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Motivated by the largely unexplored domain of multipolar ordered spin states in the Kitaev-Heisenberg (KH)
systems we investigate the ground state dynamics of the spin—% KH model, focusing on quadrupolar (QP) order
in two-leg ladder and two-dimensional honeycomb lattice geometries. Employing exact diagonalization and
density-matrix renormalization group methods, we analyze the QP order parameter and correlation functions.
Our findings reveal a robust QP order across a wide range of the phase diagram, influenced by the interplay
between Heisenberg and Kitaev interactions. Notably, we observe an enhancement of QP order near Kitaev
quantum spin-liquid (QSL) phases, despite the absence of long-range spin-spin correlations. This highlights
a complex relationship between QP order and QSLs, offering different insights into quantum magnetism in
low-dimensional systems. Our findings provide a rational explanation for the observed nonlinear magnetic

susceptibility in «-RuCls.
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Introduction. Quantum spin liquids (QSLs) represent a
quantum phase of matter that challenges traditional under-
standing by lacking magnetic long-range order (LRO), yet
they may exhibit global topological order [1]. These elusive
states emerge in frustrated magnetic systems, where com-
peting spin-exchange interactions not only foster the QSL
state but also lead to complex entangled states such as dimer
formations, fractional excitations such as spinons, and Ma-
jorana excitations in the ground state (gs) [2-10]. A key
development in understanding QSLs was the Kitaev model,
which proposed spin—% particles on a hexagonal lattice with
direction-dependent exchange interactions, introducing frus-
tration into the system [11]. The gs of this model is a QSL,
characterized by Majorana fermions and gauge vortices as
elementary excitations [12—17].

The experimental pursuit of the Kitaev model has promi-
nently featured iridium-based materials such as A;IrO; (A =
Na, Li), where Ir atoms form a honeycomb structure [18,19].
In these materials, the octahedral coordination of ligands in-
duces a crystal field, splitting the Ir d orbitals into f,, and e,
levels. Strong spin-orbit coupling further splits the 1, orbitals,
allowing the two highest states of each to mimic effective
spin-% degrees of freedom. This results in orbital-dependent,
directionally anisotropic spin exchanges, i.e., so-called Ki-
taev interactions [20]. However, the Kitaev-Heisenberg (KH)
model, incorporating residual nearest-neighbor Heisenberg
interactions, offers a more realistic description of the magnetic
properties of these materials [21]. Similar Hamiltonians have
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been proposed for materials such as «-RuCl; [20,22-26],
B-LiyIrO;5 [20,25-28], and y-Li,IrO5 [20,29].

The gs phase diagram of the KH model on honeycomb-
lattice KH model has been extensively studied, revealing four
magnetic LRO phases [Néel, zigzag (ZZ), stripy (ST), and
ferromagnetic (FM)] and two QSL phases [FM Kitaev (FK)
and antiferromagnetic Kitaev (AFK) QSLs], by tuning the
Heisenberg and Kitaev interactions [21,30-32]. However, the
potential for a quantum phase involving multipolar spin states,
such as a quadrupolar (QP) or spin-nematic state, in the
KH model remains largely unexplored. From an experimen-
tal perspective, third-order positive susceptibility probing a
higher-order correlation such as QP has been observed at zero
magnetic field in ¢-RuCl; [33]. Yet, the intricate mechanisms
behind these observations are not fully elucidated. In addition
to these experimental findings, the present Letter is further
motivated by the inclusion of a staggered QP operator in the
Hamiltonian of the KH model (see below).

