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Semiclassical theory of bipolaronic superconductivity in a bond-modulated electron-phonon model
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We analyze the transition temperature Tc of bipolaronic superconductivity in a bond Su-Schrieffer-Heeger
(bond-SSH) model—also known as a bond Peierls model—where bond phonons modulate the electron hoppings.
Using a semiclassical instanton approximation justifiable in the adiabatic limit of slow phonons, we find that the
bipolaron mass is only weakly enhanced in contrast to the typically large mass enhancement found in models
where the phonons couple to electron density. Strikingly, in the “atomic” limit, we find a bond bipolaron
can freely slide within a continuously degenerate energy manifold, explaining the origin of the weak mass
enhancement in the strong coupling limit. A gas of these bipolarons can undergo a superfluid transition at a
critical temperature for which we obtain an upper bound. This bound is exponentially larger than that in the
Holstein model. Our study provides an analytical understanding of the mechanism behind the high-Tc bipolaronic
superconductivity numerically observed in [Phys. Rev. X 13, 011010 (2023)].
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Introduction. The quest for higher critical transition-
temperature (Tc) superconductivity has been of extensive
interest, because of both fundamental theoretical importance
and practical real-world applications [1]. It is known that
the conventional Bardeen-Cooper-Schrieffer (BCS) mecha-
nism of superconductivity leads to a relatively low value of
Tc due to an exponential suppression in the regime of weak
electron-phonon coupling strength (characterized by an en-
ergy scale Ue-ph). On the other hand, the value of Tc is also
believed to be suppressed in the strong-coupling regime (large
Ue-ph) due to the formation of bipolarons with large mass
[2–7]. This suppression of Tc in both the weak and strong
coupling limits was used to obtain an empirical bound on its
value: kBTc � 0.1 · h̄ω [2,8–11] (where ω is the characteristic
phonon frequency), the maximum of which is believed to arise
at the “sweet spot” of intermediate Ue-ph.

The supposed “suppression” of Tc in the strong-coupling
regime is based on the reasoning that the bipolarons always
suffer from severe mass enhancement, which renders their
dynamics rather slow. Such an expectation was challenged
in recent numerical studies of the bond Peierls/Su-Schrieffer-
Heeger (bond-SSH) model [12,13], which reported unusually
weak enhancement of the bipolaron mass [14] and a con-
comitant large value of Tc that exceeds the aforementioned
empirical bound. In this Letter, we aim to give an explana-
tion for this unusual enhancement of Tc with a controllable
analysis in the adiabatic limit of slow phonons, which is of
relevance to real materials. Our main findings are as follows.
(i) We show that the bipolaron mass remains unusually small.
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(ii) We unveil a semiclassical picture behind the very weak
mass enhancement: precisely, we find that in the limit of zero
bare hopping t , there exists a degenerate manifold of bipo-
laron states within which a bipolaron can slide freely without
any energy cost. The inclusion of a small bare hopping lifts
the degeneracy and leads to a finite but small energy barrier,
resulting in a weak mass enhancement. Thus, surprisingly,
the suppression of Tc is least severe in the “atomic limit”
(t = 0) corresponding to a trivial flat band. (iii) We esti-
mate the bipolaron mass and radius to obtain an empirical
bound on the value of Tc of the bipolaronic superconductivity,
showing that it can be much larger than that in the standard
cases where the phonons couple to electron density. (We ex-
plicitly make this comparison to the Holstein model). Our
results provide an analytic understanding of recent numerical
results on the bipolaronic high-Tc superconductivity found
in the bond-SSH model in the dilute limit [12,13] and may
shed light on superconductivity near half filling [15–17]. In
a broader view, we hope our work provides another concrete
example of various unexpected phenomena driven by strong
bond-modulated electron-phonon coupling [17–31].

