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Exact solution to the quantum and classical dimer models on the spectre aperiodic monotiling
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The decades-long search for a shape that tiles the plane only aperiodically under translations and rotations
recently ended with the discovery of the “spectre” aperiodic monotile. In this setting we study the dimer model,
in which dimers are placed along tile edges such that each vertex meets precisely one dimer. The complexity
of the tiling combines with the dimer constraint to allow an exact solution to the model. The partition function
is Z = 2Nmystic+1 where Nmystic is the number of “mystic” tiles. We exactly solve the quantum dimer (Rokhsar-
Kivelson) model in the same setting by identifying an eigenbasis at all interaction strengths V/t . We find that
test monomers, once created, can be infinitely separated at zero energy cost for all V/t , constituting a deconfined
phase in a (2+1)-dimensional bipartite quantum dimer model.
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The dimer model is one of the oldest models in statisti-
cal physics. Given a graph (vertices connected by edges), a
“perfect dimer matching” is a set of edges (dimers) such that
each vertex connects to precisely one member of the set. The
dimer model then considers the set of all perfect matchings.
The model characterizes a wide range of physical processes
including adsorption [1–5], zero modes in electronic tight
binding models [6–8], and magnetism, where dimers are used
for example in analytic approaches to the Ising model [9].
The quantum dimer model (QDM), also called the Rokhsar-
Kivelson (RK) model, introduces quantum superpositions of
dimer placements [10,11]. Originally introduced to capture
the physics of resonating valence bond states [12] in theo-
ries of high-temperature superconductivity [10], QDMs are
now understood to host a range of exotic phenomena such as
quantum spin liquids, topological order, and fractionalization
[11,13]. They have recently been realized experimentally in
programmable quantum simulators [14,15].

The utility of classical dimer models derives in part from
an efficient method (the “FKT algorithm”) for enumerating
perfect matchings developed by Fisher, Kasteleyn, and Tem-
perley [1–5]. The result permits an exact solution to any
N-vertex planar dimer model in the form of the partition
function:

ZN [w] =
∑

Mi∈M

∏

e∈Mi

w(e). (1)

Here, Mi is a perfect matching in the set of all perfect match-
ings M, and e are the edges, of the graph. Setting weight w =
1 on all edges, Z[1] counts the number of perfect matchings.
From Z all thermodynamic functions of state immediately
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follow. Of particular interest is the free energy per dimer [16]
in an N-vertex graph:

fN [w] = 1

N/2
ln (ZN [w]). (2)

For certain regular graphs admitting periodic embeddings,
Z has been evaluated analytically [4,5,16]. Owing to the
importance of graph connectivity to the behavior of dimer
models, they have recently begun to be studied on infinite
graphs with aperiodically ordered planar embeddings [8,17–
19]. Such graphs, which capture the symmetries of physi-
cal quasicrystals [20,21], are irregular, meaning their vertices
meet different numbers of edges, typically leading to a large
degree of frustration in dimer arrangements. They admit
planar embeddings which are long-range ordered, meaning
their diffraction patterns feature sharp Bragg peaks [20,21],
despite lacking a discrete translational symmetry. Examples
include the graph version of the Penrose tiling [17,22] and
the Ammann-Beenker tiling [18,19,23]. The long-range order
often permits analytical results; for example, in a modifica-
tion of the Ammann-Beenker tiling an exact solution to the
dimer model can be approximated to arbitrary accuracy using
transfer matrices [18].

This year saw a major advance in the study of aperiodic
tilings with the discovery of the “spectre” aperiodic monotile
[24]. The spectre positively answered the decades-old ques-
tion of whether there exists a shape that tiles the plane only
aperiodically under translations and rotations [24]. Spectre
tilings, either finite or infinite, can be created by the “com-
position rules” in Fig. 1, reproduced from Ref. [24], in which
each tile is replaced with copies of itself so as to build a larger
tiling. Each tile becomes its mirror image under composition,
meaning that all tiles have the same chirality after each com-
position.

Here we provide an exact analytical solution to both the
classical and quantum dimer models on spectre tilings. We
treat the vertices and edges of the tiles as those of a graph.
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FIG. 1. The composition rules for the spectre tiling (after
Ref. [24]). The vertices of the spectre S0 are indicated; the gold vertex
is added whenever it is not implied by the meeting of tiles. The two
once-composed tiles S1 and M1 can be pieced together without over-
laps to construct the infinite aperiodic tiling. Note that composition
mirrors S0 tiles in such a way that only one chirality appears at any
level of composition. The mystic M0 is the two green tiles (the darker
tile being the upper mystic M+

0 ). Of the four internal edges of M0

either the red or dark blue dimer must appear in any perfect matching.
Choosing red, all pink and purple dimers are forced. Choosing blue,
all light blue and purple dimers are forced. The only freedom on
internal S1 and M1 edges is therefore two dimer matchings per mystic
[these cases are shown at the bottom, labeled |r〉 (red) and |b〉 (blue)
for convenience in the quantum model]. The gold vertex appears only
on the boundaries of S1 and M1, so it does not affect this argument.

