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Identification of odd-frequency superconducting pairing in Josephson junctions
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Optimal choice of spin polarization enables electron injection into the helical edge state at a precise position,
despite the uncertainty principle, permitting access to specific nonlocal Green’s functions. We show, within
1D effective description, that this fact facilitates a direct identification of odd-frequency pairing through parity
measurement (under frequency reversal) of the nonlocal differential conductance in a setup comprising the
Josephson junction on the helical edge state of a 2D topological insulator with two spin-polarized probes
tunnel-coupled to the junction region. A 2D numerical simulation has also been conducted to confirm theoretical
predictions as well as to demonstrate the experimental feasibility of the proposal.
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Introduction. In a conventional superconductor, electrons
form Cooper pairs due to a weak attraction mediated via
lattice vibrations [1]. The pairing function between the two
electrons within a Cooper pair can be classified into different
symmetry classes by means of four permutation operators
with respect to spin (S), relative coordinate (P∗), orbital index
(O), and time coordinate (T ∗), all of which can only have
eigenvalues ±1. Generally, BCS theory of a single-orbital
superconductor (〈O〉 = 1) is instantaneous in time (〈T ∗〉 = 1).
This leaves two choices for the combinations of eigenvalues
of the operators S and P∗ to satisfy the Berezinskii condition
[2] SP∗OT ∗ = −1 for the pairing function, i.e., {〈S〉, 〈P∗〉} =
{−1, 1}, {1,−1}. These correspond to spin-singlet even-parity
(e.g., s-wave) and spin-triplet odd-parity [3] (e.g., p-wave)
symmetries, respectively. If one removes the constraint of
instantaneous pairing, the possibility of temporal (nonlocal in
time) Cooper pairing becomes feasible, and both 〈T ∗〉 = ±1
can be possible, depending on whether the pairing function is
symmetric or antisymmetric under the permutation of relative
time coordinates of the electrons forming the Cooper pair.
Temporally symmetric pairing (〈T ∗〉 = 1) does not give rise to
any new symmetry classes other than those already described
by BCS theory and is generally known as even-frequency
(even-ω) pairing. However, temporally antisymmetric pairing
(〈T ∗〉 = −1), which is known as odd-frequency (odd-ω) pair-
ing [4–6], opens up possibilities of two new symmetry classes
(assuming 〈O〉 = 1) that cannot be described by BCS theory,
namely, spin-singlet odd-parity ({〈S〉, 〈P∗〉} = {−1,−1}) and
spin-triplet even-parity ({〈S〉, 〈P∗〉} = {1, 1}) pairings, consis-
tent with the Berezinskii condition. It can also be shown that
this odd-ω (even-ω) pairing is also odd (even) under the sign
change of energy [4], which gives the advantage of observing
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the behavior of this pairing in the energy domain rather than
in the temporal domain.

