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Topological spin Hall effect in antiferromagnets driven by vector Néel chirality
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Spin Hall effect of spin-texture origin is explored theoretically for antiferromagnetic (AF) metals. Based on
the observation that a scalar spin chirality formed by the Néel vector is not a physically well-defined quantity,
it is found that a vector chirality formed by the Néel vector gives rise to a topological spin Hall effect. This
is topological since it is proportional to the winding number counted by in-plane vector chirality along the
sample edge, which corresponds to a homotopy class π1(S1), instead of π2(S2) of scalar chirality, and can be
nonvanishing for AF merons but not for AF skyrmions. The effect is enhanced when the Fermi level lies near
the AF gap, and, surprisingly, at weak coupling with a small AF gap. These features are confirmed numerically
based on the Landauer-Büttiker formula. Important roles played by nonadiabatic processes and spin dephasing
are pointed out.

DOI: 10.1103/PhysRevB.109.L241105

Spin-charge interconversion has been extensively studied
in spintronics with the aim of application to next-generation
devices. It is typically achieved by the spin Hall effect (SHE)
[1] originating from the relativistic spin-orbit coupling (SOC),
mostly in nonmagnetic materials [2–6]. Ferromagnets (FM)
are another class of materials that enable spin-charge conver-
sion, not just as a simple spin source but also by emergent
electromagnetism due to spatiotemporal magnetization dy-
namics. In particular, a magnetization texture forming a finite
scalar spin chirality simulates a magnetic field that affects
electrons’ orbital motion [7–11], but in a spin-dependent way.
The resulting Hall effect, often called the topological Hall
effect (THE), is thus the SHE in essence [12].

Antiferromagnets (AF) are a material having both aspects,
magnetic at the microscopic scale but nonmagnetic at the
(semi)macroscopic scale, and offers a unique platform to gen-
erate pure spin currents. A large SHE was reported in Ir20Mn80

[14], which originates from SOC. Recently, there are some
proposals of SHE that arise from the AF spin texture, pro-
viding another means of pure spin-current generation without
relying on SOC [15–17].

In this Letter, we explore theoretically the SHE in AF
originating from AF spin textures. From an analogy with FM,
an AF with a textured Néel vector n is expected to generate a
spin Hall current,

j̃z
s,i = σ̃SH n · (∂in × ∂ jn)eEj, (1)

under an applied electric field Ej . (σ̃SH is a coefficient, e > 0
is the elementary charge, and z on j̃z

s,i indicates the spin com-
ponent along n; see below.) Because of the scalar chirality,
n · (∂in × ∂ jn), this effect may be termed a topological spin
Hall (TSH) effect. However, j̃z

s,i changes sign under n → −n,
hence it does not express a macroscopically observable quan-
tity. Note that AF states with n and −n are indistinguishable at
a macroscopic level. We thus define the physical spin current

js,i through j̃z
s,i = n · js,i, hence, by

jαs,i = σ̃SH(∂in × ∂ jn)αeEj . (2)

The factor (∂in × ∂ jn)α may be identified as an emergent
magnetic field in spin channel, and interestingly, it can be ex-
pressed as (∂iaα

j − ∂ jaα
i )/2 with an emergent vector potential,

aα
i = (n × ∂in)α. (3)

This is the vector chirality (∼S1 × S2 for two spins) formed
by the Néel vector, and we call it “vector Néel chirality”
[18]. Spatially averaged spin current 〈 jαs,i〉 is proportional to
a winding number defined by the vector chirality, and hence is
“topological.” To date, the vector spin chirality is known to in-
duce charge [19,20] and (equilibrium) spin currents [21–23],
but its AF counterpart in terms of the Néel vector has been
less focused on.

In the following, we derive Eqs. (1) and (2) and demon-
strate the topological character of the latter. The effect is
present in systems with AF merons [24–26] but not with AF
skyrmions [27–33], and is enhanced in the weak-coupling
regime. These results are confirmed numerically based on the
Landauer-Büttiker formula.

