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Topological surface states host superconductivity induced by the bulk condensate in YRuB2
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While the possibility of topological superconductivity (TSC) in hybrid heterostructures involving topolog-
ically nontrivial band structure and superconductors has been proposed, the realization of TSC in a single
stoichiometric material is most desired for fundamental experimental investigation of TSC and its device
applications. Bulk measurements on YRuB2 detect a single superconducting gap of ∼1 meV. This is supported
by our electronic structure calculations, which also reveal the existence of topological surface states in the
system. We performed surface-sensitive Andreev reflection spectroscopy on YRuB2 and detected the bulk
superconducting gap as well as another superconducting gap of ∼0.5 meV. From our analysis of electronic
structure, we show that the smaller gap is formed in the topological surface states in YRuB2 due to the proximity
of the bulk superconducting condensate. Thus, in agreement with the past theoretical predictions, we present
YRuB2 as a unique system that hosts superconducting topological surface states.

DOI: 10.1103/PhysRevB.109.L241104

Due to the particle-hole symmetry in superconductors, the
positive and negative energy eigenstates of the Bogoliubov–de
Gennes Hamiltonian appear pair-wise [1]. When the super-
conducting condensate forms, the negative-energy eigenstates
remain fully occupied. This closely resembles to the insulators
where the valence band remains filled. Therefore, distinct
topological invariants for the occupied states can be calculated
[2–5]. A nonzero topological invariant leads to a so-called
topological superconductor. In strong topological supercon-
ductors, the nonzero topological invariants may exist even
when the bulk of the superconductor is fully gapped [6–8].
Due to the constraints enforced by topology, the surface of
the strong topological superconductors host gapless modes,
the so-called Majorana zero modes. Such systems have re-
cently attracted enormous attention due to their fascinating
properties and their potential as a key ingredient of fault-
tolerant quantum computing [9–11]. Therefore, it is extremely
important to search for candidate topological superconductors
(TSCs).

Fu and Kane had proposed a scheme to obtain px + ipy

type topological superconductivity induced in the topological
surface states (TSSs) of a topological insulator (TI) through
proximity effect, or by doping [12]. Experimentally, proximity
induced superconductivity was observed in heterostructures
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of superconducting NbSe2, and BSCCO with the topological
insulator Bi2Se3 [13,14]. Bi2Se3 was intercalated with metal
ions like Cu [15], Nb [16], Sr [17], etc. in a controlled way
to achieve superconductivity. Similarly, upon In doping, the
topological crystalline insulator SnTe displayed superconduc-
tivity [18]. In all such cases, the intrinsic features of a TSC
may undergo modification due to complex interface effects,
strains developing from lattice mismatched heterostructures
or the intercalates acting as disorder. All such issues can be
overcome only if a TSC phase is realized in a single stoi-
chiometric material system. In such a system, the Majorana
zero modes may appear as exotic surface states, or as bound
states in the vortex cores. As per the theoretical argument pre-
sented in [19], a TSS with a reasonably high Tc is required to
experimentally resolve the Majorana bound states. However,
till date, all the stoichiometric topological systems that have
shown superconductivity have rather low Tc {e.g., the Dirac
semimetal PdTe2 (Tc = 1.7 K) [20], the nodal-line semimetal
PbTaSe2 (Tc = 3.8 K) [21], BiPd (Tc = 3.8 K) [22,23]}.

Recently, based on electronic structure calculations [19],
it was proposed that the rare-earth transition-metal ternary
boride YRuB2 (Tc = 7.6 K) is a ideal topological supercon-
ductor candidate where all the key requirements for being a
topological superconductor (namely, a relatively higher Tc,
topological surface states, s-wave superconductivity, and good
separation between bulk and surface states) are satisfied. In
addition to the above, the calculations also suggest the ex-
istence of symmetry-protected Dirac nodal rings in YRuB2

[24]. Motivated by such theoretical observations, we have em-
ployed Andreev reflection spectroscopy [25,26] experiments
on YRuB2. Andreev reflection spectroscopy is known to be
a potentially powerful technique to probe transport through
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FIG. 1. (a) Temperature dependence of bulk magnetization mea-
sured in both zero-field cooling (ZFC) and field-cooled cooling mode
with 10 Oe magnetic field (FCC). (b) Field dependence of bulk
magnetization at a temperature of 1.8 K. Inset shows a schematic
describing the formation of point contact on YRuB2. (c),(d) Conduc-
tance spectra obtained in the ballistic regime (red circles) and their
corresponding two-gap BTK fit (black line). (e) Conductance spectra
obtained in the ballistic regime (red circles) and their corresponding
single gap BTK fit (blue line) and two gap fit (black line). (f) Statis-
tics of superconducting energy gaps (�1 and �2) for 43 different
contacts.

topological surface states in a topological superconductor
[27–29].

