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Gravitational wave analogs in spin nematics and cold atoms
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Large-scale gravitational phenomena are famously difficult to observe, making parallels in condensed matter
physics a valuable resource. Here we show how spin nematic phases, found in magnets and cold atoms, can
provide an analog to linearized gravity. In particular, we show that the Goldstone modes of these systems are
massless spin-2 bosons, in one-to-one correspondence with quantized gravitational waves in flat spacetime.
We identify a spin-1 model supporting these excitations and, using simulation, outline a procedure for their
observation in a 23Na spinor condensate.
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Introduction. Light has been a natural companion of hu-
manity since our earliest days, shaping civilization as we
know it. However, our attention to astrophysical gravitational
waves is, by comparison, still in its infancy. The experimental
detection of gravitational waves by the LIGO collaboration
[1] marked the beginning of a new age of observational as-
tronomy. That said, production of measurable gravitational
radiation is far from being feasible due to the energy scales
involved, unlike its photonic counterpart. Alternatives that
provide laboratory access to such massless spin-2 waves
would therefore provide many new opportunities.

Thus far, several condensed matter systems have been
suggested to mimic features of gravity, with much focus on
reproducing the effects of curved spacetimes. Tensor analogs
leading to rich gravitational phenomena exist, and have been
measured, in the context of superfluid 3He [2–4]. Acoustic
analogs of gravitational phenomena were suggested [5] and
later measured [6], with further promising experimental can-
didates in semimetals [7,8], in quantum Hall systems [9], in
optics [10,11] and in cold atoms [12–16]. Connections be-
tween elasticity and emergent gravitational phenomena have
been explored theoretically, [17–22], and can also be found
in models supporting fractons [23–28]. Related aspects of ge-
ometry also arise in magnetic models [29], and graphene [30].
Nonetheless, it remains an open question to identify an exper-
imentally viable platform which provides access to massless
spin-2 bosons in one-to-one analog with gravitational waves,
as they appear in flat (3+1)-dimensional spacetime.
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Massless spin-2 bosons also arise as Goldstone modes in
quantum spin nematics, a form of quantum liquid crystal
found in both insulating magnets [31–41], and arrays of cold
atoms [42–46]. In this Letter, we identify a parallel between
gravitational waves and the Goldstone modes of quantum spin
nematics, and suggest two routes for their experimental real-
ization. We first review the description of gravitational waves
within linearized gravity. We then show that an identical set
of equations arises in the low-energy continuum field the-
ory describing spin nematics. Through numerical simulation,
we explore the real-time dynamics of a microscopic model
with spin nematic order, showing how quadrupolar waves—
equivalent to gravitational waves—are generated through the
annihilation of topological defects. We conclude by suggest-
ing an experimental protocol for the creation and observation
of analogue gravitational waves in spin nematic phases, real-
ized in either magnetic insulators or cold atoms.

Linearized gravity and gravitational waves. We now briefly
summarize the key features of linearized gravity, leading up
to gravitational waves. This treatment follows the conventions
of standard textbooks, e.g., Refs. [47–49]. General relativity
(GR) is a geometrical theory, describing the curvature of a
four-dimensional spacetime. Fundamental to this is the metric
tensor gμν , a symmetric rank-2 tensor, which allows the def-
inition of distance. Here the Greek indices μ, ν run over all
four spacetime dimensions. In linearized gravity, spacetime is
assumed flat up to small fluctuations hμν such that

gμν = ημν + hμν, (1)

where ημν = diag(−1, 1, 1, 1) is the Minkowski metric for
a flat spacetime. The linearized theory is invariant under
transformations

x′μ = xμ + ξμ(x), (2a)

h′
μν = hμν − ∂νξμ − ∂μξν, (2b)
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where xμ denotes spacetime coordinates, and ξμ corresponds
to an infinitesimal coordinate transformation. The existence of
these transformations implies that not all degrees of freedom
are independent, and in deriving a theory for gravitational
waves, it is conventional to make the choice

hμ
μ(xσ ) = 0 [traceless], (3a)

h0μ(xσ ) = 0 [no scalar or vector components], (3b)

