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We consider the quantum reaction-diffusion dynamics in d spatial dimensions of a Fermi gas subject to binary
annihilation reactions A + A → ∅. These systems display collective nonequilibrium long-time behavior, which
is signalled by an algebraic decay of the particle density. Building on the Keldysh formalism, we devise a
field theoretical approach for the reaction-limited regime, where annihilation reactions are scarce. Combining
a perturbative expansion of the dissipative interaction with Euler-hydrodynamic scaling limit, we derive a
description in terms of a large-scale universal kinetic equation. Our approach shows how the time-dependent
generalized Gibbs ensemble assumption, which is often employed for treating low-dimensional nonequilibrium
dissipative systems, emerges from systematic diagrammatics. It also allows us to exactly compute—for arbitrary
spatial dimension—the decay exponent of the particle density. The latter is based on the large-scale description
of the quantum dynamics and it differs from the mean-field prediction even in dimension larger than one.
We moreover consider spatially inhomogeneous setups involving an external potential. In confined systems
the density decay is accelerated towards the mean-field algebraic behavior, while for deconfined scenarios the
power-law decay is replaced by a slower nonalgebraic decay.
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Introduction. Reaction-diffusion (RD) systems [1–3],
where particles diffuse and react upon meeting, are ideal
systems for the investigation of dynamical universal behavior.
For example, for binary annihilation reactions A + A → ∅,
the late time decay of the particle density takes a universal
power-law form. In the “diffusion-limited” regime [4–12],
where diffusion is weak, the origin of this dynamical behavior
are spatial density fluctuations. Here, mean-field approaches
cannot be applied and field-theoretical and renormalization
group analyses [13–22] correctly predict the observed power
law. The mean-field approximation is, however, valid in more
than one dimension and/or in the “reaction-limited” regime
of fast hopping mixing [2,3,6,23,24].

In quantum many-body systems large-scale properties are
even harder to uncover than in the classical realm, already in
the one-dimensional case, since they entail the simulations of
large sizes and long times [25–31]. In this regard, quantum
RD systems have moved into the focus of attention. They
follow simple dynamical rules [32–45], which connect to
cold-atomic experiments [46–56], and they allow for novel
forms of particle-density decay beyond mean field. This has
been shown in Refs. [34–36,39,40,42,45] for one-dimensional
systems in the reaction-limited regime. In this limit, analytical
predictions can be obtained under the assumption that the sys-
tems relaxes to a time-dependent generalized Gibbs ensemble
(TGGE) [57–60]. The connection between the TGGE assump-
tion and diagrammatics techniques, and the study of universal
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decay in generic spatial dimensions d , requires, however, the
development of a field theory.

