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Experiments in Rydberg atoms have recently found unusually slow decay from a small number of special
initial states. We investigate the robustness of such long-lived states (LLS) by studying an ensemble of locally
constrained random systems with tunable range μ. Upon varying μ, we find a transition between thermal and
weakly nonergodic (supporting a finite number of LLS) phases. Furthermore, we demonstrate that the LLS
observed in the experiments disappear upon the addition of small perturbations so that the transition reported
here is distinct from known ones. We then show that the LLS dynamics explores only part of the accessible
Hilbert space, thus corresponding to localization in Hilbert space.
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Introduction. Isolated quantum systems thermalize: The
expectation values of local operators at long times are deter-
mined by the values of a small number of conserved quantities
(typically, the energy, so that the expectation values coin-
cide with those in the microcanonical ensemble) [1]. This
is encapsulated in the eigenstate thermalization hypothesis
(ETH) [2,3], which plays the role for quantum systems that
the ergodic hypothesis does for classical, forming the bridge
between unitary quantum dynamics and statistical mechanics.

Generic systems satisfy ETH as a matter of course [4].
Exceptions robust to weak perturbations include many-body
localized systems in the presence of disorder [5–7] (although
there is currently debate on whether these are localized or
glassy [8–12]) or quasiperiodic potentials [13,14]. Such sys-
tems disobey ETH either throughout the spectrum [15] or in a
finite fraction of it [16].

Recently, experiments in Rydberg atoms have observed
that certain initial conditions result in an abnormally slow
decay of the initial state [17]. Consequently, these systems
can exhibit a “weak” violation of ergodicity, meaning that
a limited number of nonthermalizing eigenstates are present
within an otherwise ergodic (thermal) system. This has trig-
gered significant theoretical activity focusing on a class of
constrained models, central among them the so-called PXP
model [18–24].

In the PXP model, the bulk of the eigenstates satis-
fies the ETH, but a small number (a vanishing fraction of
Hilbert space) violate it—these are called scarred states by
analogy to the scarred states discussed in quantum chaos
[25]. At the same time they have high overlap with cer-
tain experimentally relevant states. Thus, while generic initial
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states result in thermalization, starting from one of these
few initial states results in the observed anomalous behav-
ior. The central feature of the PXP model explaining this
behavior is then to prove the existence of these scarred
states.

A pertinent question that arises is the stability of these
states when subjected to perturbations. Stability with respect
to certain local perturbations has been studied in the following
papers: Ref. [26], which found evidence for proximity of the
PXP model to an (unknown) integrable model; Ref. [27],
which found that the scarred states are unstable (hybridize
with the thermal states) in the thermodynamic limit; and
Ref. [28], which found that a subset of the scars do remain
parametrically stable in the thermodynamic limit. This latter
model also studies a translationally invariant modification of
the PXP model in which the constraints all have the same
tunable range of range α and which hosts a few low-entropy
states. The slow decay of the special initial states of PXP
disappears, however, once the spatial range of the constraints
is increased beyond that of the PXP model [29]. Finally,
Ref. [30] studies an ensemble of random Hamiltonians, de-
fined as adjacency matrices of random graphs [31]. While the
members of this ensemble only have nonvanishing matrix ele-
ments between states differing by a single spin flip, a generic
member of the ensemble cannot be written as a sum of local
terms—the model is therefore intrinsically nonlocal. Addi-
tionally, this work focuses on spectral, rather than dynamical,
properties.

In this Letter, we focus on the existence of initial states
exhibiting slow decay in models with local PXP-like con-
straints but of spatially random range. We refer to these states
as long-lived states (LLS). We find a phase transition between
a fully ergodic (thermal) phase and one with weakly broken
ergodicity supporting LLS as the constraint strength μ/N
increases above a threshold. The LLS exhibit robust oscilla-
tions, returning close to their initial states repeatedly before
ultimately decaying. These states are not connected to LLS
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present in the clean PXP model: The latter disappear when we
introduce local perturbations to the PXP model, and our LLS
only appear once we increase the mean random constraint
length. Meanwhile, the bulk spectral properties of the model
(such as level statistics) are insensitive to this transition, which
is however marked by abrupt changes in both the probability
and density of LLS. We finally establish that the LLS in our
model are nontrivial, exploring only a small fraction of the
accessible Hilbert space.