We consider electrons hopping on a square lattice and
coupled to a given, static spin texture. The Hamiltonian

H = −t
∑
(i, j)

c†
i c j − Jsd

∑
i

Si · (c†
i σci ) + ui

∑
i

′
c†

i ci (4)

consists of nearest-neighbor hopping (first term), s-d ex-
change coupling to localized spins Si (second term), and
on-site impurity potential (third term), with electron operators
ci = t (ci↑, ci↓) at site i and Pauli matrices σ = (σ x, σ y, σ z ).
We assume an arbitrary slowly varying checkerboard type AF
texture, Si = S(−1)ini, where ni is the Néel vector varying
slowly in space [Fig. 1(a)].
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FIG. 1. (a) Static magnetic structure considered in this work, a
checkerboard type AF on a square lattice with a very slow spatial
modulation. The two sublattices (A or B) are indicated by color (red
or blue). (b) Electron dispersion in a uniform AF state. Each subband
is spin degenerate.

With a unitary transformation, ci = Uic̃i, which di-
agonalizes the s-d coupling, U †

i (ni · σ )Ui = σ z, H is
transformed into H = −t

∑
(i, j) c̃†

i eiAi j c̃ j − J
∑

i(−)ic̃†
i σ

zc̃i +
ui

∑
i
′c̃†

i c̃i, where J = JsdS, and Ai j is the spin gauge field
defined by U †

i Uj = eiAi j [34,35]. Because of slow variations
of the texture, Ai j is small and can be treated perturbatively.
The unperturbed state (with Ai j = 0) is a uniform AF, and
the electron band splits into spin-degenerate upper and lower
bands, ±Ek, with an AF gap 2|J| in between [Fig. 1(b)].
Here, Ek ≡

√
ε2

k + J2 with εk = −2t (cos kx + cos ky). Also,
Ai j can be treated in the continuum approximation, Ai j → Aμ,
where μ (= x, y) specifies the bond direction of (i, j), and
expanded as

Aμ = 1
2 Aα

μσα = 1
2

(
Az

μσ z + A⊥
μ · σ⊥)

, (5)

where α = x, y, z and ⊥= x, y. The spin-conserving compo-
nent Az describes adiabatic processes, whereas the spin-flip
component A⊥ induces nonadiabatic transitions. In FM, the
latter can be important only in the weak-coupling regime [36],
but in AF both are important because of spin degeneracy of the
AF bands. Both produce the same effective field, (∇ × Az )z =
(A⊥

x × A⊥
y )z = n · (∂xn × ∂yn).

To calculate the spin Hall conductivity, σSH ≡ 1
2 (σ z

xy −
σ z

yx ), we assume a good AF metal and focus on the Fermi-
surface contribution [37],

σ z
i j (Q) = − eh̄

4π
Tr

〈
J z

s,iG
R
k+,k′J jG

A
k′,k−

〉
i, (6)

where J z
s,i and J j are spin-current and number-current ver-

tices, Tr means the trace in spin, sublattice, and k spaces
(k, k′ integrals), and 〈· · · 〉i represents impurity average. The
Green’s function GR(A)

k,k′ = (μ − H ± i0)−1
k,k′ takes full account

of impurities and the gauge field, and k± = k ± Q/2. We treat
the impurity scattering in the Born approximation with ladder
vertex corrections (VC) [38]. The superscript z on σ z

i j and J z
s,i

indicates the spin component in the rotated frame, thus it is
the component projected to the local Néel vector n.

After a standard procedure (see the Supplemental Material
[38]), we obtain Eq. (1) with σ̃SH = σ̃

(0)
SH + σ̃

(1)
SH ,

σ̃
(0)
SH = (Jτ )2 t2ν

μ

(
1 − J2

μ2

)
Cxy, (7)

FIG. 2. (a), (b) Normalized topological spin Hall conductivity
vs chemical potential μ for several choices of J/t . (a) σ̃

(0)
SH γ̃ 2 and

σ̃
(1)
SH γ̃ 2, where γ̃ = πniu2

i /t2 is a dimensionless damping parameter.
(b) σ̃SH = σ̃

(0)
SH + σ̃

(1)
SH . In (b), σ̃SH with finite q are also shown (dotted

lines). These are odd functions of μ, hence plotted only for the
lower AF band. The parameters used are γ̃ = 0.2 and τ−1

s = 10−4t .
(c) Characteristic parameter regions for the TSH conductivity. The
red dashed line, given by J/|μ| = ql/

√
4 + (ql )2 in the diffusive

regime, is a crossover line separating the local and nonlocal field
regions, and εm =

√
(4t )2 + J2. The analytical results, Eqs. (7), (8),

and (13), apply to the blue shaded region, while the numerical results
(Fig. 4) apply to the green shaded region.