∂nhnm(xσ ) = 0 ,

⇒ knhnm(kσ ) = 0 [no longitudinal dynamics]. (3c)

Here, Roman indices n, m denote the spatial components,
and the Einstein summation convention for repeated indices
is assumed. Implementing these constraints, we arrive at a
theory expressed in terms of a symmetric, traceless, rank-2
tensor [49], with dynamics governed by the action

SLG = − c3

16πG

∫
d4x [∂αhμν∂αhμν], (4)

where c is the speed of light, and G the gravitational constant.
This leads to the equation of motion for massless waves

1

c2
∂t∂

t hμν − ∂n∂
nhμν = 0, (5)

where implicitly, only two of the 16 components of hμν have
nontrivial independent dynamics. Once quantized [50], the
solutions of this wave equation are spin-2 bosons (gravitons),
with dispersion

ωLG(k) = c|k|, (6)

and two independent polarizations, σ = +,×, such that

hμν (t, x) =
∑

σ=+,×

∫
d3k

1√
ωLG(k)

[
εσ
μνa†

σ (k)eikρxρ

+ (
εσ
μν

)∗
aσ (k)e−ikρxρ ]

, (7)

where εσ
μν is a tensor encoding information about polarization,

and aσ (k) satisfies bosonic commutation relations

[aσ (k), a†
σ ′ (k′)] = δσσ ′δ(k − k′). (8)

For a wave with linear polarization, propagating along the z
direction, εσ

μν takes the specific form

ε+ = 1√
2

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎞
⎟⎟⎠,

ε× = 1√
2

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠. (9)

Physically, gravitational waves correspond to a quadrupo-
lar distortion of space, in which compression and dilation
alternate. In Fig. 1, we visualize this by plotting surfaces of
equal strain

V (t, f1, f2, z) = ± const., (10)

FIG. 1. Quadrupolar nature of gravitational waves, and Gold-
stone modes of spin-nematic order, visualized through the associated
distortions of spacetime, or the spin-nematic ground state. Results are
shown for a wave of wavelength λ and period τ , with polarization ε+

[Eq. (9)], propagating along the z–axis. In the case of gravitational
waves [Eq. (7)], f1, f2, represent x and y axes of spacetime, and the
quantity plotted is a surface of constant strain [Eqs. (11) and (10)].
In the case of spin-nematic order [Eq. (19)], f1, f2, represent spin
components Sx and Sy, and the quantity plotted is the change in the
spin-nematic order parameter [Eqs. (20) and (21)]. Blue surfaces
denote positive strain/deformation, while orange surfaces denote
negative strain/deformation. An animated version of this figure is
available in Ref. [51].

where the wave is taken to propagate in the z direction, and
strain is visualized in the plane perpendicular to this, with
( f1, f2) → (x, y). Here strain (squared) is defined by

V (t, x) = xmhmn(t, x)xn

|x|2 , (11)

with m, n = 1, 2, 3 running over the spatial components.
Linearized gravity analog in spin nematics. In the dis-

cussion above, we have seen how small fluctuations of the
metric gμν , [Eq. (1)], give rise to gravitational waves, which
are linearly-dispersing massless spin-2 bosons, described by
the action SLG [Eq. (4)]. In this sense, the search for analogs
of gravitational waves can be cast as the search for a physi-
cal system which can be described in terms of a symmetric,
traceless rank-2 tensor, with linearly-dispersing excitations
governed by an action of the form SLG.

The strategy we pursue in this Letter is to map fluctuations
about a flat spacetime onto the Hilbert space of a quantum
system with ground state order characterized by a symmetric,
traceless rank-2 tensor. Analogues of gravitational waves can
then be found in the Goldstone modes of this symmetry-
broken state.