On a historical note, the concept of odd-ω spin-triplet
pairing traces back to Berezinskii’s 1974 proposal in 3He
[2] and predictions in disordered systems [7,8]. Balatsky
and Abrahams later indicated the presence of odd-ω spin-
singlet pairing in time-reversal and parity symmetry broken
superconductors [9]. Subsequently, the odd-ω pairing was
explored within the framework of a two-channel Kondo sys-
tem [10], the 1D t-J-h model [11], the 2D Hubbard model
[12], and heavy-fermion compounds [13]. The bulk odd-ω
pairing has been indirectly hinted theoretically through the
Majorana scanning tunneling microscope [14] and also exper-
imentally using the Kerr effect [15,16] and the paramagnetic
Meissner effect [17–21]. Further, the evidence of bulk odd-ω
pairing due to magnetic impurities has emerged in s-wave
superconductors [22,23]. In Ref. [24], a measurement tool
was introduced for directly detecting odd-ω pairing in bulk
systems using time- and angle-resolved photoelectron fluctu-
ation spectroscopy. However, this method requires advanced
technology beyond the current capabilities of facilities. More
recently, in Ref. [25], the authors proposed a detection scheme
to directly identify odd-ω pairing in bulk systems using the
quasiparticle interference method in the presence of an ex-
ternal magnetic field. Initially, odd-ω pairing was regarded
as an inherent bulk phenomenon [2,9,26] but was subse-
quently acknowledged to manifest in heterojunctions [27–55]
and in the systems under the influence of time-dependent
fields [56,57]. Certain theoretical studies have indirectly iden-
tified odd-ω pairing in heterostructures. For instance, this was
achieved through phase-tunable electron transport in topo-
logical Josephson junctions (JJs) [58], examining Josephson
current characteristics on the surface of Weyl nodal loop
semimetals [59], and analyzing current noise in JJs [60].
Experimental evidence of odd-ω pairing in heterostructures
emerged through measurements of long-range supercurrents
in magnetic JJs [61,62]. These two experiments utilize a
ferromagnetic material to create an odd-ω pairing effect,
which is subsequently identified by measuring long-range
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superconducting pairing. In contrast, this Letter investigates
a configuration that inherently supports odd-ω pairing with-
out the need for any ferromagnet/superconductor junction. A
topological JJ at the edge of a two-dimensional (2D) quantum
spin Hall insulator (QSHI) serves this purpose. It is important
to mention here that induced superconductivity in the QSHI
edge has already been experimentally demonstrated [63].

We demonstrate that it is possible to read off all the in-
dependent, spatially nonlocal Green’s functions by measuring
differential conductance between two spin-polarized probes
placed at the junction. The underlying interplay between
spin-momentum locking of helical edge states (HESs) and
spin-polarization of the probes allows for this advantage. Ex-
perimentally, the injection of spin-polarized current into the
HESs of QSHIs has already been achieved [64]. By using
spin-polarized probes, one can inject (detect) electrons into
(from) the helical edge with well-defined position and mo-
mentum simultaneously, which, in general, is prohibited due
to the uncertainty principle [65]. To elaborate further, a spin-↑
(spin-↓) electron injected at position x in the helical edge can
only tunnel into the right (left) moving edge mode owing to
spin-momentum locking. Keeping the spin-polarization axes
of the tunneling probes aligned parallel or antiparallel to the
spin-quantization axis of HESs, we study the difference be-
tween nonlocal differential conductance from the left probe to
right probe κ21

ss̄ (V, 0) and from the right probe to left probe
κ12

s̄s (0,V ), i.e.,

A2,1
s,s̄ = κ21

ss̄ (V1 = V,V2 = 0) − κ12
s̄s (V1 = 0,V2 = V )

=
[

dI21
ss̄

dV

]
(V1=V,V2=0)

−
[

dI12
s̄s

dV

]
(V1=0,V2=V )

, (1)

where {s, s̄} ∈ {↑,↓} with s �= s̄, and V1 (V2) denotes the ap-
plied voltage at the left (right) tunneling probe P1 (P2). It can
be shown that this quantity A2,1

s,s̄ can be written as a product
of odd-ω and even-ω pairing amplitudes and hence should be
odd with respect to incident energy (and hence with respect
to the applied voltage V ). We show that this difference stems
from the same origin as that of the odd-ω part of the nonlocal
differential conductance, which can be accessed via bias re-
versal, i.e., B2,1

s,s̄ = κ21
ss̄ (V, 0) − κ21

ss̄ (−V, 0). This fact leads to

A2,1
s,s̄ = B2,1

s,s̄ . (2)

From an experimental perspective, measuring the antisym-
metric behavior of each of these independent quantities and
their equality confirms the existence of odd-ω pairing. In what
follows, we will first present our results using an effective 1D
analytic model of the HES. Following that, we will provide
a 2D simulation of a realistic setup, in line with HgTe/CdTe
quantum well parameters, confirming our predictions.