Since we are only concerned with graph connectivity, we
straighten the curved edges of the spectre tiles [resulting in
what is termed “Tile(1,1)” in Refs. [24,25]]. Each spectre tile,
labeled S0, can have either 13 or 14 edges depending on its
environment [24]. To ensure that all tiles are identical at the
level of graph connectivity we add a vertex (gold in Fig. 1) to
any 13-edge tiles. This makes the graphs bipartite, meaning
vertices divide into two sets such that edges only connect
vertices in different sets. We discuss the nonbipartite case
briefly at the end.

Results (classical). Starting from a single spectre S0, a finite
number of compositions N generates a finite connected tile
set SN , while an infinite number of compositions results in a
tiling of the Euclidean plane [24]. Even though each tile has 14
vertices, the total number of vertices can still be odd; in such
cases the number of perfect matchings is zero, since a dimer

FIG. 2. Twice-composition of the spectre, S2. The mirror of M1

(Fig. 1) is highlighted in pink. The gold dimer (highlighted with an
arrow) reaches the boundary of M1, and forces all green dimers.
The only freedom in dimer placements is the twofold choice on
upper mystic tiles, and on the boundary. Hence the number of perfect
matchings is 2Nmystic+1.

must connect a pair of vertices. By construction, any tiling
built by composition can also be seen as a concatenation of the
once-composed tiles S1 and M1 (Fig. 1). The two green spec-
tres in Fig. 1 together make up a tile called the “mystic,” which
we denote M0. We term the dark green tile the “upper mystic”
M+

0 . It plays a special role as the only entirely internal tile in
S1 and M1. It is also marked out as special by appearing π/6
rotated from the other tiles, which appear only π/3 rotated
amongst themselves (Fig. 1). The mystic M0 contains four
internal edges. Of these four, exactly one of the two central
edges must be covered by a dimer in any perfect matching.
Either choice forces a range of other dimers. Choosing the red
dimer in Fig. 1 forces all the pink and purple dimers; instead
choosing the blue dimer forces all the light blue and purple
dimers. The purple dimers are the same in both cases, and so
these edges are always covered in any perfect matching. In
fact the figure demonstrates that every nonboundary edge of
S1 and M1 either lies on M+

0 , or has a fixed dimer occupation
as shown. The only degrees of freedom are the two dimer
matchings per M+

0 (and therefore per M0), or possibly the
boundaries of S1 or M1 within larger regions. From now on
we focus on SN regions unless otherwise stated.

The only dimer within either S1 or M1 to meet a boundary
vertex appears on M1 (vertex circled in green in Fig. 1).
Figure 2 shows the twice-composition of S0, which we term
S2. The special dimer has been highlighted in gold. It forces
the two closest green dimers, which in turn force every other
green dimer. The result is that all internal edges of S2 not on
upper mystics are again constrained.

In fact this behavior is generic for SN regions. Reference
[24] lists all possible ways in which S1 and M1 can meet. The
boundaries of S1 and M1 consist only of bivalent or trivalent
vertices. The bottom vertex of the mystic (the rightmost of
the two lowest vertices of M0 in Fig. 1) meets the boundary

L220303-2



EXACT SOLUTION TO THE QUANTUM AND CLASSICAL … PHYSICAL REVIEW B 109, L220303 (2024)

FIG. 3. The free energy per dimer fN for patches of spectres
containing N vertices. Square points represent compositions S2 to
S6. The dashed line shows the analytical result of Eq. (4), valid
for N → ∞. Convergence is slow owing to the fractal boundary of
SN→∞; green circles represent a series acceleration (see Supplemen-
tal Material [26]).

of SN exactly once. In all other cases it appears internally.
It does so at a trivalent vertex connecting three regions and
touches the (gold) boundary dimer of M1. Since a dimer
meeting a trivalent vertex forces the absence of dimers on both
other edges, the existence of even a single forced dimer along
the network of S1 and M1 boundaries is enough to force all
remaining dimer placements. The only exception is a twofold
freedom along the boundary of the entire connected tile set SN
(only relevant for finite tile patches). Hence, the total number
of dimer matchings is

ZN [1] = 2Nmystic+1 (3)

where Nmystic is the number of mystic tiles M0 (equal to the
number of upper mystic tiles M+

0 ).
In the thermodynamic limit SN→∞, for which the number

of vertices N → ∞, the free energy per dimer is

flim N→∞[1] = ln(2)

3(5 + √
15)

≈ 0.026 04 (4)

(see Supplemental Material [26]). To confirm this result we
exactly calculated the free energy per dimer numerically in
finite patches S2 to S6 using the FKT algorithm [1,3]. The
results, shown in Fig. 3, converge towards the analytical result.
The convergence is slow owing to the fractal boundary of
SN→∞, so we also show the result of a series acceleration
method [27] (see Supplemental Material [26]) which gives a
rapid convergence.