The QP phase, established in liquid-crystal systems
[34-37], manifests in magnetic systems as spin nematics,
where magnetic quadrupole moments create orientational
order without magnetic LRO [38—40]. Initially identified
in spin-1 systems with biquadratic exchange [41], this or-
der has been explored in various Heisenberg spin-1 models
[42-44]. Extending this concept to spin—% systems has spurred
research, particularly in J;-J, chain systems under strong
magnetic fields [45-47]. In the context of Kitaev systems, a
spin-nematic phase in the spin-% Kitaev-Ising model has been
predicted, arising from the interplay between Kitaev QSL
and magnetic LRO, but lacking topological order [48]. Ad-
ditionally, four-body interactions among Majorana fermions
in the Kitaev QSL could induce a topological nematic phase
transition, evolving from the chiral QSL phase to the toric
code phase [49].

©2024 American Physical Society
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In this Letter, we explore the gs dynamics of the spin-
% KH model, focusing on the QP order. We investigate
two geometries, the two-leg ladder and the two-dimensional
(2D) honeycomb lattice, using exact diagonalization (ED) and
density-matrix renormalization group (DMRG) methods. Our
primary contribution is a detailed exploration of the QP order
parameter and correlation functions within these systems. We
present a different gs phase diagram highlighting the QP order
as a function of the ratio between Heisenberg and Kitaev
interactions. A striking aspect of our findings is the robust
presence and stability of QP order across a wide range of the
phase diagram, with a notable enhancement near the Kitaev
QSL phases. This enhancement occurs despite the absence of
longer-range spin-spin correlations, adding another dimension
to our understanding of the interplay between QP order and
QSLs.

Quadrupolar operator. The QP state emerges as a quantum
ordered phase characterized by collective bimagnon excita-
tions. This intriguing state, while exhibiting a preference for
the orientation of paired magnons, notably does not break
time-reversal symmetry. Its detection hinges on the analysis
of a symmetric and traceless rank-2 tensor operator [50],

%(Sk - S81)8up, (1)

where o and B represent the Cartesian coordinates such as
X, ¥, z and k, [ denote different sites.

Model. We consider a spin—% KH model on both a ladder
and a honeycomb lattice [21]. The Hamiltonian is given by

H=J) S5-5+K) > ss, )
k.l v kil

where S,’; is the y (=x, y, or z) component of the spin-%
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operator Sk at site k. Here, J and K denote the Heisenberg
and Kitaev interactions, respectively. To facilitate analysis,
we introduce an angular parameter ¢ (€ [0, 2]), defining
J =cos¢ and K = sin ¢.

For the ladder or cyhnder geometry, the Hamiltonian is
adapted to include the spln-— operator S; ,j at site i on the jth
leg:

2J +K _
Hieg = ZZ(STJSHH J IJS;:'] J)
j=1i=1

n L
K
+2Z
j=1i=
E/7"[exc'i‘/HQ‘l‘/Hr 3)

)+ JZ Z S5i8500)

(—1y (05
1 j=1 i=1

In this formulation, Hq explicitly includes a specific compo-
nent of Eq. (1), which signifies the QP operator,
2
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Its dominance suggests the potential stabilization of QP order.
The possibility of QP order arising through similar mecha-
nisms has been previously discussed in the context of J;-J,
chain systems under magnetic fields [51].

Although the Kitaev model was originally proposed for the
honeycomb lattice, it is recognized that any three-coordinated
lattice with Kitaev interactions can exhibit similar intriguing

FIG. 1. Lattice structures used in our calculations: (a) KH ladder
or brickwall lattice which is obtained by deforming the honeycomb
lattice KH model. (b) Two-leg KH ladder. (c) A 24-site honeycomb
lattice KH cluster with periodic boundary conditions.

properties. In this sense, the KH model on a two-leg ladder
[Fig. 1(b)], derived from a brickwall lattice analogous to the
honeycomb lattice, aligns with the necessary geometry. This
alignment indicates that the two-leg KH ladder can offer vital
insights into the behavior of the 2D honeycomb lattice KH
model. Notably, the gs phase diagram of the ladder model dis-
plays significant similarities with the 2D counterpart in terms
of magnetic order and Kitaev QSL, with the key distinction
being the replacement of the Néel phase by the rung-singlet
(RS) phase [52,53]. Therefore, initiating our investigation
with the two-leg KH ladder is a strategic choice. This setup
not only allows for precise numerical calculations but also
facilitates reliable extrapolations to the thermodynamic limit,
essential for exploring novel phenomena in the 2D KH model.
Building upon this, we extend our investigation to four-leg and
six-leg cylinders [Fig. 1(a)], progressively approaching the 2D
bulk limit. This systematic increase in the number of legs
serves to bridge our understanding from the simpler ladder
systems to the more complex dynamics inherent in the full 2D
KH model.