Model and its motivation. The system we are interested
in is a JJ of length L (0 � x � L), realized in a HES of a
2D QSHI [66–70] (1D Dirac fermions) which is proximi-
tized to a conventional s-wave superconductor. A schematic
of the setup is shown in Fig. 1(a), while Fig. 1(b) shows
the corresponding simplified cartoon representation of the
same setup. The Bogoliubov–de Gennes (BdG) Hamiltonian
characterizing such junctions can be written as [71,72]
HJ = ∫ ∞

−∞ dx �†HJ� where � = (ψ↑, ψ↓, ψ
†
↓,−ψ

†
↑ )T is the

FIG. 1. (a) Schematic of the setup consisting of a Josephson
junction at the edge of a 2D QSHI with two spin-polarized tunneling
probes (P1 and P2) at x = x1 and x = x2. Up and down arrows repre-
sent the spin polarization direction of helical edge states as well as
of the spin-polarized tunneling probes. A bias voltage V is applied
to P1 while the current through P2 is measured by the current readout
device A. (b) A simplified cartoon representation of the above setup.

Nambu basis and

HJ = −ih̄vF ∂xτzσz − μτz + 	(x)(cos ϕrτx − sin ϕrτy). (3)

Here, σi and τi are the Pauli matrices acting respectively
on the spin basis and particle-hole basis, μ is the chemical
potential of the HES, vF represents the Fermi velocity of the
HES, and p̂ = −ih̄∂x is the momentum operator. The spin-
quantization axis of the HES is considered to be along the
z direction [71,72]. The superconducting pairing potential is
given by 	(x) = 	0[�(−x) + �(x − L)]. Superconducting
leads (Sr) are identified as r ∈ {1, 2} with the correspond-
ing superconducting phases ϕr such that the superconducting
phase difference ϕ21 = ϕ2 − ϕ1 �= 0, in general.

Two spin-polarized tunneling probes [73] P{1,2} (Pr being
closer to Sr) with spin-polarization axes oriented respectively
along n̂1 and n̂2, at angles θ1 and θ2 with respect to the
spin-quantization axis of the HES (say, in the z-x plane) [74],
are introduced at positions x = x1 and x = x2, respectively,
within the junction region (0 < x1 < x2 < L). For most of
this Letter, we will only be discussing the case for {θ1, θ2} =
{0, π}, unless otherwise stated. To keep the algebra simple
while retaining the essential physical inputs, we model the
probes as a spin-polarized 1D mode. The second quantized
Hamiltonians of these probes can be expressed as

HP1(2) = −ih̄vF

∫ ∞

−∞
dx̃

(
ψ

†
n̂1(2)

∂x̃ψn̂1(2)

)
. (4)
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TABLE I. Output at P2 (P1) when an electron is injected into the HES through P1 (P2) and the corresponding Green’s functions depending
on the polarization of the tunneling probes.

Input Polarization Polarization Output Contributing Input Polarization Polarization Output Contributing
at P1 of P1(θ1) of P2(θ2) at P2 Green’s function at P2 of P2(θ2) of P1(θ1) at P1 Green’s function

e ↑ ↑ e Gr(a)
ee,↑↑(x2 > x1) e ↑ ↑ e Gr(a)

ee,↑↑(x1 < x2)

e ↑ ↓ h Gr(a)
he,↓↑(x2, x1) e ↑ ↓ h Gr(a)

he,↓↑(x1, x2)

e ↓ ↑ h Gr(a)
he,↑↓(x2, x1) e ↓ ↑ h Gr(a)

he,↑↓(x1, x2)

e ↓ ↓ e Gr(a)
ee,↓↓(x2 > x1) e ↓ ↓ e Gr(a)

ee,↓↓(x1 < x2)

The tunneling Hamiltonian between the HES and the
probes can be written as

HPi
T = h̄vF

∫ ∞

−∞
dx δ(x − xi )

⎛
⎜⎜⎝

∑
α,α′
α �=α′

t i
αα′ψ

†
αψα′ + H.c.