σ̃
(1)
SH = (Jτ )2 t2ν

μ

8t2

μ2 + J2

(
τ−1

τ−1
ϕ + τ−1

s

)
C2

xx, (8)

where σ̃
(0)
SH is the contribution without VC, which comes from

both adiabatic and nonadiabatic processes, and σ̃
(1)
SH is the con-

tribution with VC, coming only from nonadiabatic processes.
Here, ν = ν(μ) is the density of states (per spin) at chemical
potential μ, Ci j = 〈1 − cos ki cos k j〉FS is the Fermi surface
average [39], τ = [γ0 + (J/μ)γ3]−1/2 is the scattering time
[γ0 = πniu2

i ν and γ3 = (J/μ)γ0 are the sublattice indepen-
dent and dependent parts, respectively, of the damping, and
ni is the impurity concentration], and

1

τϕ

= 4J

μ

μ2 + J2

μ2 − J2
γ3 = 2J2

μ2 − J2

1

τ
(9)

is the “spin dephasing” rate [40]. We introduced a finite spin
relaxation rate τ−1

s by hand [41]; without τ−1
s , we would have

an unphysical result that σ̃
(1)
SH does not vanish in the limit

J → 0. Note that τ−1
ϕ differs from τ−1

s in that it does not
require spin-dependent scattering, randomizes only the trans-
verse (⊥ n) components of the electron spin (see below), and
vanishes as J → 0. The results (7) and (8) are obtained at the
leading order, i.e., second order in spatial gradient and second
order in τ .
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FIG. 3. Physical picture of electron spin transport in a uniform
antiferromagnet. The blue sphere with an arrow represents an elec-
tron, the green arrow a localized spin, and the red star a nonmagnetic
impurity. (a) The electron spin precesses around the local moment,
alternating its sense from site to site. (b) Interaction with impurities
locally modifies the precession. (c) A “collective” transverse spin
density contributed from many electrons decays and loses its original
information through the impurity scattering. This is because the
degree of the modification, mentioned in (b), varies from electron
to electron. This is called “dephasing” and the characteristic length
is the “dephasing length” λϕ = √

Dτϕ . The orange stars represent
averaged impurities.

The coefficients σ̃
(0)
SH and σ̃

(1)
SH are plotted in Fig. 2(a).

They are comparable in magnitude at large J (∼1.5t), but as
J is reduced, σ̃

(1)
SH grows markedly, whereas σ̃

(0)
SH decreases.

The sum σ̃SH = σ̃
(0)
SH + σ̃

(1)
SH is plotted in Fig. 2(b) by solid

lines, which grows as J is reduced, especially near the AF
gap edge, but finally vanishes at J = 0. Since σ̃

(1)
SH comes

solely from nonadiabatic processes, these results show that the
combined effect of nonadiabaticity and the VC is important
for the present SHE [42]. Physically, a nonadiabatic process
produces a transverse spin polarization, and the VC describes
its collective transport, which is however limited by spin de-
phasing [35,40,43]. The origin of the enhancement at small J
can be traced to the reduced dephasing at small J [38]. As
seen from Eq. (9), the spin dephasing arises through γ3, a
sublattice asymmetry in (nonmagnetic) scattering [35,44], and
its physical picture is illustrated in Fig. 3.

The obtained result, Eq. (1), needs to be interpreted with
care. It arises with the scalar chirality formed by the Néel
vector n, and changes sign under n → −n. This is not a
pleasant situation since any physical quantity measurable by
(semi)macroscopic means should not depend on the sign of
n. This (apparent) puzzle is resolved if we note that the spin
component of the calculated spin current j̃z

x,s is the one pro-
jected to the Néel vector n. Therefore, we write j̃z

s = n · js
and identify js as a physical spin current. The physical spin
Hall current is thus given by Eq. (2).

It is in fact possible to obtain Eq. (2) directly. By assuming
J is small and treating it perturbatively, we found that a spin

current arises at second order in J [38],

jαs,i = (Jτ )2 t2ν

μ
Cxy(∂in × ∂ jn)αeEj . (10)

This contrasts with the THE in FM caused by scalar spin chi-
rality, which starts at third order (∼J3) [10], and demonstrates
that the essential quantity for the present SHE is the vector
(not scalar) chirality. That Eq. (10) is an even function of J
(or Jn) is consistent with the fact that the spin current is even
under time reversal.