In this Letter, we accomplish this by exploiting the Keldysh
path integral representation of the quantum master equa-
tion [61–68]. We investigate as a paradigmatic example the
Fermi gas in d spatial dimensions subject to binary annihi-
lation reactions A + A → ∅. From the Keldysh field theory,
we perform a diagrammatic expansion of the dissipative
interaction vertices. In the Euler-scaling limit of hydrody-
namics [38,69–72], when space-time derivatives are kept at
leading order, this expansion acquires the universal form of
a kinetic Boltzmann equation. In d = 1, this analysis pro-
vides results equivalent to that of the TGGE ansatz for the
reaction-limited regime and therefore provides a connection
between the much-employed TGGE relaxation assumption,
hydrodynamic scaling limits, and diagrammatic expansions
in dissipative systems. Crucially, from the field-theory de-
scription, we exactly compute the density decay exponent
in arbitrary dimensions, which is found to deviate from the
mean-field prediction even in d > 1. This result is in contrast
with the classical case and it is rooted into the large-scale uni-
versal description of the underlying quantum dynamics. We
also consider the case of inhomogeneous systems where we
study quenches of a trapping potential confining the fermions.
For a quench from a double to single well potential, we find
an acceleration of the particle decay, which diverts the de-
cay exponent towards the mean-field one. For a trap-release
quench, we, instead, find a qualitatively different scenario:
the algebraic decay first slows down on an intermediate time
window, and then it gets replaced at long times by a slower
nonalgebraic decay.
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FIG. 1. Quantum RD dynamics via Keldysh field theory. (a) Comparison of classical and quantum RD dynamics: classical incoherent
diffusion (D, top, blue solid lines) is replaced by quantum coherent ballistic motion (J , bottom, blue wiggly lines), while in both cases
annihilation, A + A → ∅, is irreversible. (b) Time evolution of the density matrix ρ(t ) along the closed-time contour associated to the Lindblad
map L. Two time branches, forward (+) and backward (−), are required. The particle number decreases during time evolution, as can be
seen by comparing the initial n(x, t0 ) and final n(x, t f ) density profiles. (c) Annihilation interaction vertices define the self-energy Keldysh
matrix �̂, which dresses the Green’s functions Ĝ with respect to their bare values Ĝ0. In the reaction-limited regime h̄n(x, t )�/J � 1, the
quasiparticle dispersion relation εk is not modified, while quasiparticles acquire a large-finite lifetime ∼�−1, given by the energy width ε of
GK (�x, t, �k, ε) (sketched in red). This lifetime is given by tadpole Feynman diagrams (sketched in the light blue inset). In the Euler-scaling
limit, these diagrams reproduce the TGGE predictions for n(�x, �k, t ) (spectral integral in ε of GK (�x, t, �k, ε) depicted in light blue).

Quantum RD Keldysh action. The dynamics of the con-
sidered Fermi gas in d spatial dimensions is governed by the
quantum master equation [73–76] with Lindblad map L

ρ̇(t ) = L[ρ(t )] = − i

h̄
[H, ρ(t )] + D[ρ(t )]. (1)

The Hamiltonian H describes coherent free motion in the
presence of an external trapping potential V (�x):

H =
∫

dd �x ψ†(�x)[−J∇2 + V (�x)]ψ (�x). (2)

Here J = h̄2/(2m), while ψ , ψ† are fermionic field
operators satisfying canonical anticommutation relations
{ψ (�x), ψ†(�x′)} = δ(�x − �x′). It is important to note that Eq. (2)
describes coherent-ballistic motion, differently from the clas-
sical case, which features diffusion, see Fig. 1(a). The
dissipator D[ρ] embodies irreversible reaction processes

D[ρ(t )] =
∑

α

∫
dd �x

[
Lα (�x)ρ(t )L†

α (�x)

−1

2
{ L†

α (�x)Lα (�x), ρ(t )}
]
, (3)

with α = 1, 2, . . . , d . We focus on binary annihilation re-
actions A + A → ∅, see Fig. 1(a), modeled by the jump
operators

Lα (�x) =
√

� ψ (�x) ∂xα
ψ (�x). (4)

The constant � (units: lengthd+2/time) characterizes the an-
nihilation reactions. In the Supplemental Material [77], the
jump operator (4) is obtained by taking the continuum limit
of nearest-neighbors annihilation. The latter is the natural
annihilation decay to consider for fermionic particles, where
on-site reactions are forbidden.

Nonequilibrium universal behavior manifests in the power-
law decay of the density n(x, t ) = 〈ψ†(�x)ψ (�x)〉t in time.
Power-law decay is a general consequence of the nonlinearity
of the binary annihilation process (4), and it can therefore be
present both for ballistic [as in the case of (2)] and diffusive

transport of particles. Here, we characterize this decay in
the reaction-limited regime of weak dissipation. This regime
amounts to considering weak dissipative perturbations (4) ∼�

to the integrable (noninteracting) Hamiltonian (2). In partic-
ular, we take h̄n(x, t )�/J � 1, so that reactions are weak
and the density slowly changes in time. We further allow for
weak spatial inhomogeneities due the presence of the trapping
potential V (�x �), which we assume to vary on macroscopic
length scales �x ∼ �−1. In this limit, the quasiparticle disper-
sion relation εk (�x) = J�k2 + V (�x �) of H in Eq. (2), with �k the
momentum, is locally modified by the external potential.

