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Topoelectrical circuits are metamaterial realizations of topological features of condensed matter systems. In
this work, we discuss experimental methods that allow a fast and straightforward detection of the spectral features
of these systems from the two-point impedance of the circuit. This allows us to deduce the full spectrum of
a topoelectrical circuit consisting of N sites from a single two-point measurement of the frequency-resolved
impedance. In contrast, the standard methods rely on N2 measurements of admittance matrix elements with a
subsequent diagonalization on a computer. We experimentally test our approach by constructing a Fibonacci
topoelectrical circuit. Although the spectrum of an infinite Fibonacci chain is fractal, i.e., more complex than
the spectra of periodic systems, our approach is successful in recovering its eigenvalues. Our work promotes the
topoelectrical circuits as an ideal platform to measure spectral properties of various (quasi)crystalline systems.
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Introduction. Theoretical studies of topological phases of
matter often rely on toy models to elucidate physical mecha-
nisms behind observed phenomena. Due to their underlying
simplicity, toy models are challenging to realize in con-
densed matter settings prompting the need for metamaterials;
classical or quantum systems designed to reproduce desired
topological features of condensed matter systems. The initial
proposal [1] involved photonic crystals where electromagnetic
waves propagate unidirectionally along the boundary, thus
forming the photonic analog of the integer quantum Hall ef-
fect (IQHE) [2]. In addition to photonic metamaterials [3–10],
there are acoustic [11–18], mechanical [19–21], microwave
[22–27], and electrical circuit [28–44] realizations of various
topological phases.

Topoelectrical circuits are networks of nodes connected
by electronic components such as resistors, capacitors, and
inductors. They are described by an admittance matrix Y ( f )
that represents the current response to a set V( f ) of locally ap-
plied voltages at frequency f , and that is related to the circuit
Laplacian that can be seen as an effective tight-binding Hamil-
tonian [30,36,45]. So far, the experimental characterization of
these classical systems mostly relied on detecting topological
boundary phenomena using two-point impedance measure-
ments [30,45]. This impedance, Za,b( f ), can be determined
by measuring the voltage response between the nodes a and
b to an input current oscillating at a specific frequency. If this
frequency corresponds to the energy of a topological boundary
state of the circuit Laplacian, and if the nodes are chosen such
that one is in the bulk of the system and the other in the region
where this topological state is localized, the resulting two-
point impedance is very large (divergent) in realistic (ideal)
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systems. Thus, the presence of a topological boundary state
(TBS) results in a single, isolated impedance peak. Moreover,
the impedance between two corner nodes in finite electrical
circuits was recently shown to exhibit size-dependent reso-
nances and fractal features without a continuum analog once
the electronic components between nodes have differing phase
lags [46,47].

Gaining access to the full spectrum of the circuit Laplacian
simulated by a topoelectrical circuit, beyond the detection
of individual, spectrally isolated modes, is challenging. The
spectra of topoelectrical circuits have so far been determined
by measuring the full admittance matrix, element by element,
and then diagonalizing it on a computer [48]. This is a time-
consuming process, since the number of measurements scales
quadratically (N2) with the number of sites N in the system.
Such disadvantageous scaling hinders the full spectrum mea-
surement of a topoelectrical circuit, and undermines interest
in realizing systems with intriguing spectral properties, like
quasicrystals.

Quasicrystals are systems with incommensurate energy
scales [49,50], whose spectra may be fractal, resulting in local
power law singularities of the associated density of states
[51]. Since they are much rarer in nature, their metamate-
rial realizations are even more relevant for studying their
spectral properties [51,52]. The prototypical example in one-
dimension is the Fibonacci chain, an array of sites related by
two possible hopping strengths arranged into a quasiperiodic
pattern [51]. Beyond having a fractal spectrum in the ther-
modynamic limit, this chain is interesting because it can be
adiabatically related to a two-dimensional Hofstadter model
that realizes the IQHE physics. Consequently, the Fibonacci
chain can support TBSs [53,54].