Our work introduces a class of randomly constrained mod-
els that exhibit a distinct form of weak ergodicity breaking in
quantum systems. The weak ergodicity breaking we observe
is not a consequence of fine tuning, as in the case of the
PXP model, but rather emerges robustly due to randomness in
kinetic constraints and in the absence of explicit disorder. By
demonstrating a dynamical phase transition between a fully
ergodic phase and one with weakly broken ergodicity, we
establish the existence of distinct phases of weak ergodicity
breaking with qualitatively different properties and stability.
This finding is significant as it provides numerical evidence
of a phase transition in the space of constrained quantum
many-body systems. Such transitions may be relevant to re-
cent theoretical discussions about the possibility of scarring
phase transition in quantum many-body dynamics [24].

This Letter is organized as follows. We first introduce the
model and the class of states in which we are interested, then
demonstrate the existence of a phase transition between a fully
thermal and a weakly nonergodic phase. This constitutes our
main result. We then establish that the LLS explore only a
fraction of the accessible Hilbert space, and finally show that
the PXP model is an exceptional member of the ensemble we
consider—members of the ensemble with the same constraint
range as the PXP model but no translational invariance do not
support LLS.

Model. Our randomly constrained model is described by
the Hamiltonian

H =
N∑

i=1

Xi

ri∏
j=1

Pi− jPi+ j, (1)

where Xi, Zi are the usual Pauli spin operators and Pi = (1 −
Zi )/2 projects to the down (facilitating) state of spin i. Thus,
the spin at i can flip only if the 2ri spins a distance ri on either
side are in the facilitating state. We select the ri independently
by drawing random integers from a uniform distribution from
interval [μ − ε, μ + ε] with a mean μ.

For the model of Eq. (1), as for PXP [32] as well as mod-
els displaying Hilbert space shattering [33–35], Fock space
breaks up into disconnected components—spin configurations
belonging to one are not reachable from the others by repeated
action of the Hamiltonian [36]. In this and what follows, we
focus on the largest such component of the graph [37]. This
sector is always ergodic as far as level statistics and eigenstate
properties are concerned [37] but, as we will show, depending
on μ, there are nonergodic states.

Our analysis is primarily focused on the return probabil-
ity, L(t ) = | 〈α| exp(−iHt ) |α〉 |2 starting from product states
|α〉. We aim to pinpoint those |α〉 states that exhibit revivals,
where the system periodically reverts to a state proximate to
its initial configuration. These states will be referred to as

LLS, bearing conceptual resemblance to the two Z2 states
in the PXP model, which have high overlaps with scarred
eigenstates.

In what follows we establish that both the probability that
such states exist, p, and their density ρ = NLLS/DH (with
NLLS the number of such states and DH the dimension of
the largest connected component of the Hilbert space) departs
from 0 at finite values μ

p,ρ
c /N with N the number of spins;

for μ < μ
p
c there are no long-lived states, while for μ > μρ

c a
finite fraction of Fock states result in long-lived oscillations.
Within our numerical analysis, μp,ρ appear to be either iden-
tical or very close.

At first sight, this appears to contradict known results,
since the PXP model is a particular realization of our model
for μ = 1, ε = 0 but is known to have LLS. However, we
will later show that there is no contradiction: Local pertur-
bations in the PXP model eliminate the scarred states, and
consequently its LLS. The LLS we study only appear in the
presence of stronger perturbations. Thus our results indicate
the presence of a distinct phase with weakly broken ergodicity,
unconnected to the one for the PXP model.

Weak ergodicity breaking transition. We use the scaled
mean constraining range μ/N as a tuning parameter, varying
which (for fixed ε = 1) the probability and density of LLS
departs from 0 (that is, long-lived states (LLS) appear) at some
critical 0.2 � μ

p,ρ
c /N � 0.3. We call this transition a weak

ergodicity breaking transition because it is not visible in the
usual ergodicity measures such as level statistics or eigenstate
properties [37] but rather is only visible in dynamics starting
from a small number of initial states.