In this regard, we study the quantum reaction-limited
regime in the Euler-scaling limit [38,69–72,78–84]. The Euler
scale is the largest scale of hydrodynamics, where space-time
observation points are large keeping their ratio finite: �x, t →
∞, � → 0 with �̄x = ��x and t̄ = �t fixed. In the different
context of Hamiltonian integrability-breaking perturbations,
similar scaling limits have been studied in Refs. [58,78]. In
the ensuing “Boltzmann regime”, it has been shown [58]
that the slow dynamics of the weakly broken charges of the
unperturbed Hamiltonian is governed by the instantaneous
GGE of the integrable Hamiltonian. In the context of dissi-
pative systems, in the Euler-scaling limit the similar TGGE
assumption has been put forward [57,59,60], but a deriva-
tion of that is missing. In this Letter, we aim at connecting
the TGGE assumption to diagrammatics techniques showing
which assumptions in the latter eventually allow us to reobtain
the former.

To do this, we exploit the Keldysh quantum field-theory
description [63–68] of the open quantum RD dynamics (1)-
(4) [77]. A general feature of Keldysh field theory is the
doubling of the ψ, ψ̄ fields into four fields—ψ+, ψ̄+ and
ψ−, ψ̄−—evolving along a “forward” (+) and a “backward”
(−) contour of the considered time interval, respectively,
as sketched in Fig. 1(b). Plus and minus fields are usu-
ally rewritten in terms of Keldysh-rotated fields [62,77,85]
φ1, φ̄1, φ2, φ̄2. The Keldysh partition function Z (t )=
tr[ρ(t )]=∫

D[φ1, φ̄1, φ2, φ̄2] exp{iS[φ1, φ̄1, φ2, φ̄2]} includes
full information on the system’s microscopic dynamics. The
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action S = S0 + SD is composed of two sectors. A quadratic
sector S0 describes coherent motion (2):

S0 =
∫

dd x dt ′ [φ̄1
(
GR

0

)−1
φ1 + φ̄2

(
GA

0

)−1
φ2

]
, (5)

with (GR/A
0 )−1 = i∂t ′ + (J∇2 − V (�x))/h̄ ± iδ the inverse

retarded/advanced bare propagator, respectively. The bare
Keldysh Green’s function GK

0 ≡ −i 〈φ1φ̄2〉 associated to S0

is a regularization factor. The retarded/advanced propagator
GR/A

0 (with V (�x) = 0) in S0 has a structure similar to the
classical RD quadratic counterpart [14–17,20–22], the
difference between the two being in the ballistic quantum
motion of S0 compared to the classical diffusive one. The
second part SD of the action contains the interaction vertices
of the theory due to annihilation reactions (4):

SD = i�

4

∫
dd x dt ′[2( �∇φ̄1φ̄2 + �∇φ̄2φ̄1) · (φ1 �∇φ2

+ φ2 �∇φ1) + ( �∇φ̄1φ̄2 + �∇φ̄2φ̄1) · (φ1 �∇φ1 + φ2 �∇φ2)

− ( �∇φ̄1φ̄1 + �∇φ̄2φ̄2) · (φ1 �∇φ2 + φ2 �∇φ1)
]
. (6)

All the interaction vertices are quartic in the fields, differently
from the classical RD field theory, where both cubic and
quartic interaction vertices are present. Furthermore, spatial
gradients of the fields appear as a consequence of fermionic
statistics.

Kinetic equation. In the reaction-limited regime h̄n�/J �
1, the dressed Green’s functions Ĝ can be rewritten in terms
of the bare Green’s functions Ĝ0 as the interaction vertices (6)
are expanded perturbatively around the quadratic sector (5).
The sum of all internal one-particle-irreducible contributions
to the Feynman diagrams results in the entries of the self-
energy Keldysh-space matrix �̂ [61–68,86,87]. The ensuing
Dyson equation is pictorially shown in Fig. 1(c).