The order parameter for a nematic liquid crystal is a sym-
metric, traceless rank-2 tensor [52]. Here we consider a form
of quantum liquid crystal known as a “quantum spin nematic,”
originally introduced as a magnetic state [31,32,36] which
preserves time-reversal symmetry, but breaks spin-rotation
symmetry through the quadrupole operators

Qmn
i j = 1

2

(
Sm

i Sn
j + Sn

i Sm
j

) − 1
3δmnSn

i Sn
j . (12)

Here Sm is a spin operator with components m = x, y, z, satis-
fying SU(2) commutation relations.

The simplest form of a quantum spin nematic is the “fer-
roquadrupolar” (FQ) state, a uniaxial nematic liquid crystal
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FIG. 2. Spin-nematic state on a triangular lattice, and its spin-
2 excitations. (a) Ferroquadrupolar (FQ) ground state, in which
quadrupole moments of spin align with a common axis. (b) Disper-
sion of excitations about the FQ state, as revealed by the quadrupolar
structure factor SQ(k, ω) [Eq. (23)]. The linear character of the
dispersion at long wavelength, ω(k) = v|k| (black dashed line) is
consistent with the predictions of the field theory [Eq. (16)]. The
spin-2 nature of the long-wavelength excitations can be inferred from
the high intensity of the structure factor at low energies. Results are
shown for a spin-1 bilinear biquadratic (BBQ) model [Eq. (22)], with
parameters J1 = 0, J2 = −1, as described in Ref. [55].

in which all quadrupole moments are aligned [Fig. 2(a)].
As in conventional liquid crystals [53], such a state can be
characterized by a director d, and its symmetry dictates that it
supports two, degenerate Goldstone modes [54], which have
the character of massless, spin-2 bosons [34,37,55]. We will
now show how these correspond to the massless spin-2 bosons
found in linearized gravity.

We start by promoting Qmn to a tensor field Qμν providing
a low-energy effective description, identifying Qmn = Qmn,
where Qmn = Qmn, and by setting components Q0μ= Qμ0= 0.
In analogy with Eq. (1), we consider fluctuations QE

μν about a
state with uniform spin nematic order QGS

μν , viz

Qμν = QGS
μν + QE

μν, (13)

requiring that these fluctuations occur in the transverse chan-
nel, i.e., that the change affects the direction but not the
magnitude of the quadrupolar order. This assumption is appro-
priate for the low-energy physics of spin nematics [34,56,57].

What remains is to match the fluctuations of quadrupolar
order to the fluctuations associated with a gravitational wave.
The former occur in spin space and are transverse to the order
of the ground state, while the latter occur in spacetime, and are
transverse to the direction of propagation. The fields which
describe the fluctuations in these two different coordinate
systems can be related through the unitary transformation

Q̃μν (k) = Cμν
ρσ (k, d )QE

ρσ (d ), (14)

where Cμν
ρσ (k, d ) acts on quadrupole excitations with wave

vector k about a FQ state characterized by director d. Further
details of this transformation are given in Ref. [51].

For an appropriate choice of Cμν
ρσ (k, d ), Q̃μν satisfies the

conditions

Q̃μ
μ = Qμ

μ = 0 [traceless], (15a)

Q̃0μ = Q0μ = 0 [no scalar or vector components], (15b)

kmQ̃mn(kσ ) = 0 [no longitudinal dynamics]. (15c)

The low-energy fluctuations of the spin nematic can be
described in terms of a quantum nonlinear sigma model
[34,56,57]. Given these physical constraints, and the decom-
position described by Eq. (13), we arrive at an action which
exactly parallels linearized gravity [Eq. (4)], via

SFQ = −1

2

∫
dtdd x[−χ⊥(∂ t Q̃μν∂t Q̃μν )

+ ρs(∂
nQ̃μν∂nQ̃μν )], (16)

where χ⊥ is the transverse susceptibility and ρs the stiffness,
associated with spin-nematic order [56,57].

