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Magnetoelectric effect in superconductors with d-wave magnetization

Alexander A. Zyuzin
Department of Applied Physics, Aalto University, P. O. Box 15100, FI-00076 AALTO, Finland

and QTF Centre of Excellence, Department of Applied Physics, Aalto University, PO Box 15100, FI-00076 Espoo, Finland

(Received 4 March 2024; revised 7 May 2024; accepted 17 May 2024; published 25 June 2024)

We report on a study of the interplay between the supercurrent and spin-polarization in a two-dimensional
superconducting system in the presence of a d-wave symmetric antiferromagnetic exchange interaction (alter-
magnetism). It is demonstrated that the supercurrent exhibits a transverse contribution in the presence of both
constant and momentum-dependent exchange interactions. We also discuss the analog of the Edelstein effect for
such material, showing that the induced spin polarization is quadratic in the supercurrent and d-wave symmetric.
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Introduction. The magnetoelectrics in noncentrosymmet-
ric superconductors [1] has recently gathered substantial
attention particularly in its experimental application in the
nonreciprocal superconducting response [2], as discussed, for
example, in recent reviews [3–6]. Specifically, the Edelstein
magnetoelectric effect is the generation of spin polarization
induced by an applied supercurrent, while its inverse scenario
is the diodelike effect, i.e., the critical current is different
for two opposite directions, generated in the presence of an
external magnetic field. One of the underlying reasons for
these phenomena is the violation of spatial inversion symme-
try caused by the spin-orbit interaction or the inhomogeneous
magnetic exchange field acting on a momentum-dependent
spin splitting of the energy bands [7–9], all giving rise to
the coupling between electron spin polarization and charge
current [10].

In this paper, we consider a case of centrosymmetric metals
hosting a collinear antiferromagnetic (AFM) order parameter
with a d-wave symmetry [11–14]. Such AFM order induces
a specific d-wave momentum-dependent spin splitting of the
Fermi surface of conducting fermions [7–9]. The extended
symmetry classification of anisotropic magnetic order has
been recently reviewed in Refs. [15–17]. The representa-
tive materials displaying this feature include, for example,
collinear-type AFMs: metallic RuO2, Mn5Si3, VNb3S6, semi-
conducting MnTe, and many more [15–20]. Furthermore,
strain-stabilized superconductivity has been recently observed
in thin films RuO2 with Tc ≈ 1.8K depending on the film
thickness [21–23]. Motivated by the recent experimental
progress, the theoretical investigation of the d-wave AFM
exchange coupling on superconductivity became an intensive
area of research, including the study of Andreev reflection and
Josephson current [24–28], inhomogeneous states in a d-wave
superconductor with d-wave AFM [29], or even exotic Majo-
rana modes [30]. For a recent highlight article, see Ref. [31].

In this context, the question of superconductivity and
magnetoelectrics comes up naturally. Clearly, in the cen-
trosymmetric superconductors with d-wave magnetization, in
contrast to the Edelstein effect in polar superconductors, the
induced spin polarization of carriers is proportional to the
even power of supercurrent and exhibits a d-wave symmetry.

Application of a constant exchange field leads to a transverse
supercurrent response.

Model. The Bogoliubov–de Gennes Hamiltonian, describ-
ing clean two-dimensional superconducting material subject
to an isotropic magnetic exchange (or the Zeeman effect of
a magnetic field) and d-wave AFM exchange interactions, is
given by

HBdG(k) =
(

H0(k) − μ �

�∗ −σyH∗
0 (−k)σy + μ

)
, (1a)

H0(k) = k2

2m
+ βkxkyσz + γ

(
k2

x − k2
y

)
σz + h · σ, (1b)

where k = (kx, ky ) and m are the momentum and mass of
electrons, μ is the chemical potential, � is the s-wave su-
perconducting gap, and σ = (σx, σy, σz ) is a vector of Pauli
matrices in spin space. We will use h̄ = kB = 1 units hence-
forth. The second and third terms in Eq. (1b) describe the
d-wave exchange interaction (dubbed “altermagnetism” in
some literature [32]) characterized by the parameters β and
γ , while the forth term describes the Zeeman (or constant-
exchange) field spin-splitting h = (hx, hy, hz ), which can have
both in-plane and out-of-plane components. We assume that h
does not affect the AFM order.