The Keldysh component of the Dyson equation for
GK (�x1, t1, �x2, t1) determines the kinetic equation [77]. The
large-scale universal limit of this equation is best extracted
by performing a Fourier transform in the relative space [time]
variable �x′ = �x1 − �x2 [t ′ = t1 − t2], GK (�x, t, �k, ε),1 i.e., the
so-called “Wigner transform” [88–90]. The set of Wigner
center-of-mass coordinates �x = ( �x1 + �x2)/2 [t = (t1 + t2)/2],
as well as momentum �k and energy ε, characterize the effec-
tive macroscopic evolution of Green’s functions. At this point
two assumptions are needed: (i) Euler-scaling limit, so slow
space-time variations so as we perform the Moyal-derivative
expansion of hydrodynamics [71,79,91–94] at leading order
in space-time derivatives; (ii) stable quasiparticle excitations,
which in the Keldysh formalism translates into a sharply
peaked GK (�x, t, �k, ε) around εk (�x), as in Fig. 1(c). Both (i) and
(ii) rely on the weak dissipative integrability breaking � → 0
and this is why the kinetic equation eventually matches the
TGGE prediction. This is explicitly shown via the exact rela-
tion for the equal-time Keldysh Green’s function GK (�x, t, �k, t )

1In the whole Letter, for lightness of notation, we use the same
symbol for a function and its Wigner transform. The two functions
can be distinguished from the corresponding arguments.

FIG. 2. Binary annihilation decay in d dimensions. Solution
of the homogeneous Boltzmann equation (8) from the Fermi-sea
initial state at density n0. The rescaled density ñ = n/n0 decays
algebraically as a function of the dimensionless time t̃ = n1+2/d

0 �t .

From top to bottom, algebraic decay ñ ∼ t̃− d
d+1 in d = 1, 2, 3 (solid

lines). The dashed line represents the mean-field decay exponent t̃−1

asymptotically valid in infinite d .

as:

iGK (�x, �k, t, t ) = 1 − 2 n(�x, �k, t ). (7)

Here, n(�x, �k, t ) is the one-body Wigner function, i.e., the
semiclassical phase-space (�x, �k) occupation function [95–97].
Within the conditions (i) and (ii), the Wigner function can be
identified as the emergent degree of freedom, which obeys the
quantum Boltzmann-like equation (t̄ = �t and �̄x = ��x)

[ ∂t̄ + �vg(�k) · �∇x̄ − �∇x̄V/h̄ · �∇k ]n(�̄x, �k, t̄ )

= −
∫

dd q

(2π )d
(�k − �q)2 n(�̄x, �k, t̄ ) n(�̄x, �q, t̄ ). (8)

Crucially, in Euler-scaling limit, we find that �̂ contributes
via purely imaginary terms, which determine the right-hand
side (r.h.s.), named collision integral. The latter is computed
in terms of tadpole Feynman diagrams (depicted in Fig. 1(c))
at lowest order in the derivatives �∇. The appearing factor
(�k − �q)2 stems from the fermionic statistics. Moreover, the
dispersion relation εk (�x) (�vg(�k) = 2J�k/h̄ is the group ve-
locity) is not renormalized. This is a consequence of the
integrability-breaking term being purely dissipative. When
additional Hamiltonian integrability-breaking perturbations
are introduced, the quasiparticle spectrum and the potential V
can get possibly renormalized. In d = 1, the r.h.s. of Eq. (8)
has the same form as the one derived in Refs. [34,35,40,42,45]
assuming the systems relaxes to a TGGE state in between con-
secutive reactions. This analysis therefore shows how systems
whose integrability is weakly broken due to dissipation can
be equivalently studied via Keldysh diagrammatic methods.
At the same time, it allows us to consider higher-dimensional
systems.

