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We theoretically study the influence of quenched outside disturbances in an intermediately long-time limit.
We consider localized imperfections, uniform fields, noise, and couplings to an environment within a unified
framework using a prototypical but idealized interacting quantum device—the Kitaev honeycomb model. As a
measure of stability we study the Uhlmann fidelity of quantum states after a quench. To treat the unperturbed
dynamics as a free-fermion model without neglecting evolution of states between flux sectors, we push the flux
degree of freedom into the perturbation. For noisy quenches, both gapped and gapless systems exhibit a universal
form for the long-time fidelity, Ce−αt t−β where the values of C, α, and β depend on physical parameters such as
system size and disturbance strength. Finally, we show that selective filling of the spinon Brillouin zone can be
used to greatly increase the fidelity over the ground-state value. Our work provides estimates for the intermediate
long-time stability of a quantum device, offering engineering guidelines for quantum devices in quench design
and system size.
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Introduction. Processing quantum information requires
stability of quantum states used to encode and transmit in-
formation [1–3]. A lack of information preservation can be
disastrous for the reliability of computational results [4–9].
This has led to large efforts to develop fault tolerant devices
and methods for error correction [8–22]. Thus, it is important
to study the stability (with respect to environmental pertur-
bations) of systems that might serve as the platform for a
quantum computer/device.

Here, we study stability over long timescales using an
asymptotic approach valid for a weak external influence
[23,24]; this regime continues to become more relevant as
technological advances are made that increasingly exclude
outside disturbances [25,26]. Additionally, universal behavior
is expected to emerge in this regime [27]. To observe emergent
universal behavior, we study the impact of different classes
of external disturbances on the stability of quantum states,
treated using a quench that is turned on instantaneously and
left on at all later times.

In particular, we study the effect of weak disturbances on
the system. While current quantum computing platforms tend
to be noisy, here we anticipate the need for a low enough phys-
ical error rate that fault-tolerant computing becomes possible
[28]. Much of the work to be done in topological quantum
computing is to ensure that a given platform will be capable of
robust quantum computation, using logical rather than physi-
cal qubits, within the approaching weak-noise regime. This is
the motivation for studying the regimes we have. Specifically,
we study the stability of states within the flux-free sector, as
these are states on which any anyonic excitations would be
created, for use in topological quantum computing.

We consider disturbances captured via a perturbation to the
Hamiltonian, as well as those requiring a Lindblad master
equation approach [29,30] for which the most economical
description involves nonpure density matrices. The latter
captures effects appearing due to insufficient or leaky en-
vironmental shielding [24,30–32]. We employ the Uhlmann
fidelity as a measure of the stability [33–35] of states in
the Kitaev honeycomb model [36,37], which is exactly solv-
able, is a prototypical example of a 2D spin liquid [38,39],
and is relevant for robust topological quantum computation
[19] (through its anyonic excitations [19,40,41]). We find
that the long-time stability in all cases we study has the
same universal functional form, fidelity ∝ e−αt t−β , where the
parameters α or β can be zero in certain situations. This
result does not depend on the details of the physical sys-
tem, such as the form of its excitation spectrum, but rather
on general features such as system dimensionality and the
nature of any band-touching points, which make dominant
k-space contributions to the long-time fidelity, as seen in the
asymptotic analysis we present here and in the Supplemental
Material [42].

Insights into ground state stability of the Kitaev model are
an important consideration that can complement the inherent
stability of its anyonic excitations. Indeed, the ground state
of Kitaev materials [43] must be robust enough to survive
the introduction of anyonic excitations. We therefore study
the long-time stability of the Kitaev ground state. We focus
on important but relatively rarely studied noisy quenches or a
sudden weak coupling to a heat bath (used to model localized
holes in magnetic shielding of a device or coupling to the
environment).
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To supplement our ground state results we also consider
excited spinon states. The study of stability of spinon states
under quenches reinforces the relevance of the ground state
stability for excited states.