The measurements reported here were performed on poly-
crystalline YRuB2 where multiple single crystallites with
randomly oriented facets coexist on the surface. Temperature
dependence of bulk magnetization on polycrystalline YRuB2

in zero-field cooled (ZFC) and field-cooled cooling (FCC)
mode with an applied field of 10 Oe confirm the bulk nature of
superconductivity in YRuB2 and it shows a superconducting
transition onset at 7.8 K as shown in Fig. 1(a). The An-
dreev reflection spectroscopic measurements were performed
by measuring the transport characteristics of several ballistic
point contacts between superconducting YRuB2 and normal
metallic Ag tips respectively.

The electronic transport between a normal metal and a
superconductor through a ballistic point contact is dominated
by a process called Andreev reflection [25] that causes an en-
hancement of the differential conductance (dI/dV ) when the

electron energy is less than the superconducting energy gap
(�). A dI/dV vs energy (E = eV ) spectrum thus obtained is
analyzed by a modified Blonder-Tinkham- Klapwijk (BTK)
model [30]. This model assumes the interface between a nor-
mal metal and a superconductor as a delta potential barrier
whose strength is defined by a dimensionless parameter Z .
With a small potential barrier present at the interface, two
peaks symmetric about V = 0 appear. Such peaks are the
hallmark signatures of Andreev Reflection. In Figs. 1(c)–1(e),
three representative point-contact Andreev reflection (PCAR)
spectra between YRuB2 and Ag probed at T ∼ 0.45 K are
shown (red circles). All the spectra were first normalized with
respect to the conductance at high bias. In all these spectra,
Andreev peaks symmetric about V = 0, are clearly seen. No
extra (anomalous) features like conductance dips [31,32] are
present. This confirms that the point contacts are close to the
ballistic regime of transport where true spectroscopic param-
eters can be obtained. We have performed such experiments
at a large number of points (see Figs. S9–S12 within the
Supplemental Material, SM [33]). The normal state resistance
of these points varied from 0.6 � to 20 � and the contact
diameters (calculated using Wexler’s formula [44]) varied be-
tween 4 nm and 24 nm. As shown in Figs. 1(c) and 1(d), there
are two well-resolved peaks for both positive and negative
V in the point-contact spectra obtained on YRuB2. This is
strikingly similar to the Andreev reflection spectra obtained
on the two-band superconductor MgB2 [45,46]. The solid-
black lines in Figs. 1(c) and 1(d) represent the theoretical fits
using the modified BTK theory generalized to include two
superconducting gaps (�1 and �2) by writing the normalized
conductance as ( dI

dV )N = w( dI
dV )1N + (1 − w) ( dI

dV )2N , where
w is the relative contribution of one of the gaps (say, �1)
[45]. As shown in Fig. 1(e), for certain point contacts, we
also obtained spectra in which two gaps are not visually re-
solved. We noted that while a conventional single-gap model
is insufficient to explain these spectra, the two-gap model
provides a better fit to the spectra over the entire energy range.
We thus obtained a distribution of the two gaps measured
at different points on the surface of YRuB2 and plotted the
distribution in Fig. 1(f). As it is evident from the distribution,
two prominent superconducting gaps are measured with �1 =
0.99 ± 0.07 meV and �2 = 0.47 ± 0.1 meV.

The above observation substantially differs from the earlier
measurements of the superconducting energy gap in YRuB2