Model and methods. We study the bond-SSH model on a
two-dimensional square lattice described by the Hamiltonian:

Ĥ = Ĥe + Ĥph, (1)

Ĥe = −
∑
〈i j〉,σ

(t + αX̂〈i j〉)(ĉ†
iσ ĉ jσ + H.c.), (2)

Ĥph =
∑
〈i j〉

(
KX̂ 2

〈i j〉
2

+ P̂2
〈i j〉

2M

)
, (3)

where the coordinates of the phonons X̂〈i j〉 live on nearest-
neighbor bonds 〈i j〉. Each local phonon mode has a frequency
ω0 ≡ √

K/M. Besides t and h̄ω0, there is only one inde-
pendent energy scale in this problem, Ue-ph ≡ α2/K , which
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characterizes the strength of the electron-phonon coupling
[32]. We set the lattice constant a = 1. Without loss of gen-
erality, we will consider the t > 0 case throughout the paper.

We analyze the problem in the adiabatic limit h̄ω0/Ue-ph →
0 for dilute electron concentrations, where two electrons form
a bound bipolaron and move around with the help of phonons.
As we will show, this situation is effectively described by a gas
of repulsively interacting bosons, which undergo a superfluid
transition at a temperature Tc [33–35]. We will first solve the
problem in the static (classical) limit where ω0 = 0 (M = ∞).
In such a case, one can obtain the electronic ground state
energy in the two-electron sector,

V̂eff({X̂〈i j〉}) = 2ε0({X̂〈i j〉}) +
∑
〈i j〉

KX̂ 2
〈i j〉

2
, (4)

where 2ε0({X̂〈i j〉}) is the ground state energy of Ĥe in the
two-electron sector for a given phonon configuration {X̂〈i j〉}.
We then minimize V̂eff with respect to {X〈i j〉} to obtain the
bipolaron bound state with the smallest energy. Such bipo-
laron states, localized around different sites, are classically
degenerate. For a small but finite phonon frequency ω0 > 0,
these bipolarons acquire quantum dynamics described by the
effective Hamiltonian

Ĥeff = V̂eff +
∑
〈i j〉

P̂2
〈i j〉

2M
. (5)

We will use a semiclassical instanton approximation to cal-
culate the effective hopping of the bipolaron, which in turn
gives an expression for the bipolaron effective mass m∗. From
this, we estimate the value of the critical temperature Tc of
superconductivity of a gas of these bosonic bipolarons, which
is given by [33–35]

Tc ≈ C
h̄2ρ

m∗kB
, (6)

where C ≡ 2π

ln( 380
4π

)
≈ 1.84. The maximum possible Tc is

achieved for the density of electrons at which bipolarons start
to overlap, ρ = 1

πR2 , where R is the linear size of the bipo-
laron. We note that this Tc is not determined by the pairing
energy scale as in the case of BCS or Migdal-Eliashberg the-
ory [11], but rather by the phase coherence energy scale within
the Bose-Einstein condensation (BEC) picture of preformed
pairs.

Static limit. In the static (classical) limit where the phonon
kinetic energy is neglected (ω0 = 0), we perform numerical
optimization [36] to find the phonon configurations that mini-
mize the effective potential Veff({X〈i j〉}). We first consider the
case corresponding to two electrons in the system. For the
special case when t = 0, we obtain a manifold of degenerate
bipolaron configurations localized around each site i. Such
a manifold is parametrized by four phonon coordinates X〈iik〉
(k = 1, 2, 3, 4), where i1, ..., i4 are four nearest-neighbor sites
connected to the site i (other phonon coordinates are zero).
Minimizing the electronic energy within such phonon config-

FIG. 1. The phonon configuration {X〈i j〉} (measured in units of
α/K) around a static bipolaron (ω0 = 0) for different values of
t/Ue-ph = 0.01 (left), 0.35 (middle), and 0.7 (right).

urations, one obtains

Veff({X〈i j〉}) = −2α

[
4∑

k=1

X 2
〈iik〉

] 1
2

+ K

2

4∑
k=1

X 2
〈iik〉, (7)

with the electronic eigenfunction |�0
i,σ=↑,↓({X })〉 with support

on five sites i, i1, i2, i3, and i4. Veff({X〈i j〉}) is minimized when[
4∑

k=1

X 2
〈iik〉

] 1
2

= 2α

K
(8)

with energy −2Ue-ph. This degenerate manifold of bipolaron
configurations means that the bipolaron can “slide” freely
from one site to the other by deforming its configuration
within the manifold. This exact behavior, found in the t = 0
limit, explains the origin of the small bipolaron mass, which
extends to the regime of small but nonzero t (as we will see
below), and, therefore, is (approximately) responsible for the
numerically found behavior of a small mass in the strong-
coupling limit t/Ue-ph � 1 [12–14].