Methods. To investigate the intricate dynamics of the
KH model, we employ two complementary computational
techniques. For the two-leg ladder system [Fig. 1(b)],
encompassing system sizes up to 12 x 2, and for the 24-
site periodic boundary condition (PBC) cluster [Fig. 1(c)],
we utilize the exact diagonalization (ED) method. For
larger systems, specifically extended two-leg ladders, as
well as four-leg and six-leg cylinders [Fig. 1(a)], we
implement the DMRG method [54-56]. In our DMRG
calculations, we retain up to 5000 density-matrix eigen-
states during the renormalization process. This high num-
ber of kept states ensures the accuracy of our results,
with the largest discarded weight being maintained at
approximately 2 x 1075,

Quadrupolar order in the two-leg ladder. We commence
our analysis with the two-leg ladder system. To obtain a
comprehensive phase diagram for QP order as a function

of ¢, we calculate the QP order parameter (Qf;fyz) us-
ing ED. Our findings, focusing on a single bond along the
leg, are depicted in Fig. 2(a). We find that (Qf;_yz) ex-
hibits finite values over a broad range of ¢ (0.487 < ¢ <
1.567r) with minimal finite-size effects. This order parameter
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FIG. 2. Results for two-leg KH ladder. (a) Absolute values of the
QP order parameter for leg bonds with various system sizes. The in-
set represents the same physical quantity but without taking absolute
values. (b) Ground state phase diagram for magnetic order (inner)
and QP order (outer). Four long-range ordered phases: rung-singlet
(RS), zigzag (ZZ), ferromagnetic (FM), stripy (ST); and two QSL
phases: antiferromagnetic Kitaev (AFK) and ferromagnetic Kitaev
(FK). (c) Compilation of the behavior of the QP correlation functions
[PLiLi(r)] with N = 100 x 2 cluster for representative parameters
(see text). (d) Interleg and rung-rung QP correlation functions at
¢/m =0.5, 1.2, and 1.5. Inset: Examples for the cases where the
QP correlation function exhibits an exponential decay.

shows significant values in the AFK, FK, and ZZ phases
of the magnetic phase diagram, while it rather diminishes
in the FM phase [Fig. 2(b)]. Conversely, when i and j

A2 2
X7 =y :
ij ~ ) consistently equals

are positioned on a rung bond, (Q;;
zero.

To further substantiate these findings, using DMRG we
compute leg-leg and rung-rung QP correlation functions,
defined as

Pimin(r) = <S[TmSl?:—l,mSi;»r,nS;rl+r,ﬂ> &)
and
Pre(r) = (8783t SitrmSiarmst ) (6)

respectively. The results, summarized in Figs. 2(c) and 2(d),
reveal that the intraleg correlation Py (r) exhibits QP LRO

within the ¢ range where (Qf;_yz) is finite. Note that P j1;(r)
alternates in sign with distance. Meanwhile, near both Ki-
taev points ¢ = £ /2, the interleg correlation Py 11,(r), and
near the FK phase, the rung-rung correlation Prgr(r), also
exhibit QP LRO. Unlike P 111(r), both P 112(r) and Prr(r)
are always positive. Interestingly, despite the rung QP or-
der parameter being consistently zero across all ¢ values,
Prr(r) still exhibits LRO in the FK phase. This suggests that
states of QP order with broken spin-rotational symmetry are

degenerate, leading to a zero local order parameter, yet de-
tectable through correlation functions.