Although we consider a specific dxy − dx2−y2 wave symme-
try field for metals with two-dimensional Fermi surface, the
results can be readily extended to situations including more
general combinations of the (d, g, i)-wave symmetry terms
[16] and to higher dimension as well.

Here will consider a regime of weak exchange, m|β| <

1, m|γ | < 1 and |h| < μ. The system tuned to a quadratic
band-touching point van Hove singularity m|β| > 1, m|γ | >

1 will be studied separately. It is useful to explore the basic
properties of superconducting systems with d-wave exchange
interaction before going into the studies of magnetoelectric
effect.

Initially, one must distinguish between various manifesta-
tions of superconducting correlations in the system. Namely,
one can realize a scenario in which the superconducting
gap in the material is induced by the proximity effect from
other superconductor. In this case, � is a proximity-induced
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FIG. 1. Dispersion relation E±,s(k) = 0 for the two-dimensional
d-wave exchange field with proximity-induced superconducting
minigap � at h = (0, 0, hz ) and γ = 0. (a) At hz = 0, β �= 0 and
� = 0. (b) At hz = 0, β �= 0, turning on � � m|β|μ, gaps out
certain regions of the Fermi surface until at � = 2m|β|μ it becomes
all gapped. (c) and (d) Now at β �= 0 and � � m|β|μ, the increase
of the hz term closes the gap and tends to spin split the Fermi surface
isotropically.

minigap which might be treated as a model parameter depend-
ing on the delicate interplay between the material properties
and the contact transparency. On the other hand, one can con-
sider a situation in which the superconducting gap is intrinsic.
Let us first revisit the former case.

Diagonalizing the Hamiltonian Eq. (9), one obtains the fol-
lowing quasiparticle dispersion: E±,s(k) = ±

√
ξ 2

k + |�|2 +
s{h2

x + h2
y + [hz + βkxky + γ (k2

x − k2
y )]2}1/2, where s = ±1

denotes the exchange-field-induced band splitting and ξk =
k2/(2m) − μ. Keeping � as a parameter, one observes that
the application of the exchange field results in the emergence
of nodes within the gap function. Setting h = 0, γ = 0, one
finds the existence of nodes provided the following inequality
holds | sin(2φ)| � 1

m|β|
|�|√

|�|2+μ2
, where φ is the momentum

angular coordinate. With the increase of parameter |β|, the
gap closes at four points on the kx-ky plane with coordinates
determined by | sin(2φ)| = 1

m|β|
|�|√

|�|2+μ2
and k = {2mμ(1 +

|�|2/μ2)}1/2. With the further increase of |β|, each nodal
points transform into two Fermi arcs. The application of
hz eliminates one pair of Fermi arcs stretching the other
pair. The effect of hx term is to close the gap isotropically,
while the effect of γ is to rotate the plot around the center
of origin. The evolution of the gap nodes as a function of the
β and hz is illustrated in Fig. 1. All in all, the β, γ , and h
terms break time-reversal symmetry, therefore contributing to
the vanishing of the gap function �.

To get more insight into superconducting correla-
tions, it is helpful to examine the spatial dependence
of the Cooper pair wave function. It can be analyzed

by exploring the kernel in particle-particle ladder �(r) =
T

∑
n tr2G(ωn, r)[G(−ωn, r)|h,β,γ→−h,−β,−γ ], where tr2 is the

trace over the spin Pauli matrices and ωn = (2n + 1)πT
with n ∈ Z is the Matsubara frequency at temperature T . At
γ = 0 and hx = hy = 0, without losing the generality, the
electron Green function in spatial coordinate representation
G(ωn, r) = ∫

d2k
(2π )2 [iωn + μ − H0(k)]−1e−ik·r, is given by

G(ωn, r) = − m

2π

∑
s=±1

1 + sσz√
1 − β2m2

× K0

⎛
⎝−isgn(ωn)kFr fs(φr )

