extent supports the robustness of

superconductivity of 1144-type iron-based compounds. Based
on the above facts, we believe LaBaFe4As4 has a good chance
to superconduct with a high Tc.

We now turn to the topological property of LaBaFe4As4.
Unlike UT-LFA, four TRIPs �, Z , M, and A are needed to
determine ν0 (two equivalent X points and R points yield a
trivial parity product). In Figs. 3(a) and 3(e), we draw two
possible Fermi curves and calculate ν0 for all the bands below
them.

For the Fermi curve indicated by the black dashed line,
there are two band inversions along �-Z around the Fermi
curve: one occurs between the As1-4pz orbital dominated
band (�+

6 ) and the Fe-3dxz/yz orbital dominated band (�−
6 ),

and the other occurs between the La-5dx2−y2 orbital dominated
band (�+

7 ) and the Fe-3dxz/yz orbital dominated band (�−
7 ).

Each band inversion brings a −1 product of the parity at � and
Z points of the corresponding bands below the Fermi curve.
However, two such band inversions contribute a +1 parity
product of all the bands at � and Z points below this Fermi
curve. Detailed analysis of the bands along M-A path also
gives rise to a parity product of +1 for all the bands below
this Fermi curve at M and A points [47]. Therefore the strong
topological index ν0 equals to 0 for all the bands below the
Fermi curve defined by the black-dashed line in Fig. 3(a).

Interestingly, as shown in Fig. 3(b), we find that the afore-
mentioned two band inversions occurring along the �-Z path,
while contributing a trivial parity product together, bring two
sets of TI surface states around the BZ center on the (001)
surface. These TI surface states are robust as long as the gaps
and band inversions exist, differing from the fragile Dirac-
cone type surface states at multiple (even number) TRIPs in
the surface BZ of a weak TI with ν0 = 0 [63,67].
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FIG. 3. The DFT+DMFT band topology, surface states and spin textures of LaBaFe4As4. [(a) and (e)] The DFT+DMFT TB model
based fatbands and irreducible representation along �-Z. The black dashed (a) and brown dotted (d) lines represent two different choices
of the Fermi curve. The orange, purple, and cyan colors represent the As1-4pz, Fe-3dxz/yz, and La-5dx2−y2 orbital characters, respectively.
[(b) and (f)] The surface states on the As1-terminated (001) surface based on the DFT+DMFT TB model, in which the TI and TDS represent
topological insulator states and topological Dirac semimetal states, respectively. (c) The two-dimensional constant-energy surface states on the
As1-terminated (001) surface. The constant energy (29 meV) is marked by a green solid line in (b). The spin textures are indicated by green
arrows. (d) Schematic diagram of the nontrivial high-order topological index of double topological insulator (TI) states.

The emergence of two sets of TI surface states from a
trivial topological index Z2 is very unusual, and have not been
reported in iron-based superconductors to our best knowledge.
It is very important to understand why and how these TI sur-
face states emerge. After extensive research and verification,
we find that we can use the high-order topological index Z8

to characterize these double TI states [69,74,78], based on the
following formula [69]:

Z8 = κ1 − 2κ4 mod 8 (1)

in which K is a TRIP, κ1 = 1
4

∑
K∈ TRIPs(n

+
K − n−

K ), n+
K (n−

K )
is the number of bands with even (odd) parity at K , and
κ4 = 1

2
√

2

∑
K∈K4

∑
α ei(απ/4)nα

K , where nα
K is the number of

bands with the eigenvalue ei(απ/4) at K (α = 1, 3, 5, or 7)
and K4 are those TRIPs that are invariant under S4 sym-
metry operation. Specifically, K4 are the following TRIPs:
(0,0,0), (0.5,0.5,0), (0,0,0.5), and (0.5,0.5,0.5) in the units of
the reciprocal lattice vectors of the primitive cell. We can
now simplify the DFT+DMFT band topology of LBFA as a
four-band case. Since κ4 is equal to 0 in our case [47], we
only show the parities of the bands at TRIPs in Fig. 3(d)
in order to calculate the Z8 index, which turns out to be
6, thus confirming the topologically nontrivial properties of
LBFA.

We also check the spin-texture at a constant energy 29 meV
below the Dirac point of the lower TI surface states shown
in Fig. 3(b) by a green line. A spin-helical surface state is

found which forms a π Berry phase enclosed [Fig. 3(c)]
and confirms the nontrival topological nature of the bulk
band structure of LBFA. Therefore it is very interesting to
investigate LaBaFe4As4 experimentally for both proving the
nontrivial high-order topological index induced topological
surface states in iron-based compounds and looking for a new
platfrom harboring topological superconductivity.

For the Fermi curve indicated by the brown dotted line
shown in Fig. 3(e), only one band inversion between the La-
5dx2−y2 orbital dominated band (�+

7 ) and the Fe-3dxz/yz orbital
dominated band (�−

6 ) occurs. The Fermi curve passes through
two Dirac points along �-Z which are protected by the crystal
C4v symmetry. These give rise to TDS surface states on the
(001) surface as shown in Fig. 3(f), similar to the TDS surface
states reported in Li(Fe,Co)As [25].

In conclusion, we investigate the topological property of
UT-LFA and find that the superconducting UT-LFA is in a
nontrivial topological phase and has topological Dirac sur-
face states near EF on the (001) surface, which suggests that
MZMs have a good chance to emerge on its (001) surface.
We further predict a candidate iron-based superconductor
LaBaFe4As4 with multiple topological surface states on the
(001) surface near EF which suggests it can harbors topolog-
ical superconductivity. Surprisingly, two sets of topological
Dirac surface states on the (001) surface emerge from a non-
trivial Z8 topological index, despite a trivial Z2 topological
index. Our findings not only call for experimental verifica-
tions but also unveil a new way to realize topological Dirac
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surface states via a nontrival high-order topological index. Our
work suggests both UT-LFA and LaBaFe4As4 are good plat-
forms for exploring topological superconductivity. It is also
interesting to explore other rare earth-related iron-based com-
pounds to realize 5d-orbital related novel band topology and
topological surface states from a nontrival high-order topolog-
ical index.
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Fundamental Research Funds for the Central Universities
(Grants. No. 2243300003), and the National Natural Science
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