From these correlation function analyses, the ¢ domain
for QP order can be classified into four phases: QP1 [only
P11 (r) shows LRO], QP2 [both P i1 ;(r) and P11 ,(r) show
LRO], QP3 [all of PLlLl(r)a PLle(l’), and PRR(”) show
LRO], and a phase with no QP LRO. The schematic pic-
ture of each QP phase is illustrated in the Supplemental
Material [57]. The correspondence with the magnetic order
phases is shown in the phase diagram in Fig. 2(b). The phase
diagram for QP order can be correlated by considering the
spin structures of the corresponding magnetic phases and we
notice that in the presence of a dominant QP phase along
the x2-y? plane the magnetic order either vanishes or appears
along the z axis. In the FM phase (0.81 < ¢/m < 1.38), the
near-full magnetization results in smaller values of Ppp(r)
and |(Qf;7y2)|, and they vanish without Hq at ¢ = . The
77 phase (0.53 < ¢/ < 0.81) exhibits Ising-type LRO in
each leg with opposite polarization between legs [52], lead-
ing to the anticipated development of Pp;1,(r). However,
Prr(r) does not show LRO due to antiparallel spin orienta-
tion on the rungs. In fact, a detailed wave-function analysis
suggests the dominant contribution of double-flip configu-
rations in the gs (see the Supplemental Material [57]). In
the RS (—0.26 < ¢/ < 0.48) and ST (1.57 < ¢/ < 1.74)
phases, the each leg possesses a Néel-type LRO, preclud-
ing the dominance of the Hqg term. Thus, a QP order is
absent.

In the AFK (0.48 < ¢/ < 0.53) and FK (1.38 < ¢/ <
1.57) phases, the competition between dipole fluctuations
(Hexe) and QP fluctuations (Hq) complicates gs determina-
tion. Nevertheless, the larger coefficient of Hq supports the
emergence of QP order along the leg, as corroborated by our
numerical results. Remarkably, in the FK phase, the rung QP
correlation function Prg(r) also exhibits LRO, with a satu-
ration value exceeding P (7). This is attributed to the FM
Ising character of rung interactions, conducive to bimagnon
formation [58]. The approximate wave function of the FK
phase is detailed in the Supplemental Material [57].

Given these insights, we hypothesize that QP order might
also be present in the 2D honeycomb KH system, akin to the
two-leg ladder scenario. To test this hypothesis, we extend our
investigation to isotropic honeycomb cluster as well as four-
leg and six-leg cylinders, in the parts that follow.

Quadrupolar order in the 2D honeycomb lattice. Anal-
ogous to the approach for the two-leg ladder, we first aim
to grasp the overall picture of the QP order phase diagram
as a function of ¢ by calculating the QP order parameter
using ED on the 24-site PBC cluster. The results, illustrated
in Fig. 3(a), are compared with those from the two-leg ladder.
In the context of magnetic order phases for the 2D honey-
comb lattice KH model, the QP order parameter is finite
in the AFK (0.494 < ¢/ < 0.506), ZZ (0.506 < ¢/ <
0.847), FM (0.847 < ¢/m < 1.452), FK (1452 S ¢/n S
1.539), and ST (1.539 < ¢/7 < 1.694) phases, and it is zero
only in the Néel phase (—0.306 < ¢/ < 0.494). While the
results are fundamentally similar to those for the two-leg
ladder, a notable difference is that the QP order parameter
remains finite even in the ST phase. For the z bonds, similar
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FIG. 3. Results for honeycomb lattice KH model. (a) Absolute
values of the QP order parameter for the x or y bond, calculated
using the 24-site PBC cluster. For comparison, those for the two-leg
KH ladder are also plotted. The inset represents the same physical
quantity but without taking absolute values. (b) Ground state phase
diagram for magnetic order (inner) and QP order (outer).

to the rung QP in the two-leg ladder, the QP order parameter
is zero.