√
1 + iωn − shz

μ

⎞
⎠,

(2)

where K0(z) is the modified Bessel function, kF = √
2mμ is

the Fermi momentum, and fs(φr ) =
√

1−sβm sin(2φr )
1−β2m2 is intro-

duced for brevity with φr being the spatial coordinate azimuth
angle. In the case μ > |ωn| and μ > |hz|, using asymptotic

expansion K0(z) ≈
√

π
2z e−z at |z| 	 1, after the summation

over the frequency, one obtains

�(r) = T m2

2π2rkF

csch
{

πT
vF

r[ f+(φr ) + f−(φr )]
}

(1 − β2m2)
√

f+(φr ) f−(φr )

× cos

{
hzr

vF
[ f+(φr ) + f−(φr )]

+ kFr[ f−(φr ) − f+(φr )]

}
, (3)

where vF = kF/m is the Fermi velocity, recalling that
m|β| < 1, expression on the second line may be further sim-
plified as ∝ cos{ 2r

vF
[hz + βmμ sin(2φr )]}. At finite exchange

interactions, the paring correlations decay and oscillate in
space, as expected for systems with magnetic Cooper pair-
breaking source. Thus, it can emerge via 0-π transitions in
the Josephson junctions through the d-wave AFM, as demon-
strated in Refs. [26–28].

Next, it is instructive to comment on the superconducting
transition temperature of the intrinsic superconductivity. At
� → 0, assuming superconductivity in the spatially homoge-
neous regime, the BCS transition temperature can be found
from the solution of the self-consistently equation

ln
T

Tc0
= �

(
1

2

)
− Re

〈
�0

(
1

2
− i

hz + mβμ sin(φ)

2πT

)〉
, (4)

where �0(x) is the polygamma function, 〈 f (φ)〉 ≡ ∫ 2π

0
dφ

2π
f (φ) denotes integration over the directions of momentum

and Tc0 is the transition temperature at hz = 0 and β = 0.
It is evident that both hz and β terms suppress the transition

temperature, in accord with the spatial oscillatory dependence
of the correlator Eq. (4). However, they may partially com-
pensate each other giving rise to a residual superconducting
state at larger hz at small T regime, as illustrated in Fig. 2.

One might argue that the strength of d-wave AFM order
can depend on the position of the chemical potential β(μ). In
this situation, the superconducting transition temperature can
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FIG. 2. The phase-transition curves between the BCS and the
normal metal states are shown in two scenarios (γ = 0). (a) Fixed
parameter mβμ/Tc0 = (0, 0.7), where Tc0 is the superconducting
transition temperature at β = 0 and hz = 0. The d-wave term tends
to increase the transition temperature at large hz. (b) Fixed parameter
hz/Tc0 = (0, 0.9, 1.1, 1.3). The increase of the d-wave term gives rise
to a superconducting pocket at large hz.

exhibit unusual behavior as a function of electron density in
thin films.

Furthermore, it can be shown that the momentum de-
pendence of the β term suppresses the realization of
inhomogeneous bulk Larkin-Ovchinnikov-Fulde-Ferrell state
compared in contrast to the effect of hz-term contribu-
tion. However, in finite-size systems with lengths on the
order of several vF/|βmμ| ∼ 1/|βmkF|, one expects the sta-
bilization of such inhomogeneous state. Additionally, the
inhomogeneous state might be also stabilized in a d-wave
superconductor when brought in contact with the d-wave
AFM under certain symmetry-matching conditions, [29]. This
prediction can be tested, for example, via the anomalous
Little-Parks oscillations [33,34]. After this general introduc-
tion, let us now investigate the magnetoelectric effect in
the system.

Magnetoelectric effect. Consider a simple model to demon-
strate the magnetoelectric effect in the superconductor with
d-wave exchange interaction, by setting h = 0, keeping both
β and γ terms in Eq. (1b), and focusing on the small gap
regime |�| � T . It allows addressing the spin polarization in
the lowest order in �.