Homogeneous decay in d dimensions. For homogeneous
initial states and no trapping potential V (�x) = 0, the Wigner
function n(�x, �k, t ) reduces to the momentum-occupation
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FIG. 3. Binary annihilation inhomogeneous decay in d = 1. (a) Double well to harmonic confinement potential quench: plot of the rescaled
particle number Ñ (t̃ ) as a function of rescaled time t̃ for increasing values of the parameter � = 2n(0, 0)[2J/(8h̄ωN3

0 )]1/2 (from top to bottom).
The algebraic time decay gets accelerated as � is increased towards the mean-field prediction Ñ (t̃ ) ∼ t−1 (bottom dashed line). (b) The
corresponding rescaled spatial density ñ(x̃, t̃ ) profiles at increasing times (from top to bottom) are plotted as a function of space x̃, with
� = 0.1. For both plots C = 0.8 and B = 1. (c) Trap release quench: particle number decay Ñ (t̃ ) versus time t̃ for increasing � (from bottom
to top). A decay exponent Ñ (t̃ ) ∼ t̃−ξ is approximately observed at intermediate times, with ξ decreasing with �, and ξ = 1/2 for � = 0
(black dashed line). At longer times a nonalgebraic slow decay sets in. (d) The associated rescaled spatial density ñ(x̃, t̃ ) profiles are reported
at increasing times (from top to bottom), with � = 0.1.

function n(�k, t ). We consider a Fermi-sea initial state, with
equally populated modes up to some Fermi momentum and a
total initial density n0. The asymptotics of the particle density
decay can be worked out for generic d [77]. It is conve-
nient to introduce the adimensional rescaled density ñ = n/n0

and time t̃ = n1+2/d
0 �t . The long-time asymptotics for ñ(t̃ ) is

given by the power law

ñ(t̃ ) ∼
[

[(αd �d )(d − 2)!!]2

2d (d + 1)d (2π )2d

] 1
d+1

t̃− d
d+1 , (9)

with �d the d-dimensional solid angle.2 The solution of the
homogeneous Boltzmann equation for d = 1, 2, 3 from the
Fermi-sea initial state is shown in Fig. 2. In d = 1, the de-
cay exponent is 1/2 in agreement with the TGGE prediction
[34,35,40,42,45]. We find that the algebraic decay is different
from the mean-field t̃−1 even for d > 1 and it approaches
the latter only for d → ∞. This result is surprising and
fundamentally different from the classical A + A → ∅ RD
dynamics. Therein, non-mean-field algebraic decay is possi-
ble only in d = 1 in the diffusion-limited regime h̄�n/J ∼ 1
[14–17,20–22], as a consequence of spatial fluctuations. Con-
versely, the different dimensional dependence of the exponent
in Eq. (9) does not emerge due to spatial fluctuations but from
the universal large-scale limit (8) of the quantum dynamics.
We remark that the power-law decay (9) is dictated by the
nonlinearity of the binary annihilation reaction. In addition
the decay (9) beyond mean field is not specific of the zero-
temperature initial Fermi-sea state, since it also describes the
dynamics ensuing from finite-temperature initial states, with
the temperature changing the amplitude but not the exponent
of the decay [77].

Inhomogeneous decay in one dimension. We now con-
sider a one-dimensional quantum quench of a slowly varying
trapping potential from the prequench V0(εx) = A(εx)4/4 −

2αd = 1 for d even, αd = √
π/2 for d odd.

mω2(εx)2/2 double well to the postquench harmonic V (εx) =
mω2(εx)2/2 form. The small adimensional parameter ε =
h̄n(0, 0)�/J ensures the potentials to be slowly varying in
x. This analysis is thus an example of the application of
generalized hydrodynamics to the case of a weakly varying
external field [80], with the additional presence here of slow
dissipation. A similar setting has been consider in Ref. [35],
where also the prequench potential V0(x) is harmonic. The
initial condition is the local-density approximation of the
ground state of the Hamiltonian H in Eq. (2) with potential
V0(x). We set the initial particle number to N0 and we perform
Euler scaling according to the parameters of the harmonic
potential V (x): for the particle number Ñ = N/N0, time t̃ =
εt (2N0)3/2J/[�3