In this work, we discuss how an extensive number of
topoelectrical circuit modes can be detected from the linear

2469-9950/2024/109(24)/L241103(7) L241103-1 ©2024 American Physical Society

https://orcid.org/0000-0002-0584-2202
https://orcid.org/0009-0008-8501-9304
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.L241103&domain=pdf&date_stamp=2024-06-05
https://doi.org/10.1103/PhysRevB.109.L241103


SELMA FRANCA et al. PHYSICAL REVIEW B 109, L241103 (2024)

response function of the circuit. We identify the eigenval-
ues of the circuit Laplacian [48,55,56] by determining the
resonances of the frequency-dependent two-point impedance
through appropriate signal processing techniques. We test our
approach under realistic conditions by constructing a topo-
electrical Fibonacci chain. Despite having a fractal spectrum
in the thermodynamic limit that is more sophisticated than
the spectrum of a periodic system, we correctly identify most
of the Fibonacci chain eigenvalues in a single frequency-
resolved measurement by utilizing the chiral symmetry of the
Fibonacci Hamiltonian.

We start by introducing the Hamiltonian of the finite Fi-
bonacci chain and showing how the linear response function
is able to detect the eigenvalues of the corresponding circuit
Laplacian. We proceed with the experimental setup and dis-
cuss the measured data and corresponding numerical tools
used to recover the spectrum.

Topoelectrical Fibonacci chain. In this work, we realize the
8th approximant of the infinite quasiperiodic Fibonacci chain
consisting of N = 34 sites [51]. The Hamiltonian reads

H (φ) =
N∑

n=1

tn(φ)c†
n+1cn + H.c., (1)

where c†
n (cn) represent the creation (annihilation) oper-

ator of a particle at site n. The hoppings tn(φ) = α +
β sign[χn(φ)] (α, β ∈ R) alternate between two values tA and
tB as a function of the index n, such that α = (tA + tB)/2 and
β = (tA − tB)/2. The alternation pattern is determined by the
characteristic function χn(φ) = cos( 2πn

τ
+ φ) − cos( π

τ
) with

the golden ratio τ = 1+√
5

2 and the phason angle φ ∈ [0, 2π )
[53]. Setting φ = π creates the Fibonacci chain with two pairs
of TBSs that belong to different topological gaps. These pairs
of TBSs occur at opposite energies because the Hamiltonian
obeys the chiral symmetry constraint CH (φ)C† = −H (φ)
with Cnm = δnm(−1)n. Besides being symmetric with respect
to zero energy, the spectrum of an infinitely long Fibonacci
chain is fractal [57]. The eigenvalues are arranged in a self-
similar pattern, as we can divide the spectrum into three
clusters (or bands) of eigenvalues, and each cluster can be
further split into three subclusters, and so on [51].

In the following, we describe an electrical circuit that real-
izes the finite Fibonacci chain. In the Supplemental Material
(SM) [58], we consider the system under periodic boundary
conditions. The Fibonacci circuit consists of N = 34 nodes
related by capacitors of distinct capacitances CA and CB that
emulate the hoppings tA and tB of the tight-binding model.
We show the circuit diagram inside the bulk of the system
and the corresponding segment of a constructed circuit board
in Figs. 1(a) and 1(b), respectively. The orange and green
boxes in Fig. 1(a) represent two possible local environments
of bulk circuit nodes that differ by whether identical capac-
itances (CA,CA) or distinct ones (CA(B),CB(A) ) are used to
relate a node n to its neighbors. In the former (latter) case,
for the grounding of node n we use a capacitor of capacitance
C̃n = CB (C̃n = CA) that is connected in parallel to an induc-
tor of inductance L, such that the relation C̃n + Cn−1 + Cn =
2CA + CB holds.

FIG. 1. Fibonacci topoelectrical circuit. (a) The circuit diagram
between nodes n = 3 and n = 8. Orange and green boxes indi-
cate two different configurations of topoloelectrical circuit junctions.
(b) A photograph of the corresponding segment of the circuit board.
We see all elements of the circuit diagram of (a), except inductors
that are located on the backside.