based on bulk measurement techniques like NMR relaxation
and μ-SR experiments in the past [47,48]. Both these exper-
iments revealed one clean, fully formed superconducting gap
in YRuB2 with an amplitude of ∼1.1 meV that followed BCS
behavior [49]. In our experiments, the measured larger gap
(�1) is comparable to the bulk gap amplitude reported by
the other bulk-sensitive experiments [47,48]. To understand
the origin of the smaller gap (�2) in our measurements, we
have performed detailed first-principles calculations. We pre-
sented the calculated bulk band structure of YRuB2 without
spin-orbit coupling (SOC) in Fig. 2(a). It manifests a metallic
ground state where electron and hole bands dip into each other
in such a way that they form coexisting electron and hole
pockets at the Fermi level. Figure 2(b) shows the calculated
Fermi surface that reveals two hole pockets (light blue and teal
colors) and two electron pockets (green and brown colors),
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FIG. 2. (a) Calculated bulk band structure of YRuB2 without
SOC along the high-symmetry path in the Brillouin zone (BZ).
(b) The associated Fermi surface with coexisting electrons (green
and brown colors) and hole pockets (light blue and teal colors).
(c) The (010) surface band structure along Z̄ − �̄ − Z̄ directions.
(d) The associated spin texture with up (red) and down (blue) spin
polarizations. (e) Superconducting gap along the imaginary axis at
T = 8.5 K and (f) the quasiparticle superconducting density of states
(DOS) at 8.5 K, 15 K, and 17 K.

where a single superconducting gap forms (please also see SM
for additional details [33]). Since YRuB2 has nonsymmorphic
symmetries, its metallic state is robust and realizes hourglass
Dirac fermions at the zone boundary in the presence of SOC.
Regardless, there is a band inversion between the valence and
conduction bands at the � point such that the valence and con-
duction bands are separated at ky = 0 plane. Such a gapped
state can facilitate the calculations of Z2 number on these
planes similar to insulators. Based on the parity eigenvalues
of the occupied states, we obtained a nontrivial Z2 = 1 on the
ky = 0 plane. Figure 2(c) shows the calculated (010) surface
states and associated spin texture in Fig. 2(d). These results
reveal an odd number of spin-momentum-locked nontrivial
states crossings along �̄ − Z̄ at the Fermi level. Such non-
trivial states can in principle become superconducting through
the bulk proximity effect. Since point-contact spectroscopy
is a more surface sensitive technique, the Andreev reflection
processes in our experiments are bound to involve the bulk gap
as well as the proximity induced gap in the TSSs. As a conse-
quence, we have effectively measured two gaps in YRuB2. We
also computed the phonon dispersion and Eliashberg spectral
function α2F (ω) to get the superconducting Tc (see Fig. S2

within the SM [33]). The calculated value of Tc using the
McMillan formula as modified by Allen and Dynes [50] is
8.7 K. Figure 2(e) shows the superconducting gap function
at 8.5 K obtained by solving the (anisotropic) Eliashberg
equation along the imaginary axis. Quasiparticle density of
states Ns(ω)/N (EF ) = Re[ω/

√
ω2 − �2(ω)], where N (EF ) is

the normal density of states (DOS) at the Fermi level, in the
superconducting state is shown in Fig. 2(f). A single peak in
the quasiparticle DOS signifies the presence of only a single
bulk superconducting gap. The peak in the DOS gradually
disappeared above 17 K. This overestimated temperature scale
might be due to the possible anharmonic effects [51], or the
use of an isotropic Coulomb parameter [52]. Nevertheless,
considering the possibility of only one bulk superconducting
gap, it is rational to surmise that the second gap measured
by our experiments is a proximity-induced gap in the surface
states.

Now it is important to investigate the nature of the two
superconducting gaps. For that, we have investigated the re-
sponse of the PCAR spectra and the corresponding �1 and �2

with changing temperature and magnetic fields. Figure 3(a)
depicts the temperature dependence of dI/dV vs V spectra.
The colored circles represent the experimentally registered
data points and the solid-black lines represent the BTK fits
generalized to the case of two gaps for each spectrum. For two
gap fitting, the value of the weight factor w was kept fixed
over the entire temperature range. At low temperatures, the
position of the Andreev reflection driven peaks does not show
a noticeable change. With increasing temperature, the peaks
slowly broaden and eventually all spectral features disappear
at a temperature of 7.6 K, near the critical temperature of
the superconductor. Figure 3(b) shows the temperature depen-
dence of �1 and �2 extracted from the spectrum shown in
Fig. 3(a). Here, the red and green dots represent the extracted
values of �1 and �2 respectively and the solid-black lines
represent the expected temperature dependence of �1 and �2

for a conventional BCS superconductor [49]. Good quality
BTK fits of the experimental data and a near-BCS temperature
dependence of both the gaps show that the corresponding or-
der parameters are conventional in nature. The extracted value
of �01 and �02 for this particular spectrum are 0.97 meV and
0.43 meV respectively. The corresponding 2�0

KBTc
for �1 and

�2 were found to be ∼2.96 and 1.32 respectively. The ratio
corresponding to the larger gap falls within the weak-coupling
BCS regime and is consistent with the previous bulk-sensitive
experiments [47,48]. The temperature dependence of a repre-
sentative spectrum of the other type where the two gaps are
not visually resolved, along with the respective theoretical
fits within the two-gap model, is also shown in Fig. 3(c).
The two gaps extracted from this point also follows the BCS
temperature dependence as shown in Fig. 3(d).