We address this issue by considering the possibility of non-
trivial evolution between flux sectors. We define an auxiliary
Hamiltonian sharing a ground state with the Kitaev Hamil-
tonian, but without a flux degree of freedom. The dynamics
of the flux degrees of freedom is pushed into the perturbed
dynamics, a procedure which we check for consistency when
the flux term is not necessarily small.

At the outset of our discussion, we highlight a major fea-
ture of our methods. The Kitaev model is exactly solvable
within a given flux sector, where flux on each plaquette is
conserved. This complicates a straightforward use of an inter-
action picture in which to formulate the perturbation theory
for weak disturbances, unless one simply neglects the flux
degree of freedom to ensure the unperturbed Hamiltonian is a
free-fermion model. However, we are interested in nontrivial
evolution between flux sectors and therefore wish to keep
this degree of freedom and carefully consider how it evolves.
We therefore define an auxiliary Hamiltonian with the same
ground state as the exact Kitaev Hamiltonian, but without a
flux degree of freedom. The important nontrivial step then
is to push the additional contributions from a dynamical flux
degree of freedom into the perturbation, a treatment which is
then checked for consistency when this term is not necessarily
small. The physical way to understand this is that we consider
not just a response to the change in Hamiltonian but also to
possible fluctuations in flux degrees of freedom. In this way
we leverage the exact-solvability of the free-fermion model
without ignoring the fact that a disturbance will in principle
lead to nontrivial evolution into other flux sectors, which
would not be captured appropriately by a purely free-fermion
treatment. This perturbative approach could also be applied to
linear response theory (considering both the response to an ex-
ternal field and to the change in flux configurations), for exam-
ple, and thus has implications reaching far beyond our study.

Model. We take the Kitaev honeycomb model [36,37] in
Eq. (1) as a starting point:

H = −Jx

∑
x−bonds

σ x
i σ x

j − Jy

∑
y−bonds

σ
y
i σ

y
j − Jz

∑
z−bonds

σ z
i σ z

j . (1)

The equilibrium properties of this model are reviewed in the
Supplemental Material (Sec. I) [42] to keep this work self-
contained. Our first task is to study the stability of the Kitaev
ground state. We use the Uhlmann fidelity F (t ) to quantify
stability [24], F (t ) = Tr[ρ0(t )ρ(t )], where ρ0(t ) is a density
matrix evolved according to unperturbed dynamics, and ρ(t )
is subject to a quench at t = 0, where ρ0(0) = ρ(0) = |g〉〈g|,
and 〈g| is the ground state. For noisy disturbances we study the
evolution to a mixed state through Tr[ρ(t )2] [which contains
information about decay of off-diagonal elements of ρ(t )]. We
consider four idealized models for outside disturbances to this
system.

First, we consider two varieties of noiseless disturbance:
a uniform magnetic field and a local magnetic impurity. Be-
cause these disturbances can be captured as perturbations
to the Hamiltonian, we refer to them as Hamiltonian types.

FIG. 1. Noiseless and noisy disturbances to the Kitaev honey-
comb. (a) Kitaev honeycomb subject to a uniform magnetic field
indicated by yellow arrows. (b) An impurity deposited onto the
Kitaev model, shown as a brown speck of dirt, at some lattice point.
We treat the case of a quenched magnetic impurity. (c) Kitaev honey-
comb model coupled to a noisy but spatially uniform magnetic bath.
We consider a uniform magnetic field subject to Gaussian white noise
in the quantum master equation. (d) A hole in the system’s magnetic
shielding couples it locally to a noisy magnetic environment. We
model this situation using a noisy magnetic impurity quench. (e)
Coupling to a bath, similar to a noisy but spatially uniform magnetic
field, is a physical scenario leading to a Lindblad operator in the
quantum master equation.

This distinguishes them from perturbations which must be
considered using Lindblad jump operators and treating the
system as “open.”