The free energy per dimer in the spectre tiling, Eq. (4), is
significantly smaller than values obtained in periodic lattices
[16], e.g. the square (0.583), honeycomb (0.323), triangular
(0.857), and kagome (0.462) lattices. This fits with the ob-
servation that all bulk dimers, other than those on M+

0 , are
completely constrained.

Results (quantum). The QDM can be defined on SN by
replacing the square tiles (plaquettes) of Ref. [10] with S0

tiles. Explicitly, on any spectre S0,i we can define |ri〉 and
|bi〉 to be the quantum states with the red and blue dimer
placements in Fig. 1 respectively. The Hamiltonian then reads

Ĥ =
∑

S0,i∈SN

−t (|ri〉〈bi| + |bi〉〈ri|) + V (|ri〉〈ri| + |bi〉〈bi|) (5)

where t and V are real and t is positive. The terms weighted
by −t can be thought of as defining a kinetic energy operator
which enacts “flips” |r〉 ↔ |b〉. The terms weighted by V
define a potential energy operator which counts “flippable”
plaquettes of the form |r〉 or |b〉.

Equation (5) is well studied in the square lattice, where |ri〉
denotes two vertical dimers, and |bi〉 denotes two horizontal
dimers, on square i. The so-called Rokhsar-Kivelson point
t = V separates ordered phases with different symmetries.
The order is set by the sign of V/t which either attempts
to maximize or minimize the number of flippable plaquettes
[10,11,28]. In contrast, on the spectre tiling SN the only
flippable plaquettes are M+

0 tiles. Their number is entirely
fixed. This heavy constraint decouples the problem into one
of matching independent M+

0 tiles with quantum dimers. Each
tile M+

0,i admits two energy eigenstates which we denote

|±i〉 = (|ri〉 ± |bi〉)/
√

2 (6)

with corresponding energies V ∓ t . The ground state of
Eq. (5) is therefore

Ĥ
∏

M+
0,i

|+i〉 = (V − t )Nmystic

∏

M+
0,i

|+i〉. (7)

All excited states can be formed by swapping individual |+i〉
for |−i〉 at a cost of 2t energy per swap.

Discussion. Removing a dimer from a perfect matching
results in two unmatched vertices. These can be thought
of as particlelike “monomer” defects which can move in-
dependently of one another by dimer rearrangements [11].
Specifically, each monomer lies at the end of an “alternating
path,” a set of edges alternately uncovered and covered by
dimers. Switching which edges are covered and uncovered
moves the monomer along the path. The spectre again has
an interesting structure in this regard. Note for example that
each green alternating path in Fig. 2 terminates only on the
boundary and the gold dimer. The same structure holds for all
SN . Deleting the gold dimer to create a pair of monomers, one
of the pair can move to the boundary along any green path; in
the thermodynamic limit it can escape to infinity. In fact any
test pair of monomers has this same feature: one of the pair
can only reach upper mystics, and the other can only reach
the boundary (see Supplemental Material [26]).

In QDMs on previously studied planar bipartite graphs,
such as the square lattice, the RK point t = V constitutes
a deconfined quantum critical point between ordered phases
[29]. Deconfinement means that test monomers can be sepa-
rated to infinite distance at finite energy cost [11,30,31]. In
general, since QDMs on bipartite graphs map to compact
(matter-free) quantum electrodynamics [13,30,32], and since
deconfined phases cannot exist in compact (2+1)-dimensional
U (1) gauge theories [33], the RK point cannot be part of a
deconfined phase existing over a range of V/t .

Remarkably, the behavior in the (bipartite) spectre tiling
appears to be at odds with this statement. By the argument
just given, any pair of test monomers can be infinitely sepa-
rated. Doing so preserves the number of flippable plaquettes,
so it costs no energy according to Eq. (5) at any V/t . Test
monomers are therefore deconfined over all V/t . We suggest
that the result of Ref. [33] may survive because there seems to
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be no obvious mapping to a compact U (1) gauge theory, since
the vertices in the spectre tiling connect to variable numbers
of edges.