The expression Eq. (2) holds locally in space (as far as the
variation of n is sufficiently slow). As a spin current measured
experimentally, we consider a spatially averaged one, 〈 jαs 〉 =
�−1

∫
jαs dxdy (in two dimensions), where � is the sample

area. It can be written as〈
jαs

〉 = πσ̃SH
mα

�
(eE × ẑ), (11)

where

mα = 1

2π

∫
(∇ × aα )zdxdy = 1

2π

∮
aα · d�, (12)

and aα
i = (n × ∂in)α [Eq. (3)] is an emergent vector potential

in spin channel. The line integral is taken along the sample
perimeter. If the system has easy-plane magnetic anisotropy,
and the Néel vector on the sample edge is constrained to lie in
plane, e.g., x-y plane, the line integral of the vector chirality
defines a topological winding number mz ∈ Z in π1(S1). The
spin Hall conductivity is thus proportional to the topological
number density mz/�, and this fact resurrects the naming
“topological” spin Hall effect. We emphasize that it is char-
acterized by the vector chirality of the Néel vector along the
sample edge. Therefore, the present TSHE is absent for AF
skyrmions, in which the Néel vector at the edge is uniaxial.
On the other hand, it is finite for AF merons, which have finite
in-plane winding of the Néel vector along the edge.

To verify these results, we have conducted numerical
works based on the four-terminal Landauer-Büttiker formula
[38,45,46]. We consider ballistic systems with L × L sites
without disorder, and containing a single AF skyrmion or a
single AF meron. For both textures, the spin Hall conductance
Gz

SHC shows a strong peak just below the AF gap [Figs. 4(a)
and 4(b)], which, however, behave oppositely as L is increased
(with the skyrmion/meron size fixed); for the AF skyrmion
the peak decreases with L and seems to vanish in the ther-
modynamic limit. In contrast, for the AF meron it increases
with L [Fig. 4(c)]. This is consistent with the analytical result,
which is valid for infinite-size systems. Plots for several J/t
values are shown in Fig. 4(d) for the AF meron system, show-
ing that it is indeed enhanced at small J/t . All these features
agree with the analytic results, except for the detailed shape
of μ dependence.

The discrepancy in shape (μ dependence) between the
numerical [Fig. 4(d)] and analytic results [Fig. 2(b)] may be
understood as due to the nonlocality effect in the former. To
illustrate this, let us first consider the diffusive regime. As
the typical wave number q of the Néel texture (i.e., inverse
of meron/skyrmion size) is increased, Eq. (8) is modified as(

τ−1
ϕ + τ−1

s

)−1 → (
τ−1
ϕ + τ−1

s + Dq2)−1
(13)
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FIG. 4. Topological spin Hall conductance (Gz
SHC) based on the

Landauer-Büttiker formula for finite systems with L × L sites. (a) AF
skyrmion system. (b) AF meron system. (c) L dependence of the
peak value of Gz

SHC. The data are fitted with functions, f (x) =
286x − 0.504 and g(x) = 0.237/x − 2.22. (d) AF meron system with
L = 70 for several choices of J/t . We took J/t = 0.3 [except in (d)]
and meron/skyrmion radius r = 15. The data are symmetrized with
respect to J → −J , as explained in [38].

in the denominator, where D is the diffusion constant. When
electron spin diffusion (Dq2) occurs faster than spin dephas-
ing (τ−1

ϕ ), the effective field becomes “nonlocal.” A similar
feature has been noted for FMs, in which Dq2 is compared
to the exchange splitting [36]. Here in AF, it is compared
to the (much smaller) spin dephasing rate, τ−1

ϕ , hence the
present SHE enters the nonlocal regime rather easily com-
pared to the THE in FM. More explicitly, the nonlocality
appears if

ql >
2J√

μ2 − J2
, or |μ| > J

√
1 + (2/ql )2, (14)

where l is the mean free path. In Fig. 2(b), the analytic results
with q−2 = 6000 (with lattice constant taken unity) are plotted
by dotted lines. The suppression due to nonlocality is more
significant at larger |μ| (away from the AF gap), leaving a
sharp peak in the vicinity of the AF gap edge. Since cleaner
systems enter the nonlocal regime more easily [see Eq. (14)
and a red dotted line in Fig. 2(c)], this feature is expected
to persist into the ballistic regime with a wider nonlocality
region. The shape of Fig. 4(d) may thus be understood as due
to the nonlocality effect.