The low-lying excitations of this theory are massless spin-2
bosons, satisfying the wave equation [cf. Eq. (5)]

1

v2
∂t∂

t Q̃μν − ∂n∂
nQ̃μν = 0, (17)

with v = √
ρs/χ⊥, and with dispersion

ωFQ(k) = v|k|. (18)

The solutions to Eq. (17) have exactly the same structure as
those for gravitons [cf. Eq. (7)]

Q̃μν (t, x) =
∑

σ=+,×

∫
d3k

1√
ωFQ(k)

[
εσ
μνb†

σ (k)eikρxρ

+ (
εσ
μν

)∗
bσ (k)e−ikρxρ ]

, (19)

where bσ (k) satisfies bosonic commutation relations [Eq. (8)]
and the tensors εσ

μν are given by Eq. (9).
Just as we can visualize gravitational waves through sur-

faces of constant strain, so we can visualize the Goldstone
modes of a spin-nematic state through surfaces of equal dis-
tortion of the spin-nematic order parameter. In analogy with
Eq. (11), we consider the wave function amplitude

V (S, (t, x)) = SmQ̃mn(t, x)Sn

|S|2 . (20)

In Fig. 1, we show surfaces of equal amplitude in the (Sx, Sy )
plane, for a quadrupole wave propagating in the z direction,

V (( f1, f2, 0), (t, 0, 0, z)) = ± const., (21)

with ( f1, f2) → (Sx, Sy), in analogy with Eq. (10). Plotted in
this way, the identity between the two types of excitation is
clear.

From the analysis above, we learn that quadrupolar waves
in a quantum spin nematic are in one-to-one correspondence
with quantized gravitational waves (gravitons) in a flat, four-
dimensional spacetime. However, there is a critical distinction
regarding the spaces these waves arise in, which has important
implications for realizing them in experiment. Gravitational
waves involve quadrupolar distortions of space, transverse to
the direction of propagation. This implies that a minimum
of three spatial dimensions is required to support a gravita-
tional wave. In contrast, the quadrupolar waves found in spin
nematics arise in a spin space which is automatically three-
dimensional, regardless of the number of spatial dimensions.
For this reason, it is possible to explore analogs of gravita-
tional waves in two-dimensional spin systems. It is this subject
which we turn to next.
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FIG. 3. Numerical simulation of vortices within a spin-nematic state, showing how quadrupole waves, analogous to gravitational waves,
are created when a pair of vortices in-spiral and annihilate. Individual frames are taken from dynamical simulation of a ferroquadrupolar state
(FQ) in the spin-1 bilinear biquadratic (BBQ) model on a triangular lattice [Eq. (22)], with further detail given in Ref. [51] (see also Ref. [74]
therein), where an animated version of this result is also available.

Simulation using cold atoms. The idea of using cold atoms
to simulate a quantum spin nematic has a long history [42–46].
The majority of proposals build on “spinor condensates” of
atoms, such as 23Na, 39K, or 87Rb, whose internal hyper-
fine states mimic the magnetic basis of a spin-1 moment
[42,58,59]. The interactions between these effective spin-1
moments depend on the details of their scattering and, where
attractive, can lead to spin-nematic order [42]. Condensates
described by the order parameter Qαβ [Eq. (12)] have already
been observed in experiment [60]. On symmetry grounds, the
Goldstone modes of these systems must be described by SFQ
[Eq. (16)], making this an analog of linearized gravity.

Optical lattices can be arranged in a wide array of ge-
ometries, including triangular lattices [61], and cold atom
experiments with 23Na atoms are carried out in many lab-
oratories, e.g., Refs. [46,62,63]. Realizing an analog of
gravitational waves on a lattice therefore also seems a realistic
possibility.

Realization of gravitational waves in a microscopic lat-
tice model. In addition to realization of analog gravitational
waves using quantum fluids as suggested above, spin-nematic
phases can also be found in solid state magnetic sys-
tems. The simplest microscopic model supporting a quantum
spin-nematic state is the spin-1 bilinear biquadratic (BBQ)
model

HBBQ = J1

∑
〈i j〉

Si · S j + J2

∑
〈i j〉

(Si · S j )
2, (22)

known to support FQ order for a wide range of J2 < 0,
irrespective of lattice geometry [31,33,64]. Particular atten-
tion has been paid to the BBQ model on a triangular lattice
[37,55,56,65–68], where studies have been motivated by
NiGa2S4, a candidate spin-nematic material. It has also been
argued that 23Na atoms in an optical lattice could be used to
realize the BBQ model [Eq. (22)], with parameters falling into
the range relevant to FQ order [44,69].