Including a t > 0 term determines the unique lowest en-
ergy bipolaron configuration. In the small-t limit, first-order
perturbation theory gives an energy correction for each con-
figuration {X〈iik〉} within the manifold, splitting the energies of
different bipolaron configurations (8):

	E = −2t
〈
�e

i,↑
∣∣∑

〈i j〉
c†

i,↑c j,↑
∣∣�e

i,↑
〉 + O(t2)

= − t

α/K

4∑
k=1

X〈iik〉 � −4t . (9)

Here, the energy minimum (equality) is attained for the uni-
form “cross” configuration X〈iik〉 = α/K (see the left panel of
Fig. 1). Note that bipolarons centered around different sites
are related by a lattice translation and are thus classically
degenerate.

With increasing t/Ue-ph, bipolarons become more and more
extended (see Fig. 1). To better quantify this observation,
we compute the inverse participation ratio (IPR ≡ ∑

i |�0
i,σ |4

[37]) of the electronic ground state |�0
i,σ 〉 of Ĥe within the

optimal {X〈i j〉} and use this quantity to define an effective
radius of the bipolaron

R ≡ 1√
π (IPR)

. (10)

Interestingly, we find that the size of the bipolaron remains
rather small even for the largest t/Ue-ph = 0.7 considered.
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FIG. 2. The properties of bipolarons in the static limit ω0 = 0.
We plot the effective radius R of the bipolaron [Eq. (10)] in the upper
panel and the binding energy Ebinding [Eq. (11)] in units of Ue-ph in the
lower panel as functions of the dimensionless constant t/Ue-ph.

Another meaningful quantity is the energy gain associated
with the formation of a bipolaron, defined as

Ebinding = 2Epolaron − Ebipolaron, (11)

where Epolaron is the ground state energy in the single-electron
sector. We plot these two quantities as a function of t/Ue-ph in
Fig. 2 [38].

Importantly, when considering a finite, but dilute density
of electrons in the system, we find that they always tend to
repel each other and phase separation does not preempt the
superconducting phase [39].

Adiabatic limit. When a finite but small phonon kinetic
energy is considered (i.e., h̄ω0/Ue-ph → 0), the classically
degenerate bipolaron configurations centered at different sites
become connected by quantum tunneling. The bipolaron hop-
ping matrix element can be computed using the standard
semiclassical instanton approximation in the two-electron
sector,

τeff = h̄ω0 A

√
Sinst

2π
e−Sinst , (12)

where Sinst is the action of the semiclassical path that connects
the initial (init) and the final (final) bipolaron configurations,

Sinst ≡ Ue-ph

h̄ω0
S̃ = min

∫ Xfinal

Xinit

dX
√

2M[Veff (X ) − E0], (13)

FIG. 4. The energetics of bipolaron hopping. We plot the nor-
malized classical action of the nearest-neighbor tunneling process,
S̃ ≡ h̄ω0

Ue-ph
Sinst , in the upper panel, and the leading-order fluctuational

correction to it, ln(A), in the lower panel. In the small t/Ue-ph limit,
we find that the numerical results are well fitted by S̃ ≈ 3.2

√
t/Ue-ph

(upper panel) and ln(A) ≈ ln(2.4) + 3
4 ln t

Ue-ph
+ 0.46

√
Ue-ph

t (lower

panel) which are drawn as dashed lines.

where E0 ≡ Veff (Xinit ) = Veff (Xfinal ) is the classical energy of
a bipolaron (see Fig. 3 for an exemplary trajectory). A is
the “fluctuation determinant,” the subleading fluctuational
correction, that captures Gaussian fluctuation around the
semiclassical tunneling path