We model Hamiltonian-type disturbances as a perturba-
tion V in H = H0 + V , with H the Hamiltonian for the full
system, H0 the unperturbed Kitaev Hamiltonian in Eq. (1),
and V small relative to H0. In the case of Hamiltonian-type
quenches turned on at time t = 0, only pure states enter
F (t ) = |〈g|eiH0t e−i(H0+V )t |g〉|2 ≡ |G(t )|2, where G(t ) is the
Loschmidt echo [27,44,45].

A simple disturbance to a magnetic system is a uniform
magnetic field in the z direction V = h

∑
i σ

z
i (Fig. 1(a) and

Ref. [46]). We restrict ourselves to the case of small field
strength relative to the Kitaev couplings. Such disturbances
are experimentally relevant in situations where a weak, con-
stant magnetic field might suddenly become coupled to the
system, such as a background magnetic field from Earth.
Another interesting case is that in which an impurity, perhaps
a magnetic piece of dirt, is deposited in the system, Fig. 1(b).
This is modeled by a quench with a local impurity operator,
V = λσ z

l , where we consider an arbitrary site l .
Next, we consider quenches involving noise; we treat the

case of Gaussian white noise. The same formalism described
below is also conventionally used to describe coupling to
a heat bath in open quantum systems. Both effects can be
captured in the same formalism employing density matrices.
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TABLE I. Asymptotic behavior (t → ∞) of the Uhlmann fidelity, F(t), measuring the stability of the Kitaev ground state when a quench
is applied. λ, impurity strength; A, system size; h magnetic field strength; κ , noise strength. For noiseless cases we can identify F (t ) = |G(t )|2.
Quenches studied are a magnetic impurity, magnetic field, noisy magnetic impurity, and environmental coupling, each for both gapped and
gapless models. For the noisy cases, a universal form Ce−αt t−β is found, where the specific form of α and β depends on the type of quench. C
is constant in the long-time limit. The magnetic impurity is modeled by a perturbation V = λσ z

l and the magnetic field by V = h
∑

i σ
z
i , where

the sum is over sites in the honeycomb lattice. Noise is treated using a generalization of these operators in a Lindblad formalism, where a small
parameter κ determines the strength of the noise.

F (t ) ∼ Ce−αt t−β Impurity Magnetic field Noisy impurity Environmental coupling

α β α β α β α β

Gapped 0 0 0 0 κ − κ2 × const. ∝ κ2 ∝ Ah2κ − A2h4κ2 × const. ∝ A2h4κ2

Gapless 0 ∝ λ2 0 ∝ Ah2 κ − κ2 × const. ∝ κ2 ∝ Ah2κ − A2h4κ2 × const. ∝ A2h4κ2

Within a Lindblad master equation approach, density matrices
evolve into mixed states [24],

dρ

dt
= −i[H0, ρ(t )] + κL [ρ(t )], (2)

where L [ρ(t )] = LρL† − 1
2 {L†L, ρ}, and L is a Lindblad

operator [47] that, similar to V in the Hamiltonian case, is
used to describe a quench, except that L describes both noisy
couplings and couplings to a bath with strength parameter
κ . In this case, ρ(t ) in F (t ) is a state initialized as |g〉〈g|
and evolved under Eq. (2). For weak disturbances F (t) can
be treated via a modified second-order cumulant expansion,
detailed in Sec. II of the Supplemental Material [42].

The first example of a Lindblad operator we study is
a noisy uniform magnetic field, Fig. 1(c), modeled by the
Lindblad operator [31], L = h

∑
i σ

z
i , which describes cou-

pling to a magnetic bath, Fig. 1(e). Thus, one can interpret the
results of our analysis as pertaining to both the noisy uniform
field and bath situations. Here we consider the weak-coupling
regime, for which κh2 	 Ji. As magnetic shielding becomes
more reliable in quantum applications, this weak-coupling
regime becomes increasingly relevant.

The same formalism may be used to model a scenario in
which information is lost from the system locally, such as a
case in which a hole appears in the shielding of a device,
coupling it locally to the environment or allowing magnetic
noise to enter, Fig. 1(d). We treat this situation using a local
Lindblad operator [31], L = λσ z

l .