By construction of the d-wave exchange field in Hamilto-
nian Eq. (1b), the superconducting current can only induce
an out-of-plane component of the spin polarization density,
which in momentum representation Sz(q) = ∫

drSz(r)e−iq·r
can be expressed as [1]

Sz(q) = −T
∑

n

∫
dkd p
(2π )4

tr2

{
σzG

(
ωn, k + p + q

2

)

× �
(

p + q
2

)
σyG(−ωn, k)σy�

∗
(

p − q
2

)

× G
(
ωn, k + p − q

2

)}
, (5)

where now the electron Green function in momentum rep-
resentation G(ωn, k) = [iωn + μ − H0(k)]−1 [note that com-
pared with the expression (2), here we set γ �= 0 and h = 0],

FIG. 3. The function A(x, y) at y = 0 in Eq. (10) of the main
text. At a given x, the finite value of y suppresses the amplitude of
function A(x, y).

is given by

G(ωn, k) = 1

2

∑
s=±1

1 + sσz

iωn − ξk − s
[
βkxky + γ

(
k2

x − k2
y

)] . (6)

To proceed, we consider the long-wave limit noting k ≈
kF 	 p, q and expand the Green functions G(ωn, k + p ±
q/2) in Eq. (6) over the powers of momentum p ± q/2. Per-
forming integration over k and summing over n, we obtain
the leading contribution to the spin polarization in the low-
est nonvanishing order (m|β| < 1, m|γ | < 1) in the following
form

Sz(q) = − 2μ

(2πT )3

∫
d p

(2π )2
�

(
p + q

2

)
�∗

(
p − q

2

)

×
{[

3px py + qxqy

4

]
A

(
βmμ

2πT
,
γ mμ

2πT

)

+ 1

2

[
3
(
p2

x − p2
y

) + q2
x − q2

y

4

]
A

(
γ mμ

2πT
,
βmμ

2πT

)}
,

(7)

where

A(x, y) = −Im

48π

〈
�3

[
1

2
+ i(x sin φ + y cos φ)

]
sin φ

〉
(8)

is a function of x and y as plotted in Fig. 3. It is noted
that the spin polarization vanishes at large |β|mμ/T . It can
be attributed to the suppression of the supercurrent ampli-
tude induced by the time-reversal-breaking perturbation. This
stands in contrast to the Edelstein effect in superconductors
with Rashba spin-orbit interaction, wherein the spin polar-
ization increases with the increase of spin-orbit interaction
strength [1].

We also note that intrinsic superconductivity requires
|β|mμ/T � 1 according to Eq. (5), while the region of pa-
rameters |β|mμ/T � 1 might be achieved only in systems
with proximity-induced superconducting correlations.

Transforming the remaining integrals over momen-
tum noting that

∫ d p
(2π )2 [3px py + qxqy

4 ]�(p + q
2 )�∗(p − q

2 ) =
1
2

∫
dre−iq·r[(∂x�)∂y�

∗ − 2�∂2
xy�

∗ + h.c.], we obtain the
spin-polarization density in spatial coordinate representation
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in the following form

Sz(r) = − μ

(2πT )3
A

(
βmμ

2πT
,
γ mμ

2πT

)[
(∂x�)∂y�

∗ − 2�∂2
xy�

∗ + h.c.
] − μ

(2πT )3
A

(
γ mμ

2πT
,
βmμ

2πT

)

× [|∂x�|2 − |∂y�|2 − 2�
(
∂2

x �∗ − ∂2
y �∗) + h.c.

]
. (9)

Finally, expanding in the lowest order in β and γ in
Eq. (10), one obtains Sz(r) = − 31

32
ζ (5)μ2

π4T 4 ν{β[(∂x�)∂y�
∗ −

2�∂2
xy�

∗ + h.c.] + γ [(∂x�)∂x�
∗ − (∂y�)∂y�

∗ − 2�(∂2
x �∗

− ∂2
y �∗) + h.c.]}, where ν = m/2π is the electron density of

states per spin and 31ζ (5)/(32π4) ≈ 0.01.
It is observed that spin polarization is quadratic in the gra-

dients of the order parameter and d-wave symmetric, namely
it comprises terms proportional to the product of supercurrents
applied in transverse directions and to the current acceleration.
Specifically, in the case when �(r) = |�|eiφ(r), we find

Sz(r) ∝ −β
[
(∂xφ)∂yφ + 2∂2

xyφ
]

− γ
[
(∂xφ)2 − (∂yφ)2 + 2∂2

x φ − 2∂2
y φ

]
. (10)

To further explore magnetoelectrics, one recalls the inverse
Edelstein effect in noncentrosymmetric systems: a supercur-
rent diodelike response induced by the constant magnetization
in combination with the spin-orbit coupling.