Each node is described by Kirchhoff’s law [30]
In = Gn−1(Vn − Vn−1) + Gn(Vn − Vn+1) + gnVn, where
Gn = 2π j f Cn is the admittance between nodes n and
n + 1, f is the frequency, Cn ∈ {CA,CB} depending on
sign[χn(π )], and j2 = −1. The admittance gn between node
n and the ground equals gn = 2π j f C̃n + 1/(2π j f L) with
C̃n ∈ {CA,CB}. By grouping all currents and voltages into
vectors I and V, we obtain the admittance matrix Y ( f )

Y ( f ) = g̃( f )I − 2π j fL (2)

in terms of which Kirchhoff’s rules are given by I( f ) =
Y ( f )V( f ). Here, g̃( f ) = 2π j f (2CA + CB) + 1/(2π j f L) and
L is the circuit Laplacian matrix with capacitances Cn in
positions of hoppings tn of the Fibonacci Hamiltonian Eq. (1).

To experimentally characterize the spectral properties of
this circuit, we measure its response to the applied current
I ( f ). The voltage at node b is related to an input current at
node a via the two-point impedance

Za,b( f ) = Va( f ) − Vb( f )

Ia( f )
=

N∑

k=1

|vk,a − vk,b|2
Yk

, (3)

that can be calculated from the eigenvalues Yk ( f ) and eigen-
vectors vk ( f ) of the admittance matrix [30].

Next, we describe how Za,b( f ) can be used to reconstruct
the Fibonacci chain spectrum. From Eq. (3), we see that
Za,b( f ) has a pole at frequency fk every time Yk ( fk ) = 0.
Since Eq. (2) relates the admittance matrix eigenvalues Yk =
g̃( f ) − 2π j f Ek with the circuit Laplacian eigenvalues Ek ,
setting Yk ( fk ) = 0 yields

Ek = 2CA + CB − 1

4π2L f 2
k

; (4)

we note in passing, that the energies are measured in units of
capacitance. Therefore, reconstructing Ek relies on identifying
the resonance frequencies fk of the response function Za,b( f ).
In the following, we describe how this can be done in practice.

Experimental setup and measurement analysis. For our
experimental realization, we have used capacitors with nomi-
nal values of capacitances CA = 50 nF and CB = 100 nF, and
inductors with nominal inductances L = 10 µH that were pre-
selected to vary less than 2% from the corresponding nominal
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FIG. 2. Absolute values of the measured impedances |ZBE| and
|ZBB| (a) and their second derivatives −∂2

f |ZBE| and −∂2
f |ZBB| (b) and

(c) as a function of frequency f . The green circles indicate the peaks
of −∂2

f |ZBE| and −∂2
f |ZBB| in the frequency range ( f0, 250 kHz), with

f0 = 112.5 kHz.

values of conductances and inductances. Importantly, these
circuit elements have small but nonvanishing direct current
resistances Rdc

C ≈ 25 m
 and Rdc
L ≈ 85 m
. In case of the

inductors the resistance is frequency-dependent and goes from
Rac

L ≈ 105 m
 (at 50 kHz) to Rac
L ≈ 308 m
 (at 250 kHz). For

more details, see the SM [58].
All measurements were performed with the lock-in am-

plifier SR865A manufactured by Stanford Research Systems
[58]. We consider two configurations for the voltage probes;
the “bulk-edge” (BE) configuration is realized by placing
probes at nodes a = 1 and b = 15, while the “bulk-bulk” (BB)
configuration has the probes at nodes a = 10 and b = 24, see
the SM [58]. According to Eq. (3), the positions of the voltage
probes determine the weights of the corresponding eigenstates
in the impedance response. This results in a very different
frequency dependence of the response functions |ZBE| and
|ZBB| in range f ∈ (50 kHz, 250 kHz), see Fig. 2(a). To an-
alyze these results, it is useful to define the frequency f0 =
112.5 kHz corresponding to E = 0 as determined from Eq. (4)
and using experimental values for CA,CB and L.