In order to obtain additional understanding on the two
gaps of YRuB2, we performed magnetic field dependence
of the PCAR spectra. Figure 3(e) shows the magnetic
field dependence of dI/dV vs V spectra. The colored cir-
cles represent the experimentally obtained spectra and the
solid black lines represent the two gap BTK fits for each
spectrum. With increasing magnetic field, Andreev reflec-
tion driven conductance peaks close smoothly and all the
superconductivity-related features disappear at a magnetic
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FIG. 3. (a) Temperature (T ) dependence of the conductance
spectra (colored circles) with two gap BTK fit (black line). (b) Vari-
ation of the two superconducting gaps (�1 and �2) with temperature
(T ). (c) T dependence of the conductance spectra of other type where
two gaps are not visually resolved. (d) Evolution of �1 and �2, ex-
tracted from the spectra shown in Fig. 3(c), with T . (e) Magnetic field
(H ) dependence of the conductance spectra (colored circles) with
two gap BTK fit (black line) at 0.45 K. (f) H dependence of zero bias
density of states (NH (0)) after subtracting the zero field contribution
corresponding to �1 and �2. The inset shows the variation of the
two superconducting gaps (�1 and �2) with H .

field of ∼6 T. The extracted value of �1 and �2 for the
spectra at zero magnetic field and at a temperature of 0.45 K
are 0.97 meV and 0.43 meV respectively. The variation of
�1 and �2 with the magnetic field are shown in inset of
Fig. 3(f). For lower magnetic fields (upto 2 T) �1 and �2
do not change significantly and they decrease smoothly with
further increasing magnetic field. Beyond this field, �1 and
�2 fall rapidly and a linear extrapolation of data shows that
�2 has a tendency to disappear at a magnetic field of ∼4.8 T,
while �1 at ∼5.8 T.

In the context of the conventional multiband superconduc-
tor MgB2, it was earlier shown that the zero bias density
of states (DOS) corresponding to the smaller gap grows far
more rapidly and attains the normal state value much before
that corresponding to the larger gap [53]. We have calcu-
lated the zero-bias density of states (DOS) using the Dyne’s

formula given as N (E ) = Re[ E−i�√
(E−i�)2−�2

] [54]. Magnetic

filed dependence of N (0) corresponding to �1 and �2 for the
spectra shown in Fig. 3(e) is shown in Fig. S13 within the SM
[33]. Figure 3(f) shows the corresponding field dependence of
NH (0) = N (0) − N0(0) where N0 is the zero-bias DOS for H
= 0. For YRuB2, it appears that the effect of magnetic field
on the DOS corresponding to both the larger and the smaller
gap is the same and they evolve with field following a similar
trend. This suggests that the two gaps do not independently
form in two different bands, but are closely related where the
smaller gap is induced in the TSS by the larger one in the
bulk. Within this picture, since the amplitude of the proximity-
induced gap varies between the crystallite facets, the relatively
large distribution of the measured superconducting energy
gaps is understood as a consequence of the randomly oriented
crystallite facets on the surface of our sample on which the Ag
tip falls.

In conclusion, we have performed point-contact Andreev
reflection spectroscopy experiments on the candidate topo-
logical superconductor YRuB2. Although based on bulk
measurements, YRuB2 is thought to be a single-gap super-
conductor, in our experiments we detected multiple super-
conducting gaps centered around two amplitudes, 0.99 meV
and 0.47 meV. We have shown through the first-principles
calculations that the emergence of the smaller gap in our
surface sensitive experiments is a consequence of a proxim-
ity induced superconducting gap in the TSSs in the system,
some of which cross the Fermi surface and contribute in
global transport. The properties of the larger gap is consistent
with that probed by bulk-sensitive experiments. Therefore,
our experiments show that YRuB2 is a potentially impor-
tant superconductor where the interaction between topological
surface states and bulk superconductivity leads to novel
physical insights in understanding the candidate topological
superconductors.
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