⎞
⎟⎟⎠ (5)

with α, α′ ∈ {↑,↓, n̂i} (α �= α′ and i ∈ {1, 2}). t i
αα′ = tiγαα′

is the tunneling strength between α and α′ at x = xi and
γαα′ is the overlap of the spinor part of the first quantized
wave function of electrons in the probes and the HES. From
this point onward, we shall consider h̄ = vF = 1. Note that
this form of tunneling respects SU (2) symmetry and hence
cannot induce spin-flip scattering when ni is parallel or an-
tiparallel to the spin-quantization axis of the HES. Using
the equation of motion approach for the Hamiltonian H =
HHES + ∑

i∈{1,2} HPi + HPi
T (where HHES = HJ |	=0), the scat-

tering matrices can be expressed as

ψout
α (xi ) =

∑
α′

Se
αα′ (xi )ψ

in
α′ (xi ), (6)

where ψ in(out) are the corresponding incoming (outgoing)
plane wave amplitudes on the HES and the probe. The scat-
tering matrix for holes (Sh) can be determined by exploiting
the particle-hole symmetry of the system (for details, see
Supplemental Material (SM) [75], Sec. A). We are interested
in studying charge transport between the two probes via the
junction when a finite voltage bias V is applied such that
−	0 � eV � 	0.

Note that the spatial nonlocality of the probes, along with
the helical nature of the edge state, opens up the possibility
of detecting only a hole at P2 when an electron is injected
into HES through P1 provided the polarization of the probes is
tuned such that θ1, θ2 = 0 or π and θ1 �= θ2. This leads to the
fact that the differential conductance between the probes is di-
rectly proportional to the square of the modulus of anomalous
Green’s functions. This can be understood in terms of a simple
process, as described below. If the spin polarization of P1 is set
to spin-↑ (i.e., θ1 = 0), it can only inject a right-moving elec-
tron to the HES due to the spin-momentum locking of the edge
states. In the absence of spin-flip scattering within the HES,
this electron will either remain as a spin-↑ electron after an
even number of Andreev reflections (including the possibility
of no Andreev reflection) or will convert to a spin-↓ hole after
an odd number of Andreev reflections when it reaches x = x2.
Thus, P2 will detect only a hole for θ2 = π . Along the same

line of argument, it is straightforward to show that for θ2 = 0,
P2 will detect only an electron. By definition, the probability
amplitude of these nonlocal transmissions will be propor-
tional to the corresponding Green’s functions, namely t21

ee,↑↑ ∝
Gr(a)

ee,↑↑(x2 > x1) and t21
he,↓↑ ∝ Gr(a)

he,↓↑(x2, x1), where t21
ee,↑↑ and

t21
he,↓↑ are the propagation amplitudes for spin-up electron

and spin-down hole, respectively, from the left probe to the
right probe, and Gr(a)

ee,s2s1
(x2 > x1) represents the retarded (ad-

vanced) normal Green’s functions while Gr(a)
he,s2s1

(x2, x1) (si ∈
{↑,↓}) denotes the retarded (advanced) anomalous Green’s
functions calculated at x = x2. Here retarded and advanced
Green’s functions are defined in the appropriate frequency
domain [38]. The above discussion is summarized in the form
of Table I.

Using Landauer’s formula [76], we can calculate the dif-
ferential conductance from P1 to P2, given by κ21

↓↑ = κ21
ee,↓↑ −

κ21
he,↓↑, and from P2 to P1, given by κ12

↑↓ = κ12
ee,↑↓ − κ12

he,↑↓,

where κ
i j
pi p j ,sis j = (e2/h)|t i j

pi p j ,sis j |2 (pi( j) ∈ {e, h}, si( j) ∈ {↑,↓},
{i, j} ∈ {1, 2}). The difference between these two nonlocal
differential conductances at energy (frequency) ω is given by

A2,1
↓,↑ = κ21

↓↑ − κ12
↑↓ = −κ21

he,↓↑ + κ12
he,↑↓,

∝ − ∣∣Gr
he,↓↑(x2, x1, ω)