A =
[

ω2
0 d̃et

( − ∂2
τ + 1

M V ′′
eff [Xcl(τ )]

)
det

( − ∂2
τ + 1

M V ′′
eff [Xinit]

) ]− 1
2

. (14)

Here, d̃et is the determinant without the zero eigenvalue
[40–42], Xcl(τ ) is the instanton trajectory and the double
prime denotes the second functional derivative of Veff [X (τ )].
We only consider a nearest-neighbor hopping matrix element,
since further-ranged tunneling processes will be exponentially
smaller in the ω0 → 0 limit. We numerically evaluate the
normalized instanton action S̃ and A as a function of t/Ue-ph

in Fig. 4 (see Refs. [43,44] for details of their calculation).
The effective bipolaron mass can in turn be estimated as
m∗ = h̄2

4τeff
, which can be substituted into Eq. (6) to yield an

estimate for the value of Tc. Note that further including the
effects of longer-ranged hoppings of bipolarons will make m∗
smaller and therefore Tc higher.

FIG. 3. Snapshots of an imaginary time tunneling trajectory at seven representative time slices connecting the initial (leftmost panel) and
the final (rightmost panel) bipolaron configurations. The color encodes the configuration of the phonon displacement {X〈i j〉} (measured in unit
of α/K). This simulation is performed for t/Ue-ph = 0.6.
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Empirical bound on Tc. The maximum possible value of Tc

from Eq. (6) arises for the density at which bipolarons start to
overlap ρmax ∼ 1

πR2 :

kBT max
c ∼

√
h̄ω0Ue-ph

R2
A

√
S̃

2π
e− Ue-ph

h̄ω0
S̃
. (15)

We find that S̃ < 0.35 which is much smaller than the corre-
sponding quantity in the Holstein model with density coupling
α

∑
i Xini, S̃Holstein = 2 [45]. This implies that the value of Tc

in the bond model can be exponentially larger than that in the
Holstein model in the adiabatic limit h̄ω0/Ue-ph → 0.

In the limit t/Ue-ph → 0, we further obtain the asymp-
totic behaviors of the action and the fluctuation determinant:

S̃ ≈ 3.2
√

t
Ue-ph

→ 0 and A ≈ 2.4 · ( t
Ue-ph

)3/4e0.46·
√

Ue-ph
t → ∞,

as shown in Fig. 4. That is, as t/Ue-ph → 0, the tunnel barrier
between the two neighboring bipolaron configurations tends
to zero and the fluctuation determinant diverges. This is due to
the continuous family of degenerate bipolaron configurations
[Eq. (8)]. For t = 0, the two nearest-neighbor “cross” bipo-
laron configurations are connected by a zero tunnel barrier
through Eq. (8). For small t, the first order correction in the
energy of noncross configuration is 	E = O(t ), and hence the
tunnel barrier height 	Veff ∼ t . On the other hand, the tunnel
distance in coordinate space 	X ∼ α/K . Therefore,

S̃ ∼ h̄ω0

Ue-ph
	X

√
2M	Veff ∼

√
t

Ue-ph
. (16)

Moreover, the instanton duration 	τinst in imaginary time
becomes longer as t/Ue-ph → 0, due to the small tunnel barrier

	τinst =
∫

dX

√
M

2	Veff (X )
∼ 1

h̄ω0
·
√

Ue-ph

t
. (17)

The fluctuation determinant can be estimated as the ratio
between the two harmonic oscillator propagators during the
interval 	τinst with the dynamical matrix evaluated for an
intermediate (initial) Xmiddle (Xinit) configuration

A ∼
[

det
( − ∂2

τ + 1
M V ′′

eff [Xmiddle]
)∣∣

(0,	τinst )

det
( − ∂2

τ + 1
M V ′′

eff [Xinit]
)∣∣

(0,	τinst )

]− 1
2

=
(∏

n

ω
(n)
middle

ω
(n)
init

sinh
(
h̄ω

(n)
init	τinst

)
sinh

(
h̄ω

(n)
middle	τinst

))1/2

∼
(

t

Ue-ph

)3/4

exp

[
# ·

√
Ue-ph

t

]
. (18)