Our first observation is that |ZBE| and |ZBB| have less
features for frequencies f < f0 corresponding to negative
energies than for frequencies f > f0 representing the pos-
itive part of the spectrum. This is a consequence of the
nonlinear relationship between the eigenvalues Ek and res-
onant frequencies fk in Eq. (4), that positions the resonant
frequencies of the negative (positive) eigenvalues closer to-
gether (further apart). When this effect is combined with
nonzero resistances Rdc

C , Rdc
L , and Rac

L that broaden the delta
peaks of the ideal response function into Lorentzians, the
resonant peaks for frequencies f < f0 are expected to be
less visible than the ones for f > f0 [58]. The second im-
portant feature of Fig. 2(a) is the observation that |ZBE| has
two very prominent peaks at frequencies (indicated by green
lines) for which |ZBB| does not show any prominent features.
This suggests that these peaks are induced by TBSs [30].
From the corresponding frequencies f exp

edge,− ≈ 101.7 kHz and
f exp
edge,+ ≈ 127.5 kHz using Eq. (4), we obtain the energies

E exp
edge,− = −44.9 nF and E exp

edge,+ = 44.2 nF. Note that the theo-
retical value for energy of the TBSs is Eedge,± = ±43.7 nF; the
relative errors are δr = |(E exp

edge,− − Eedge,−)/Eedge,−| = 2.75%

and δr = 1.14%, respectively. Importantly, having |E exp
edge,−| ≈

|E exp
edge,+| ≈ |Eedge,±| is the experimental confirmation that the

realized topoelectrical circuit is chiral symmetric.
To determine more eigenvalues, we focus on the second

derivative of the response function because differentiation
reduces the amplitude of broader peaks in the Za,b( f ) signal,
thus improving the detection of resonances that have been pre-
viously obscured by a broader but stronger background [59].
In practice, calculating this derivative from the original data
set is challenging because measurements always include some
noise that manifests as random high-frequency and small am-
plitude deviations from the ideal signal. Since noise becomes
more prominent with differentiation, we eliminate it from
original data using a low-pass, fourth-order Butterworth filter
[60]. This filter has a maximally flat frequency response in
the passband, thus not giving rise to any additional frequency
dependence upon its application [60].

We employ two different strategies for extracting the
Fibonacci chain spectrum. Our first approach is based on
searching for the frequencies f exp

k at which the function
−∂2

f |Za,b| (and consequently |Za,b( f )|) has peaks. To calculate
−∂2

f |Za,b|, we employ the Butterworth filter with the cutoff
frequency fc = 0.01 fNq on |Za,b( f )|; here, fNq denotes the
Nyquist frequency defined as half of the sampling frequency
f . Due to aforementioned grouping effect of individual peaks
for frequencies f < f0, looking for 34 most prominent peaks
of −∂2

f |Za,b| in the entire frequency range does not produce
satisfying results. Because of the chiral symmetry, we can
instead focus on the frequency range ( f0, 250 kHz) that cor-
responds to the positive part of the spectrum consisting of 17
eigenvalues. Using the SCIPY Python library [61], we find all
the peaks of −∂2

f |ZBE| and −∂2
f |ZBB| in this frequency range

and choose the 17 most prominent ones for both curves. These
peaks are indicated with green circles in Figs. 2(b) and 2(c) for
−∂2

f |ZBE| and −∂2
f |ZBB|, respectively.

The corresponding spectra are constructed from pairs
(−E exp

k , E exp
k ), with E exp

k obtained from f exp
k using Eq. (4).