∣∣2 + ∣∣Gr
he,↑↓(x1, x2, ω)

∣∣2
,

∝ − ∣∣Gr
he,↓↑(x2, x1, ω)

∣∣2 + ∣∣Ga
he,↓↑(x2, x1,−ω)

∣∣2
,

∝ Re
[
O

[
Gr

he,↓↑(x2, x1, ω)
] × E

[
Gr∗

he,↓↑(x2, x1, ω)
]]

,

(7)

where we have used the property Gr
he,ss̄(x, x′, ω) =

Ga
he,s̄s(x

′, x,−ω) ({s, s̄} ∈ {↑,↓} and s �= s̄). Here we have
used only retarded Green’s functions to express κ . However,
a proof involving advanced Green’s functions follows in
a similar way (see SM [75], Sec. B). In Eq. (7), A2,1

↓,↑ is
antisymmetric with respect to ω, and if measured, it can be
treated as a direct signature of odd-ω pairing subjected to the
condition that even-ω pairing within the junction is nonzero.
In Eq. (7), O and E denote the odd-in-ω (antisymmetric
with respect to ω) and even-in-ω (symmetric with respect
to ω) parts of the corresponding Green’s functions which
are in turn directly related to odd-ω and even-ω pairing
amplitudes, respectively. Note that the quantity in Eq. (7)
can also be expressed as B2,1

↓,↑ = [κ21
↓↑(ω) − κ21

↓↑(−ω)]. The
voltage configuration necessary for measuring A and B is
discussed above Eq. (2). It is worth mentioning that the
Green’s functions discussed above are not, in general, the free
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Green’s function of the JJ, i.e., the Green’s functions in the
absence of tunneling probes. However, in the weak-tunneling
limit (t1, t2 � 1), different interlead transmission amplitudes
can be written in terms of free Green’s functions (for details
see SM [75], Sec. C). Next, we will proceed to put the above
qualitative discussion on firm grounds by calculating the
quantity A2,1

↓,↑ from numerical analysis using a 2D model, and
comparing the theoretical results discussed above (and also
results presented in the SM [75]).

Numerical simulation using 2D model. In this part, we
conduct a numerical simulation of a 2D lattice model depicted
in Fig. 1 using the KWANT package [77] to further analyze
the effective 1D model discussed above. The system is mainly
a QSHI which is described by a real-space configuration of
the Bernevig-Hughes-Zhang (BHZ) model [78] mapped on
a square lattice of dimension 140a × 140a with additional
terms incorporated as needed. Here a (=3 nm) is the lattice
spacing. Two superconducting leads are attached to the bot-
tom side (S1) and to the right side (S2) of the system, which are
defined by the s-wave superconductivity-proximitized QSHIs
[79] having a finite phase difference (φ21 = φ2 − φ1) between
them and thus defining a 1D JJ extended over the left and top
edges of the QSH region [see Fig. 1(a)]. On the other hand,
two spin-polarized normal leads, which can be described by
two quantum anomalous Hall insulators carrying chiral edge
states of opposite chiralities, are tunnel-coupled via tiny insu-
lating sections to the left side (P1: having the ↑-spin channel
only) and to the top side (P2: having only the ↓-spin channel)
of the QSH region. The quantum anomalous Hall state of a
spin-polarized lead is obtained by applying an exchange field
to the QSH system, which oppositely affects the effective bulk
gaps for the two spin states, eventually, at sufficient strength,
destroying the topological state for one of them [80]. A strong
on-site ferromagnetic impurity term is added over a small
section of dimension 14a × 14a at the extreme bottom-right
corner (denoted by Mx) of the QSH region to ensure that
the current is allowed to propagate only through the left and
top edges of the QSH region in between S1 and S2. A de-
tailed insight into the 2D simulation is closely comparable to
the same discussed in Ref. [81] along with a comprehensive
understanding of how particle-hole symmetry can be incorpo-
rated into the lattice model [82]. For the numerical calculation,
we consider the value of chemical potential (μ) to be zero
and the s-wave superconducting pairing potential (	0) as
2.0 meV. The values of the remaining parameters related to the
BHZ model closely resemble those describing HgTe/CdTe
quantum wells [78,81,82]. Finally, by conducting a numer-
ical simulation with this setup, we compute the quantity
A2,1

↓,↑ for φ21 = π/2 as shown in Fig. 2 (solid cream-colored
line). The insulating necks of P1 and P2 are considered to be
identical.