Additionally, noting that the eigenstates are constant across
V/t , it would be reasonable to suggest that the line V/t is a
simple extension of the deconfined RK point by interactions
that do not affect the physics, rather than a true decon-
fined phase. For example, setting the RK model on a graph
consisting of disconnected squares would lead to similar phe-
nomenology. However, there is a testable difference between
this artificially simple scenario and ours. Since the simplifica-
tion in our results came about naturally, moving off the line
V/t by tuning some other physical parameter should lead to
different behaviors at different V/t . If so, V/t would represent
a limiting behavior within a physically meaningful larger pa-
rameter space. In this sense we would argue that it constitutes
a true deconfined phase. One such larger space to consider
is that of a softened dimer constraint, allowing monomer
creation (equivalently, weakening the spin interactions from
which the RK model emerges in the infinite-coupling limit).
A full quantum treatment is beyond the present Letter, but it
is sufficient to demonstrate that the behavior in the classical
limits V/t → ±∞ must differ. To see this, allow monomer
pairs to be created with energy 2� � V . For V/t → ∞ the
flippable antispectres are energetically unfavorable, so the
ground state will have monomers on these plaquettes to stop
them flipping. For V/t → −∞ flippability is favored, and
so the ground state will be monomer free. Hence, while our
eigenstates are constant along V/t , they are nevertheless mea-
surably distinct when factoring in the surrounding parameter
space.

Another difference to previous studies is that all previously
known bipartite RK points were characterized by algebraic
dimer correlations [11]; spectre dimer correlations, being
completely uncorrelated between different M+

0 tiles, are not
algebraic at any V/t . Away from the RK point, the square-
octagon lattice shows similar trivial correlations to ours, and
perhaps for similar reasons: in that case, dimers principally
occupy squares, with minimal correlations between squares
[34,35].

QDMs on nonbipartite graphs behave qualitatively dif-
ferently. Here, they do admit deconfined phases spanning a
continuous range of V/t [11,13,36,37], and their emergent
gauge field descriptions are Z2 rather than U (1) [13,38,39].
The spectre tiling can be made nonbipartite by omitting the
gold vertex in Fig. 1 whenever it is not forced by the tiling.
Figure 1 shows that gold vertices appear only on the bound-
aries connecting S1 and M1 tiles, so some of the intuition
developed here may hold in nonbipartite spectre tilings. Nev-
ertheless, preliminary checks suggest a more complicated
behavior.

Returning to the classical model, different weights w can
be assigned in Eq. (1). For example, in the square lattice differ-
ent weights might be assigned to horizontal edges compared to
vertical edges [1]. However, since aperiodic tilings lack a unit
cell, there is no obvious choice for assigning weights. One
option for SN tilings is to assign different weights to edges
within regions S1 and M1 while assigning weights consistently
between different S1 and M1. Since dimer placements are
fixed for all internal edges other than M+

0 , the correspond-

FIG. 4. Removing the boundary-touching mystic M0 from region
S2 allows the freedom formerly localized to the boundary to move
into the bulk. Purple edges always receive a dimer, and black edges
never receive a dimer, in any perfect matching. Orange edges are free
to either host a dimer or not.

ing weights factor out of the partition function. Those edges
which never receive a dimer make no contribution regardless
of weight. The partition function can therefore also be cal-
culated in this more general case, with the sum being over
weights of edges appearing on M+

0 or the boundary of the
tiling.

It is interesting to consider what happens when tiles are
added or removed from the SN regions while still obeying the
spectre tiling rules. The total number of vertices can become
odd, as in region M1, or even but with an imbalance between
the numbers of vertices in the bipartite subgraphs. In both
cases there are zero perfect matchings, since dimers connect
vertices on distinct bipartite subgraphs. Another possibility
is a monomer-free region as shown in Fig. 4. Precisely one
M0 touches the boundary of any SN region. Removing this
M0 from S2, as shown, causes boundaries of some internal S1

and M1 regions to gain a degree of freedom (orange edges
host zero dimers or one dimer). This region hosts six perfect
matchings excluding those localized around M+

0 . In general
there is a twofold degree of freedom around any graph cycle
(closed loop of edges) which connects to the rest of the graph
only via edges not hosting a dimer. This accounts for the
freedom around M+

0 , the boundaries of SN , and also these
more complicated branching structures in other tile patches.

A modern motivation for studying dimer models derives
from their ability to model quantum spin interactions in cer-
tain real materials. While no material has yet been identified
with the symmetries of the spectre, it would seem likely that it
will be either manufactured or discovered. At a fundamental
level the tiling represents a new symmetry of nature, and as
such its behaviors deserve to be understood. This is especially
so given that we have found it to provide surprising simpli-
fications to physical models, permitting exact results where
periodic (and other aperiodic) tilings do not. It remains to be

L220303-4



EXACT SOLUTION TO THE QUANTUM AND CLASSICAL … PHYSICAL REVIEW B 109, L220303 (2024)

seen if there is anything deeper about the structure of the tiling
which leads to this simplicity.
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