We plot these spectra in Figs. 3(a) and 3(b) for the BE and
BB voltage probe configurations, respectively, along with
the theoretical eigenvalues Ek . We observe that both voltage
probes are successful in detecting the edges of the upper
band (and consequently the lower band), along with its in-
ner subbands. The BE probe captures accurately the energies
of two pairs of TBSs but it detects a single resonance per
pair. This behavior is also present for an ideal circuit, and
originates from the energy degeneracy of two TBSs. On the
other side, the BB probe detects two resonances inside the
topological gap but is less accurate in measuring the energies
of TBSs. In total, for the BE probe the mean absolute error
δavg = ∑N

k=1 |Ek − E exp
k |/N equals δ

avg
BE = 4.87 nF while the

median error is δm
BE = 3.81 nF. For the BB probe, we find

δ
avg
BB = 4.17 nF and δm

BB = 3.18 nF.
As these errors are small compared to the total energy

range, we conclude that searching for peaks of −∂2
f |Za,b|

is a fruitful strategy to recover the full spectrum. However,
this approach takes into account only the amplitude of the
frequency-dependent response function thus missing possible
information hidden in its phase component. We rectify this
with our second approach that is based on fitting the full
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FIG. 3. Comparison between the theoretical and experimental spectra obtained using different methods of recovery. Here, the green crosses
indicate TBSs. The eigenvalues in (a) and (b) are given by the maxima of −∂2

f |ZBE| and −∂2
f |ZBB|, respectively. (c) and (d) show 34 resonant

frequencies detected with the MP method. (e) and (f) are obtained by mirroring the 17 largest positive eigenvalues from (c) and (d) with respect
to E = 0.

signal −∂2
f Za.b to the linear combination of Lorentzians. To

eliminate noise from the data, we use the Butterworth filter
separately on �[Za,b( f )] and �[Za,b( f )] before determining
∂2

f Za,b = ∂2
f �[Za,b] + j∂2

f �[Za,b]. We use frequency cutoffs
fc = 0.03 fNq ( fc = 0.01 fNq) for the BE (BB) configuration of
voltage probes. The resulting signal −∂2

f Za,b is Fourier trans-

formed into the time domain signal Z (2)
a,b(t ) = F[−∂2

f Za,b] that

is fitted to a sum of N damped exponentials as Z (2)
a,b(t ) =

∑N
k=1 Aexp

k e jφexp
k e(αexp

k +2π j f exp
k )t , where Aexp

k , φ
exp
k , α

exp
k and f exp

k
are the amplitudes, phases, damping factors and frequencies
of the sinusoids, respectively. Assuming t = mT where m =
0, ..., N − 1 and T is the sampling period, the exponential fac-
tor becomes e(αexp

k +2π j f exp
k )mT = zm

k , where zk = e(αexp
k +2π j f exp

k )T .
The poles zk are found by solving a generalized eigenvalue
equation using a matrix pencil (MP) operator that is con-
structed from the values Z (2)

a,b(t ) [62–64], see also the SM [58].
With 34 eigenvalues in theory, we look for 34 poles in our
calculation.

The resulting spectrum, obtained using Eq. (4), is shown
in Figs. 3(c) and 3(d) for both voltage probe configurations.
While this approach can reconstruct the entire spectrum, we
see that for both configurations it works better for positive
eigenvalues. In general, the accuracy of the MP method de-
clines with energy due to the aforementioned grouping effect
of resonances, resulting in 15 (19) poles corresponding to
negative (positive) energies for both probes. The additional
positive poles arise at E ∼ 1 nF that is very close to E = 0
in comparison with the energy scale of the chain. In the case
of the BE probe where the TBSs dominate the response of
the circuit, the MP method overestimates their number in the
upper topological gap but captures their energies well. For
the BB probe, the method finds a single TBS with E > 0
and attributes the missing TBS resonance to the upper band.
In total, we find δ

avg
BE = 21.67 nF, δm

BE = 14.09 nF, and δ
avg
BB =

19.83 nF, δm
BB = 11.54 nF. Such large values of errors reflect

the fact that the MP method misses to capture the negative
eigenvalues accurately.

The results of the MP method can be improved by utilizing
the chiral symmetry constraint, i.e., by constructing spectra
from pairs (−E exp

k , E exp
k ), where E exp

k > 0 are 17 largest posi-
tive eigenvalues from Figs. 3(c) and 3(d). Results are shown in
Figs. 3(e) and 3(f) for BE and BB configurations, respectively.