To ascertain the persistence of QP order in the bulk limit,
we compute QP correlation functions using DMRG for four-
leg and six-leg cylinders, in addition to the two-leg ladder.
Focusing on the intraleg QP correlation function, P ;(7),
we observe in Fig. 4 that, consistent with the QP order pa-
rameter results, Ppip(r) converges to a finite value in the
long-distance limit for all magnetic phases except the Néel
phase. Importantly, this convergence value does not diminish
with an increasing number of legs, suggesting its stability in
the bulk limit. In the Néel phase, P ;r;(r) exhibits a power-
law decay indicating no long-range QP order.

The decay of QP correlation functions perpendicular to the
leg direction, namely along the z bond, is also of interest.
We calculate the interleg QP correlation function, Ppip,(r),
for various leg distances in a 50 x 6 system. The calculated
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FIG. 4. DMRG results for the QP correlation functions Py ;(r)
at representative value of ¢ for six quantum phases using two-leg,
four-leg, and six-leg cylinders.
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FIG. 5. DMRG results for the interleg QP correlation functions,
Pripa(r) for n = 1-3 at magnetic ordered phases, including ZZ
(¢p/m =0.65), FM (¢/m = 1.2), ST (¢/m = 1.6), and QSL phase
(¢p/m = 0.5), using six-leg cylinders.

PLita(r) for n =1-3 is plotted in Fig. 5. In the ZZ and
FM phases, the saturation value of Pp1,(r) at long distances
follows power-law decay [Figs. 5(b) and 5(c)], suggesting
quasi-LRO along the z-bond direction (QPxyl phase). Near
the Kitaev points (AFK and FK), a rapid decay of interleg
correlations is observed [Fig. 5(a)], indicating LRO in the xy
zigzag direction alone (QPxy2 phase). The ST phase presents
a unique case, where the decay along the z-bond direction
does not follow a simple pattern [Fig. 5(d)], hinting at the
potential for LRO (QP2D phase). For all ¢ values, the rung-
rung QP correlation function, Prg(r), exhibits exponential
decay for both four-leg and six-leg cylinders. The QP phases
are explained in detail in the Supplemental Material [57].
The correspondence between QP order and magnetic order
is summarized in the phase diagram in Fig. 3(b). A notable
distinction from the two-leg ladder case is the presence of QP
order in the ST phase, likely due to the unique orientation
of ST order in this setting, although the magnitude of QP
correlations in this phase is relatively small compared to other
phases.

Summary. We have explored the gs dynamics of the spin-
% KH model, focusing particularly on the emergence and
characteristics of QP order. Our study spans two distinct ge-
ometries: the two-leg ladder and the 2D honeycomb lattice.
Employing a synergistic approach combining ED and DMRG
techniques, we have meticulously analyzed the QP order pa-
rameter and correlation functions in these systems. Our key
contribution is the unveiling of a comprehensive gs phase
diagram, which distinctly maps out the QP order in relation
to the interplay between Heisenberg and Kitaev interactions.
A notable discovery is the pronounced stability of QP order
across a broad range of the phase diagram, underscoring its
robustness in the KH model. Additionally, our findings re-
veal a remarkable enhancement of the QP order parameter
and its correlation functions near the Kitaev QSL phases.
This enhancement is particularly intriguing as it occurs in
the absence of long-range spin-spin correlations, suggesting a
nuanced relationship between QP order and QSLs. In fact, the
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third-order positive susceptibility, indicative of a general sig-
nature of QP order, has been observed in @-RuCl; [33], where
the relationship between K and J appears to be —K > J > 0
[59], suggesting a proximity to the FK QSL phase.

These insights not only advance our understanding of the
KH model but also contribute significantly to the broader dis-
course on quantum magnetism in low-dimensional systems,
highlighting the intricate interplay between different types of
quantum order.
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