To be more concrete, we first provide a precise definition
of the LLS and then characterize these states in terms of their
strength and persistence. Starting with a given Fock state |α〉
we evolve it using Eq. (1) up to some time tmax and then
calculate the return probability L(t ). For α to qualify as a LLS,
we count the number of times, Nth, that the return probability
L(t ) goes above a given threshold Lth. In what follows we
define an LLS as one for which Nth � 3 for Lth = 0.5. We
have checked that our main findings are qualitatively the same
for other definitions of Nth and Lth [37].

Under this definition, the Z2 states are categorized as LLS
in the PXP model. Consequently, this definition facilitates the
connections between LLS and nonthermal many-body states.
That is, the presence of LLS for a specified μ implies the
existence of eigenvectors that highly overlap with the LLS,
giving rise to quantum many-body scarring.

In Fig. 1, we report conclusive evidence of the aforemen-
tioned phase transition. Figure 1(a) shows LLS probability for
different system sizes as a function of μ/N while Fig. 1(b)
shows the density of LLS—the fraction of Fock states in the
largest connected cluster that are LLS. Both of these measures
depart from 0 at around μ/N ≈ 0.2.

For the probability p, the trend in Fig. 1(a) with increasing
system size makes it clear that, in the thermodynamic limit,
p rapidly rises to 1 above μ/N = μ

p
c/N ≈ 0.2, so that at

least one LLS appears. Meanwhile, the density ρ displays a
more intricate behavior as depicted in Fig. 1(b). Initially, it
too departs from 0 at μ/N ≈ μρ

c /N and just above it trends
to a finite value as N increases. At μ/N > μρ

c /N ≈ 0.2, the
density increases with system size (see inset), so that one can
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FIG. 1. Weak ergodicity transition. (a) Probability of finding at
least one LLS for mean constraint range μ/N ; for N < 18 we aver-
aged over 1000 realizations per μ/N and up to time tmax = 18, while
for N > 20 we used 100 realizations up to tmax = 50. (b) Density ρ

of LLS vs of μ/N jumps sharply away from 0 around μ/N ∼ 0.2.
The inset shows ρ vs system size N for μ/N = {0.2, 0.22}; above
μ/N ∼ 0.2, ρ increases with system size. We believe the bump
between μ/N = 0.2 and 0.3 to be a finite-size effect (see text). This
indicates a phase transition in the thermodynamic limit.

confidently state that for μ/N > μρ
c /N a finite density of Fock

states are LLS. While there exists a parameter regime 0.2 <

μ/N < 0.3 where the behavior appears to be nonmonotonic,
with two peaks appearing, we believe this to be a finite-size
effect for the following reason. In the Supplemental Material
[37] we show plots of both p and ρ for different thresholds
Lth = 0.6 and 0.7, larger than the value 0.5 used here. We
notice that for Lth = 0.6, the density ρ also picks up this peak
for higher values of N . For the probability p at Lth = 0.5 the
trough gets filled in above N � 30 whereas for Lth = 0.6 at
N � 40, so we expect that the trend continues at Lth = 0.7
with the trough getting filled in at a larger N which we cannot
access [37]. This suggests again that this is not a few-body
effect, as it only appears at large enough sizes. We have not
been able to ascertain the origin of this behavior, so that it
remains to be determined in future work. Since p is more
sensitive than ρ (as it detects a single LLS), we conclude that
this behavior will also be mirrored for ρ, but at larger (and
inaccessible to us) sizes, and thus believe the actual transition
in ρ to lie at the point where it departs 0 for the first time,
around 0.2. In conclusion, from our results in Fig. 1 it is evi-
dent that, first, LLS definitely appear for μ/N > μ

p
c/N ≈ 0.2

and, second, that a finite density of such states appears for
μ/N > μρ

c /N ≈ 0.2.
Two obvious questions present themselves at this point.