This combined approach reduces the errors of measurements
to δ

avg
BE = 4.24 nF, δm

BE = 2.22 nF for the BE probe and δ
avg
BB =

7.68 nF, δm
BB = 5.22 nF for the BB probe. Therefore, combin-

ing the MP method with the chiral symmetry constraint works
the best for the BE probe, while searching for the peaks of
−∂2

f |Za,b| yields better results for the BB probe.
For both probes, our best results have δ

avg
a,b ≈ δE/2, where

δE = 8.55nF is a theoretical average energy spacing. These re-
sults could be improved by reducing the noise of the measure-
ment and the resistances of circuit elements. Contrary to the
present study that separately measured Va( f ),Vb( f ), Ia( f ),
employing additional lock-in amplifiers would allow for
a simultaneous measurement of all three quantities thus
reducing the noise. Reducing resistances of circuit elements,
on the other hand, is not straightforward: e.g., lowering
Rac

L (100 kHz) generally assumes reducing the inductance L of
inductors, thus increasing the frequency range of the spectrum
and correspondingly Rac

L ( f ). Consequently, the inductors
produce additional heating that washes out features due to
the increased noise. An interesting idea for future research is
to investigate whether superconducting elements with signif-
icantly smaller resistances can improve the accuracy of our
results.

Conclusion. In this work, we have shown how the response
function of an electrical circuit can be used to recover the
full spectrum of an underlying chiral symmetric condensed
matter system. We have constructed a Fibonacci topoelectrical
chain that has a fractal spectrum in the thermodynamic limit
due to its quasicrystalline nature. Using the chiral symmetry
constraint of the spectrum, we have demonstrated that it can
be recovered from a single measurement using two distinct
methods of data analysis. We have corroborated our findings
by changing the positions of the voltage probes and boundary
conditions (open, periodic) of the Fibonacci topoelectrical
circuit [58]. In conclusion, our work promotes topoelectrical
circuits as an ideal metamaterial platform for studying spectral
properties of (quasi)crystalline systems.
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M. Greiter, T. Kiessling, D. Wolf, A. Vollhardt, A. Kabaši, C. H.
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[57] A. Sütő, Singular continuous spectrum on a Cantor set of zero
Lebesgue measure for the Fibonacci Hamiltonian, J. Stat. Phys.
56, 525 (1989).

[58] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.109.L241103 for details of the experimen-
tal realization before discussing how realistic capacitors and
inductors affect the two point impedance. We proceed with a
discussion on the matrix pencil method, and show reconstructed
spectra for the system under periodic boundary conditions.
Using the localization length of topological edge states, we
determine the type of nodes (bulk, edge) inside the circuit. We
then discuss how the choice of nodes at which we place our
probes affect the measured impedance of the circuit, which also
includes Refs. [30,45,61,62,65–68].

[59] T. O’Haver, A Pragmatic Introduction to Signal Processing
2023: With applications in scientific measurement, McGraw-
Hill Series in Electrical Engineering (Independently Published,
2023).

[60] S. Butterworth, On the theory of filter amplifiers, Experimental
Wireless & the Wireless Engineer, 7, 536 (1930).

[61] S. Franca, T. Seidemann, F. Hassler, J. van den Brink, and I. C.
Fulga, Impedance spectroscopy of chiral symmetric topoelec-
trical circuits, Zenodo (2023), doi:10.5281/zenodo.8386622.

[62] Y. Hua and T. Sarkar, Matrix pencil method for estimating
parameters of exponentially damped/undamped sinusoids in
noise, IEEE Trans. Acoust. Speech Signal Process. 38, 814
(1990).

[63] L. Vanhamme, T. Sundin, P. V. Hecke, and S. V. Huffel, MR
spectroscopy quantitation: A review of time-domain methods,
NMR Biomed. 14, 233 (2001).
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