Thus, as in the case of THE in FM [36], the present TSHE
in AF exhibits various characteristic regimes [Fig. 2(c)].
These are summarized as follows. First, for a ballistic and lo-
cal regime, the effect is truly topological. As q is increased and
the nonlocal effects become important, the SHC deviates from
the topological expression. In the diffusive case, it is difficult

to have the topological expression because of dephasing (and
nonlocality), but the effect is enhanced for weak-coupling AF
with a small AF gap. An interesting possibility may be found
in mesoscopic systems, for which the effect can be topological
even if the system is in a diffusive regime.

The emergent vector potential aα in the spin channel, iden-
tified here through TSHE, has more generality. In a study
on THE in canted AF [35], an emergent vector potential in
the charge channel was identified as lαaα , where lα is the
canting (uniform) moment. Also, aα can be expressed as aα

i =
−(RA⊥

i )α [47], where R is an SO(3) matrix that connects
the rotated and the original frames (e.g., n = Rẑ), showing its
conformity with the spin gauge field A⊥

i . These facts reinforce
our interpretation of aα as an effective vector potential in the
spin channel.

To realize the present TSHE experimentally, a prime can-
didate texture is n meron. Such a texture was found very
recently in insulating α-Fe2O3 [24], and also in semimetal-
lic CuMnAs [25]. Another candidate is a canted AF; if the
ferromagnetic moment l (due to canting) forms a skyrmion
(called “l skyrmion” in [35]), topological consideration shows
that the Néel vector winds at least twice around the skyrmion,
i.e., mz = 2 per skyrmion [35,48]. A recent experiment on
thin films of Ce-doped CaMnO3, a canted AF, observed
skyrmion bubbles formed by the (weak) ferromagnetic mo-
ment [49]. Therefore, this system can also be a candidate
for the present TSHE. Moreover, a method to detect the
chirality of AF texture has been proposed [26], which will
promote the study of AF texture-induced phenomena. Fi-
nally, we note that a meron-antimeron lattice with different
core sizes [50] offers a good candidate that integrates the
present effect; if the nonlocality effect suppresses the topo-
logical contribution of the smaller one (e.g., antimeron), the
complete cancellation between meron and antimeron can be
avoided.

Several theoretical works have been reported on the TSHE
in AF based on scalar chirality [15–17]. In Ref. [16], the
authors considered AF skyrmion lattices, and calculated in-
trinsic (Berry curvature) contributions projected on local spins
si ∼ (−)in. Experimentally, in a closely related phenomenon,
i.e., THE in a FM skyrmion lattice, the measured conductivity
data scale like ∼τ 2 [51,52], indicating a primary importance
of the Fermi-surface contribution as we have calculated in this
Letter. In Ref. [17], the authors used the Landauer-Büttiker
method to find a nonzero TSHE in systems with an AF
skyrmion, and examined a torque acting on the skyrmion.
Their result does not contradict with our result because of
finite system size, but our result suggests that it vanishes in
the thermodynamic limit. They expressed the induced spin
current as jαs,i ∼ nα [ n·(∂in × ∂ jn)]Ej , which is essentially
the same as Eq. (2) (and is convenient to obtain a torque),
but it does not express a topological density because of the
extra factor of nα . (The topological aspect of the effect has
been misidentified so far). They also pointed out an increase
of the TSH conductivity for special impurity configurations. It
would be interesting to study how the impurity configuration
affects spin dephasing and the TSHE.

The emergence of vector chirality is not a surprise. Rather,
it has good chemistry with spin currents, just as the good
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chemistry of scalar chirality with charge currents [7–11]. The
present work extends this picture to nonequilibrium spin cur-
rents beyond equilibrium ones [21–23]. The appearance of the
TSHE at second (not third) order in J disproves any scenario
based on scalar chirality.

To summarize, we have studied a spin Hall effect due to
magnetic textures in AF metals. By analytic calculations, we
found a topological contribution proportional to the winding
number defined by vector chirality, suggesting that the TSHE
in AF is characterized by a homotopy class π1(S1), different
from π2(S2) of the THE in ferromagnets. This is finite for
AF merons but not for AF skyrmions, and is enhanced at
weak coupling. These results are confirmed by numerical cal-
culations based on the Landauer-Büttiker formula. Important
roles played by nonadiabatic processes and spin dephasing are

pointed out. The results obtained in this work will provide
hints to experiments exploring enhanced spin currents and
texture-based functionalities in antiferromagnets.
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