We noted earlier that care must be taken to ensure we cap-
ture possible fluctuations between flux sectors, as the Kitaev
model is only reduced to a free-fermion model within a given
choice of flux eigenvalues. The unperturbed Hamiltonian can
be written in the form H0 = H1 + H2, where H1 contains no
flux degree of freedom, and H2 captures interactions between
the spinless fermions and the flux excitations. Crucially, H0

and H1 share a ground state and act identically on states
within the flux-free sector. This invites a repartitioning of the
dynamics, Eq. (2), such that

dρ

dt
= −i[H1, ρ(t )] − i[H2, ρ(t )] + κL [ρ(t )]

≡ −i[H1, ρ(t )] + L̃ [ρ(t )]. (3)

The interaction picture is then defined with respect to the
free Hamiltonian H1, and the flux degree of freedom is pushed
into the perturbing dynamics. Of course, this must be checked

for consistency when H2 is not small. This concern is treated
carefully in the Supplemental Material (Sec. III) [42].

Results. We now turn our discussion to explicit expressions
of the fidelity for the quenches we consider. Results for the
long-time behavior of the stability are summarized in Table I.
In particular, we highlight the similarities of the fidelity across
cases, as well as the dependence on parameters such as field
strength and system size. We expect these results to be uni-
versal, because they do not depend on the precise dispersion,
but rather on the dimensionality of k space and the structure
of band crossings, as is detailed in the Supplemental Mate-
rial (Sec. IV) [42]. We first present an analysis of noiseless
quenches in a gapped system.

For long times, we find a general expression for the fidelity
valid for any couplings J that give rise to a gapped phase, i.e.,
Jx > Jy + Jz. Referring to the fidelity under uniform field and
impurity quenches as |Gu|2 and |Gl |2, respectively, we find

|Gu(t )| ∼ exp

[
4Ah2

(
−cu + 1

4π
√

JxJyJz

γ (t )

t

)]
,

|Gl (t )| ∼ exp

[
λ2

(
−cl + 1

4π
√

JxJyJz

γ (t )

t

)]
,

γ (t ) = − sin (
Et )√
2
E3/2

+ 2 cos ( 1
2 (
E + ω + δ)t )

(
E + ω + δ)3/2

+ 2 cos ( 1
2 (
E + ω − δ)t )

(
E + ω − δ)3/2
+ sin (ωt )√

2ω3/2
(4)

, where cu/l are constants dependent on the particular choice
of parameters J.

Therefore, the fidelity performs damped oscillation around
an asymptotic value, indicating finite stability even at long
times. Furthermore, there are three natural energy scales of the
system which determine the oscillation frequencies: 
E =
2(Jx − Jy − Jz ) is the band minimum (half the band gap),
ω = 2(Jx + Jy + Jz ) the band maximum (half the bandwidth),
and δ = 4(Jy − Jz ) is the separation between saddle points,
as shown in Fig. 2(a). Interestingly, the oscillatory behavior
means that the fidelity will have periodic revivals. The energy
scales given above determine the timescale on which any
revivals in the stability occur. We note that because of the 1/t
factor, revivals are most pronounced early in the evolution.

The leading t → ∞ asymptotic behavior for the two cases
is |Gu(t )| ≈ e−cuAh2+O(1/t ) and |Gl (t )| ≈ e−cl λ

2+O(1/t ). Indeed,
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FIG. 2. (a) Oscillation-determining energy scales. The natural
energy scales (
E , ω, and δ) of the problem determine the frequen-
cies of oscillations for the Loschmidt echo. 
E and ω are the band
minima and maxima, respectively, with 
E also being half the band
gap. δ is the energy difference between saddle points in the spectrum,
and is inherently 2D. (b) Spinon contributions to stability. Map of
regions giving positive (yellow) and negative (blue) contributions to
the fidelity relative to the ground state coherence for magnetic field
quench. This is shown for the specific case of J = (1, 1, 1). Dirac
points (green) at k = (±π/3,∓π/3) give singular contributions to
the integral in Eq. (5), and regions around them contribute most
heavily to modifying the fidelity relative to the ground state result.
In particular, the plot is of the integrand in Eq. (5) at a particular
time; the contribution only becomes more heavily localized around
the Dirac points at later times. By virtue of being near the Dirac
points, the heaviest contributions also occur in the regions of lowest
energy.