Explicit calculations of FQ dynamics within the BBQ
model reveal two, degenerate bands of excitations, with linear
dispersion at long wavelength [37,55,68]. The quadrupolar
(spin-2) nature of these excitations at low energy is manifest
in the dynamical structure factor for quadrupole moments

SQ(k, ω) =
∑
α,β

∫
dt

2π
eiωt 〈Qαβ (k, t )Qαβ (−k, 0)〉, (23)

shown in Fig. 2(b), for calculations carried out at a semiclas-
sical level [55]. Starting from Eq. (22), it is also possible to
parametrize the continuum field theory Eq. (16), obtaining
results in quantitative agreement with the microscopic model,
as shown in Fig. 2(b).

Quench dynamics, simulation, and measurement. We now
turn to the question of how gravitational-wave analogs could
be created and observed in experiment. For concreteness, we
consider a FQ state in an explicitly two-dimensional sys-
tem, which we model as set of spin-1 moments on a lattice
[cf. Eq. (22)]. Consistent with the Mermin-Wagner theo-
rem, for low-dimensional systems to exhibit anything besides
exponentially-decaying correlations at low temperature, they
must undergo topological phase transitions e.g., of the BKT
type [70,71]. The FQ state in a 2D magnet has been argued
to be connected to the high-temperature magnetic phase via a
vortex-induced topological phase transition [72].

The excitations which mediate this phase transition are
no longer the integer vortices of the Berezinskii-Kosterlitz-
Thouless (BKT) transition [73], but rather Z2 vortices of
homotopy group π1, specific to the nematic order parameter
[53]. Cooling rapidly through the transition (quenching) leads
to a state rich in pairs of Z2 vortices, which are subject to
attractive interactions, and spiral towards one another in much
the same way as gravitating masses. In the process, vortices
radiate energy in the form of quadrupolar waves, Eq. (19), and
eventually annihilate. This process is clearly visible in simula-
tions of the BBQ model [Eq. (22)], as illustrated in Fig. 3 and
the accompanying animation [51] (see also Ref. [74] therein).

As can be seen from these simulations, the dynamics of
vortices is very slow compared to that of quadrupolar waves,
and the timescale associated with the annihilation of Z2 vor-
tices is of order 102J−1

2 . Observing vortices in experiment
will therefore typically demand long-lived condensates. Nev-
ertheless, successful imaging of nematic vortices within a
spinor-condensate of 23Na ions has already been realized,
over timescales of ∼1 s [75]. Direct measurements of the
quadrupole operators Qmn are possible for spinor condensates,
and have been carried out in 87Rb [76], and condensates
populating the nematic phase can be distinguished from mag-
netic phases [46]. Additionally, real-space imaging of the
quadrupolar channel of a spinor condensate is accessible
through the imprint of the tensor polarizability of the atoms
on light passing through the system [69,77]. It is also possi-
ble to indirectly access quadrupolar correlations in magnetic
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insulators through Raman scattering [78], or RIXS measure-
ments [79,80].

Taken together, this all jointly suggests that it is a realistic
possibility to realize and observe such spin nematic gravita-
tional waves analogs.

Conclusions. Gravitational waves are of fundamental in-
terest, but hard to study in experiment, because the energy
scales of excitations are so large, and their amplitudes so
small. In this Letter we have shown how a theory in direct
correspondence to linearized gravity arises in systems with
spin-nematic order. The Goldstone modes of this spin-nematic
state are massless spin-2 bosons, which behave as exact
analogs of quantized gravitational waves (gravitons). These
results imply that it is possible to simulate various aspects of
linearized gravity, including gravitons and topological excita-
tions, in magnets or assemblies of cold atoms which realize a

spin-nematic state [81–85]. A more general analog of aspects
of gravitational physics could be realizable via an appropriate
emergent gauge theory in spin liquids.
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