HOh̄n(0, 0)], space x̃ = εx/(
√

2N0�HO), mo-
mentum k̃ = k�HO/

√
2N0 and density ñ = n(2π�HO/

√
2N0),

with �HO = √
h̄/(mω). The adimensional parameter � =

2n(0, 0)[2J/(8h̄ωN3
0 )]1/2 quantifies the interplay between co-

herent motion (J) and confinement (ω). In the rescaled phase
space (x̃, k̃), the initial state is n(x̃, k̃, t ) = 1 if B − k̃2 + x̃2 −
Cx̃4 > 0, and zero otherwise. Here C = Ah̄N0/(m2ω3) and
B = μ/(h̄N0ω), with the chemical potential μ fixing the initial
particle number N0.

In Fig. 3(a), the decay of Ñ as a function of t̃ is shown.
The decay accelerates periodically as � is increased since
particles bounce off the potential walls and gather up at the
center of the well, as shown in Fig. 3(b) for the density ñ(x̃, t̃ ).
As a consequence of such breathing motion all decay profiles
converge from the short-time Ñ (t̃ ) ∼ t̃−1/2 algebraic behavior
towards the mean-field asymptotic decay Ñ (t̃ ) ∼ t̃−1.

Next, we consider the long-time decay for the deconfine-
ment dynamics of a harmonic trap-release quench of the Fermi
gas from V0(x) = mω2(εx)2/2 to V (x) = 0. We rescale also
in this case variables with respect to the harmonic potential
V0(x) parameters. In Fig. 3(c) the decay of Ñ in time t̃ is
reported. One first observes [77] an approximate algebraic
decay Ñ (t̃ ) ∼ t̃−ξ , with an exponent ξ continuously decreas-
ing as � is increased (from the value ξ = 1/2 at � = 0). At
longer times, an unexpectedly slow decay, when compared to
any power law, sets in. This slow decay is unexpected because
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it is not solely determined by the decrease of the density
due to the expansion in free space, in Fig. 3(d), but also by
the fermionic statistics. The most relevant reactions at low
densities in the trap-release protocol, indeed, take place be-
tween particles with same momenta. The fermionic statistics,
manifest in the factor (k̃ − q̃)2 in Eq. (8), thereby suppresses
these reactions and determine the decay of Figs. 3(c)–3(d).

Summary. We provided a Keldysh field-theory descrip-
tion of quantum RD dynamics of binary annihilation A +
A → ∅. We analytically derived in the Euler-scaling limit
the universal large-scale Boltzmann equation in arbitrary di-
mension d describing the reaction-limited regime of slow
reactions h̄n�/J � 1. In d = 1, our results match the pre-
diction from the TGGE ansatz, connecting the latter to
field-theoretical diagrammatic expansions. For homogeneous
systems, we analytically showed that the density algebraic
decay exponent features an unexpected dependency on d
and it deviates from mean-field value even in d > 1, in
contrast with classical RD dynamics. In one-dimensional
inhomogeneous setups involving a trapping potential, we
found that the decay is either accelerated towards the mean-
field value (confined systems), or severely slowed down
(deconfined systems). Our results find a natural applica-
tion in cold-atomic experiments involving two-body losses
[32,46,55,56] in the strong-dissipation Zeno regime. From

the formulation here proposed, several relevant questions
can be addressed. As an example, one can assess the im-
pact of elastic-Hamiltonian collisions on the decay exponent
[55,56,98–100]. The presence of Hamiltonian-integrability
breaking perturbations can, indeed, result into hydrodynamic
diffusion [101], and it would be interesting to study the possi-
ble impact of diffusion on the asymptotic power-law decay of
the density. Away from the reaction-limited, it is also crucial
to study the quantum diffusion-limited regime h̄n�/J ∼ 1
via renormalization group schemes, as done for the classical
RD [17,20–22].
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