the limit t → ∞ is time independent in both cases, corre-
sponding to a finite overlap with the Kitaev ground state
as time t → ∞. Notably, an orthogonality catastrophe does
not manifest in either case (which would lead to a vanishing
fidelity). This long-time result is one of our key findings, in
addition to the results summarized in Table I.

The long-time form for |Gu(t )| may be exploited for quan-
tum device design: for a uniform field the finite fidelity at
long times may be tuned via sample area size A and coupling
strength h, where larger Ah2 leads to reduced fidelity. For

fixed h, larger system size A corresponds to reduced fidelity,
while smaller system sizes enhance fidelity. In the impurity
case, the impurity coupling strength λ solely determines the
asymptotic limit of |Gl (t )|, which is system size independent.
To a first approximation we also find that decay should be
weaker when the gap is larger, because for a larger gap cl

should be smaller—this can be seen in the integral form of
cl given in the Supplemental Material (Sec. IV) [42].

The behavior of the gapless phase strongly contrasts
that in the gapped phase. In the gapless case, band cross-
ings in the dispersion make important contributions to
the long-time fidelity. Details about the calculation of the
long-time behavior of a system with gapless dispersion
can be found in Sec. IV of the Supplemental Mate-
rial. For the uniform magnetic field and local impurity
cases we find |Gu(t )| ≈ t−Ah2ch1 exp [−Ah2(ch0 + O(1/t ))]
and |Gl (t )| ≈ t−λ2cl1 exp [−λ2(cl0 + O(1/t ))], where ch0 ch1,
cl0, and cl1 are constants depending on J. At long times we
observe that in contrast to the gapped case, gapless systems
have algebraically decaying fidelity |G(t )| ∼ t−β . Similar al-
gebraic decay is found in 1D systems under a quench [48]. In
the uniform magnetic field case we see that for larger Ah2 the
decay is faster—that is, the fidelity diminishes more rapidly
for larger systems and stronger fields. For the impurity quench
the result depends only on the impurity strength and the value
of cl1, not on system size.

Next, we study the asymptotic behavior of the fidelity
under noisy magnetic field and noisy impurity quenches. Ex-
plicit expressions for F (t ) are found using the semianalytical
asymptotic methods discussed in Methods. The leading-
order behavior in all noisy cases is found to be exponential
decay—this can be seen readily via a cumulant expansion.
Specifically, we find F (t ) ∼ Ce−αt t−β, where the coefficients
α and β depend on features of the system such as impurity or
field strength as well as couplings J. The dependence on these
physical parameters is given in Table I. This time-dependence
(particularly the leading exponential decay appearing for a
noisy quench) mirrors 1D results for the out-of-equilibrium
Loschmidt echo and transport properties [48,49]. Results for
two characteristic choices of parameters (one gapless and one
gapped) are given in the Supplemental Material (Sec. IV) [42].

To ensure we capture the decay of off-diagonal elements
of the density matrix, we additionally study Tr[ρ2], noting
that Tr[ρ2] < 1 corresponds to a mixed state. We find that
Tr[ρ(t )2] = F̃ (t )2 (again to second order in a cumulant ex-
pansion; see Sec. VIII of the Supplemental Material), where
ρ(0) = |g〉〈g| is a pure state and F̃ (t ) is a second-order cu-
mulant expansion of the fidelity with the second cumulant
doubled. Hence, Tr[ρ2] decays faster than the fidelity, signal-
ing that while the state becomes mixed, the initial state retains
finite probability in the ensemble, allowing a nonzero stability.