In the first line, det(...)|(0,	τinst ) denotes that the eigenval-
ues of the differential operator must be obtained with the
boundary condition δX (0) = δX (	τinst ) = 0, where δX (τ )
denotes the fluctuation coordinate X (τ ) = Xcl(τ ) + δX (τ ).
The second line is the exact form of the harmonic oscillator
propagator, where ω

(n)
init and ω

(n)
middle are the square root eigen-

values of the respective dynamical matrices 1
M V ′′

eff [Xinit] and
1
M V ′′

eff [Xmiddle]. In the third line, we used the fact that there
are three (six) nearly zero oscillator frequencies ω

(n)
init (ω(n)

middle)

of order O(
√

t
Ue-ph

ω0), and in general Re
∑

n(ω(n)
init − ω

(n)
middle ) =

O(ω0). As shown in Fig. 4, the asymptotic behavior extracted
from numerical calculation fits well with the asymptotic form
Eq. (18).

These asymptotic behaviors lead to an unconventional scal-
ing of Tc of the bipolaronic superconductor

Tc ∼ t

√
h̄ω0

Ue-ph
exp

[
− 3.2

√
tUe-ph

h̄ω0
+ 0.46

√
Ue-ph

t

]
, (19)

which is valid when h̄ω0 � t � Ue-ph (see below for jus-
tification) and is parametrically larger, for the same set
of parameters, than that obtained in the Holstein model:
T Holstein

c ∼ t2√
Ue-ph h̄ω0

exp[− 2Ue-ph

h̄ω0
] [45] Note the huge reduc-

tion due to the exponent. We consider this a fair comparison
as Ue-ph is the binding energy of the bipolaron in both models
in the atomic limit.

Validity of the approximations. Our theory is based on
two approximations, which can be justified as long as certain
parameter conditions are satisfied.

The first is the adiabatic approximation, i.e., the as-
sumption that electronic states adiabatically follow the
instantaneous ground state corresponding to the phonon con-
figurations, which is justified as long as [46]

|〈�0(τ )|∂τ Ĥe|�n(τ )〉|
	2

0n

� 1, (20)

where Ĥe(τ ) denotes the instantaneous electronic Hamilto-
nian, �n(τ ) is its nth eigenstate, and 	0n(τ ) ≡ En(τ ) − E0(τ )
is an instantaneous gap between nth excited state and the
ground state (τ here is the imaginary time). To ensure this
is satisfied, we note that |〈�0|∂τ Ĥe|�n〉|

	2
0n(t )

� α|Ẋ |
	2

min
, where 	min is

the minimum energy gap along the trajectory and |Ẋ | is the
speed associated with the coordinates {X〈i j〉}. The phonon
trajectory reaches maximum speed when the coordinates are
at the position of the largest energy barrier, and the maximum

value of the speed becomes |Ẋ |max =
√

2	Veff
M , where 	Veff is

the height of the energy barrier. Thus, a sufficient condition
for the adiabatic theorem to be valid in our treatment is

h̄ω0

Ue-ph
� 	2

min√
	VeffU 3

e-ph

. (21)

The second instanton approximation is, technically speak-
ing, a semiclassical approximation of the tunneling event,
which is valid when the saddle point contribution dominates
the path integral:

Sinst � | ln(A)|. (22)

For t/Ue-ph � 1, this amounts to the condition t � h̄ω0,
whereas for t/Ue-ph = O(1), it requires Ue-ph � h̄ω0 [given
that both S̃ = Sinst h̄ω0/Ue-ph and ln(A) are O(1)].

In our numerical simulation of the instanton processes,
we find that the adiabaticity condition, Eq. (21), is always

L220502-4



SEMICLASSICAL THEORY OF BIPOLARONIC … PHYSICAL REVIEW B 109, L220502 (2024)

satisfied whenever Eq. (22) is satisfied. Therefore, in the semi-
classical limit properly defined in Eq. (22), our results are
asymptotically exact.
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