In our system, however, the hz term gives rise to the
transverse supercurrent component. To demonstrate this, it is
convenient to examine the Ginzburg-Landau functional den-
sity for the order parameter. Keeping h = (0, 0, hz ), in the
lowest order in powers of |β|m < 1, |γ |m < 1, and hz < T ,
we obtain a quadratic part in the form

FGL = a|�|2 + (b − b1)|∂x�|2 + (b + b1)|∂y�|2

− b2[(∂x�)∂y�
∗ + h.c.], (11)

where a = ν(T − Tc)/Tc with Tc determined by Eq. (5), b =
7ζ (3)
32π2

v2
F

T 2 ν and b1,2 = 93ζ (5)
32π4

v2
Fμhz

T 4 νm(γ , β ) with |b1,2|/b < 1.
Here we dropped unnecessary isotropic corrections to the b
term, which are ∼ O(h2

z /T 2) and ∼O((mβμ/T )2).
Therefore, the supercurrent exhibits a transverse contribu-

tion in the presence of an exchange field hz:

J = −2ie{[êy(b + b1) − êxb2](�∗∂y� − �∂y�
∗)

+ [êx(b − b1) − êyb2](�∗∂x� − �∂x�
∗)}, (12)

where e < 0 is the electron charge. The proposed effect is the
superconducting analog of the anisotropic linear magnetocon-
ductivity in metallic collinear AFM investigated recently in
Ref. [35].

Discussion and Conclusions. Let us briefly comment on
the experimental observability of the proposed effect. To this

end, we estimate the energy scale associated with the super-
conducting phase transition in the presence of the d-wave
symmetric magnetization field. Taking μ ∼ 1eV and Tc ∼
1K, one estimates μ/Tc ∼ 104, so that for m|β|μ/Tc ∼ 1, one
has to require m|β| ∼ 10−4. The typical value of AFM pa-
rameter in normal metal is m|β| ∼ 0.1 [17], however it is not
known for the recently observed superconducting RuO2 films.
Thus, exploring the magnetoelectric effect might require uti-
lizing Josephson junctions through the d-wave AFM [28].

It is also instructive to compare our result for the
spin-polarization density with the one in Ref. [1] for the two-
dimensional electron gas systems. In the limit αkF/πT � 1
(where α is the parameter of Rashba spin-orbit interaction),
taking β ∼ γ , we estimate the ratio of spin densities as
|Sz|/|SSOI| ∝ ( vF

α
)3 |β|m

LkF
, where L is the typical length scale

of the superconducting phase variation. For example taking
L ∼ 1/|βmkF| to be the shortest length (Ref. [28]), we find
|Sz|/|SSOI| ∝ (βm)2(vF/α)3.

To summarize, we investigated the magnetoelectric re-
sponse in a centrosymmetric superconducting system in the
presence of d-wave exchange interaction. We discussed an
analog of the Edelstein effect, demonstrating that the spin-
charge coupling leads to the spin-polarization quadratic in the
supercurrent and d-wave symmetric. Moreover, we showed
that the supercurrent exhibits a transverse contribution in the
presence of an isotropic magnetic exchange field.

Our results may be used as a starting point for further inves-
tigation of spin-charge coupling in superconducting structures
with (d, g, i)-wave magnetizations. Here we have focused on
the ballistic two-dimensional case. However, experimentally
realistic superconducting systems are three-dimensional and
inevitably involve disorder scattering processes [22]. The in-
vestigation of transport phenomena in such structures is of
interest [36].
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