We stress that in the case of a noisy quench F (t ) does not
depend sensitively on whether the system is gapped. However,
it does depend on physical parameters. Under a noisy field,
stability depends on system size A, noise strength κ , and mag-
netic field strength h through the parameter Ah2κ2. We find
that, for example, increasing system size diminishes long-time
stability exponentially. This has implications for quantum de-
vice design subject to environmental noise: in the presence of
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noise, the fidelity is maintained for longer in a device that is
smaller, or more weakly coupled to the environment through
better shielding. In contrast, stability under a noisy impurity
quench has no dependence on system size—the strength of the
exponential and logarithmic decay are set only by the strength
of the noisy impurity. Finally, we note that the general form
F (t ) in Table I has also been found for an Ising chain in a
noisy magnetic field, highlighting that this form is not special
to either the Kitaev model or to 2D systems [24].

Excited States. The basic excitations of the Kitaev model
are spinons and flux excitations. The study of excitations
has technological and theoretical relevance: flux excitations,
being related to anyons, are particularly interesting in the
context of topological quantum computing. Spinons, on the
other hand, have potential relevance to the field of spintronics
with coherent spin excitations having the potential to transmit
energy through transport effects such as the spin Seebeck
effect [50,51].

We consider the long-time fidelity of a state with m discrete
spinon excitations for noiseless quenches. It is straightforward
to compute the quantity Gex(t ) = 〈{k}|eiH0t e−i(H0+V )t |{k}〉
to second order in a cumulant expansion where |{k}〉 =∏

{k} γ
†
k |g〉, with γ

†
k a spinon creation operator, is the excited

state with an arbitrary number of modes excited, and {k}
denotes the set of excited modes. For the impurity quench
(V = λσ z

r ), Gex(t ) is identical to the ground state fidelity, so
that Gex

l (t ) = Gl (t ) within the cumulant expansion. This holds
for any number of excitations and for any choice of parameters
J, and tells us that our results for the ground state fidelity un-
der an impurity quench already capture the long-time stability
of spin excitations.

We can similarly analyze Gex(t ) for a magnetic field
quench with V = h

∑
r σ z

r . In this case the spinon fidelity is
not identical to that of the ground state, but modulates it so
that

|Gex
h (t )| ≈ |Gh(t )| exp

[
4Ah2

∫
{k}

d2k

(2π )2

εk

Ek

(
1− cos (Ekt )

E2
k

)]
,

(5)

where the integral is over an occupied region of the Brillouin
zone, Ek =

√
ε2

k + 
2
k for εk = 2Jz − 2Jx cos kx − 2Jy cos ky

and 
k = 2Jx sin kx + 2Jy sin ky. The first factor is just the
ground state result, and now each excitation contributes a

factor exp [4h2 εk
Ek

( 1−cos (Ekt )
E2

k
)]. Occupied modes around Dirac

points make non-negligible contributions to the fidelity,
strengthening or weakening the stability considerably.

By analyzing the sign of the integrand in Eq. (5), we can
specify the regions of the BZ that contribute positively and
negatively to the fidelity relative to the ground state. This is
shown in Fig. 2(b), where the interior region (bounded by the
red curve in the figure) contains modes that reduce stability
relative to the ground state calculation, while the exterior
region’s modes increase it. The greatest contributions lie on
either side of the Dirac points at (±π/3,∓π/3). Selectively
filling only positively contributing modes leads to substantial
gain in stability for the gapless system.

Conclusions. We have studied long-time stability of the
Kitaev model ground state and spin excitations under various
quenches representing possible disturbances to the system.
We studied four types of quenches and through a long-time
asymptotic analysis of both a gapped and gapless system, we
found a universal functional form for the Uhlmann fidelity:
F (t ) ∼ Ce−αt t−β (see Table I). We found selectively excit-
ing spin excitations can produce remarkably robust quantum
states. Our work has relevance for the design of quantum
devices. Our treatment of evolution between flux sectors could
also be applied to, e.g., linear response theory, to consider
response not just to an applied field but due to motion between
sectors.

All data needed to evaluate the conclusions in the paper are
present in the paper and/or the Supplemental Material.
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