To compare the numerical result with the theoretical result,
one needs to estimate the values of L, t1, and t2. To estimate
the value of L, we analyzed the positions of the peaks and
dips of A2,1

↓,↑. By mapping the corresponding energy values
to the Andreev bound state (ABS) energies, we estimate L =
4.35ξ where ξ = h̄vF /	0 is the superconducting coherence
length. Plugging this value of L into theoretical calculations

- 1.0 - 0.5 0.0 0.5 1.0
- 1.0

- 0.5

0.0

0.5

1.0

FIG. 2. Antisymmetry in nonlocal differential conductance A2,1
↓,↑

as a function of ω = eV , where V is the applied bias voltage. Param-
eters are μ = 0, φ21 = π/2, L = 4.35ξ , θ1 = 0, θ2 = π .

we numerically calculated the following quantity:

δ = 1

N

√√√√ N∑
n=1

[A2,1
↓,↑(n)|Analytical − A2,1

↓,↑(n)|Numerical]2, (8)

for different values of t1 and t2. Here N is the number of
numerical grids within the energy window −	0 � ω � 	0.
Keeping the tunneling strengths the same, it turns out that
δmin ≈ 2 × 10−3 for t1 = t2 = 0.37 (dashed brown line in
Fig. 2). Although this plot is a good fit to the numerical results,
if we relax the condition of t1 = t2, then the value of δ can
be even minimized giving rise to a better fit to the numerical
results. It turns out that δmin ≈ 1 × 10−4 for t1 = 0.73 and
t2 = 0.32 (black dot-dashed line in Fig. 2). The dependence
of A on the system parameters t1, t2, and L is shown in the
SM [75], Sec. D.

Discussion. The above results rely on the fact that the spin-
polarization axes of P1 and P2 can be adjusted exactly parallel
or antiparallel to the spin-polarization axis of the HES. For
any other values of θ1 and θ2, A will have contributions
from interference effects between the spin channels and the
electron-hole channels due to the presence of more than one
Green’s function in the expressions of t i j

pp̄. These interfer-
ence contributions will lead to the deviation from perfectly
antisymmetric features. Also, the detection of odd-frequency
pairing through A does not require the probes P1 and P2 to
be placed at different positions. This is due to the fact that
the information of position enters into the calculation as pure
phase contributions to t i j

pp̄,ss̄ ({s, s̄} ∈ {↑,↓}, s �= s̄).
In our proposed setup, the size of the sample (i.e., the

length of the junction L) should be large enough to accom-
modate two spin-polarized probes. In Ref. [64], the width
of the spin-polarized probe tip is 0.77 µm, which sets the
minimum dimension of the quantum spin Hall sample (length
of the edge) to be 1.54 µm. However, in the same experiment,
the size of the sample (length of the edge) is 4.1 µm. Thus,
it should be possible to experimentally fabricate a similar
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sample to realize our proposal. The values of other model
parameters, e.g., the Fermi velocity vF , the chemical poten-
tial μ, and the pairing term 	 can be estimated from the
experiment [63].

Lastly, note that κ21
he,↓↑ is related to the ABS correspond-

ing to the shuttling of a Cooper pair from left to right,
while κ12

he,↑↓ is related to the ABS corresponding to the shut-
tling of the Cooper pair in the opposite direction. Thus,
in the weak-tunneling limit, at ϕ21 = 0 or π (when these

two ABSs become degenerate), the differential conductances
κ21

he,↓↑ and κ12
he,↑↓ become equal, leading to the vanishing

of A2,1
↓,↑.
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