First, could it be that the largest connected component in
Hilbert space is small enough that we are simply seeing re-
currences because of its finiteness (as opposed to the revivals
being due to the dynamics exploring only a subspace of that)?
Second, from Fig. 1, it would appear that the PXP model, a
specific realization of μ/N = 1/N , should display no LLS.

FIG. 2. Minimum number of states mc required to reproduce the
return probability of LLS for a given constraint range μ/N . (a) Scaled
by system size N ; mc/N does not depend on system size, while
(b) mc/DH decreases with system size, indicating that the fraction of
Hilbert space that is involved in the dynamics decreases with system
size. In both panels, averaging is performed over 1000 realizations
for each μ.

But, as is well known, it does have LLS; so how can our results
be reconciled with that?

We answer each of these questions in turn.
Truncated Lanczos iterations. In order to address the first

question, we analyze the fraction of the Hilbert space of the
largest connected component explored by the dynamics start-
ing from the LLS. To do so we use the Lanczos algorithm.
In brief, this involves the following steps: Given an initial
vector |α〉0 and a matrix H , at the nth step one constructs
a vector |βn〉 = H |αn〉 − un |αn〉 with un = 〈αn| H |αn〉 and
vn = √〈βn|βn〉; then |αn+1〉 = |βn〉 /vn+1. After m such itera-
tions, one forms the matrix Heff (m) = V TV † where V has the
|αn〉 as columns and T has the un on the main diagonal and the
vn on the first off-diagonal constitutes an approximation to H .
In principle, m = DH exactly reproduces H .

Our approach truncates this procedure at some order m,
determined by minimizing the following cost function with
respect to m:

I = 1

tmax
min

m

∫ tmax

0
dt |L(t ) − LTLI(m, t )|. (2)

Here, L(t ) represents the return probability of a LLS evolved
with (1), while LTLI(m, t ) denotes the return probability with
an effective Hamiltonian Heff (m) constructed by using the
Lanczos algorithm. We terminate the minimization procedure
when I � 0.01. The aim of this truncation is to determine
what fraction of Hilbert space is explored by the dynamics by
explicitly constructing it—its dimension is clearly mc. A sim-
ilar approach has recently been used to differentiate between
localized and chaotic quantum systems [38].

For each realization at a given μ/N , we obtain the mc for
each LLS, then average over all the LLS and realizations. The
resulting mc as a function of μ/N , is shown in Fig. 2, scaled
by N (left panel) or DH (right panel). Our findings elucidate
several key aspects. First, the number of states mc required is
linear in system size N for a given μ/N (left panel), exhibiting
a universal behavior. Second, a notable decrease in mc is
observed with increasing constraint range (left panel). Lastly,
the fraction of the Hilbert space involved in the dynamics for
given μ/N decreases with increasing system size (right panel).
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FIG. 3. Scars vanish due to a defect in the constrained range;
we set ri0 = q for a single site i0, and leave ri = 1 for ri �= i0.
(a) Return probability starting from the Z2 state. q = 1 (blue, point)
corresponds to the standard PXP model whereas q = 2 (orange,
square) means that there is a single defect with strength equal to 2.
(b) Overlap of the Z2 state with the eigenstates. (c) Spatiotemporal
profile of density starting from the Z2 state with a single defect
q = 2.

Let us summarize this calculation and the conclusions to be
drawn from it. We have shown that the dynamics of the LLS is
restricted to a Krylov subspace of a dimensionality that is a de-
creasing fraction of the dynamically accessible Hilbert space.
This implies that the LLS are caused by nontrivial dynamics
inside the largest connected cluster, rather than simply a result
of the dimension of the largest cluster decreasing with μ/N .

Disappearance and reemergence of quantum scars. We now
come to the apparent contradiction mentioned earlier, namely,
that in Fig. 1 the probability for LLS to exist for μ/N = 1
vanishes, while the PXP model is a particular realization of
μ/N = 1/N →N→∞ 0. The resolution of this paradox is that
the PXP model is a singular point: Changing a single ri �= 1
results in a rapid decay of the oscillations and destroys the
unique spectral structure. Figure 3(a) shows the return prob-
ability starting from a Z2 state for both standard PXP and
for the PXP model modified by setting a single ri0 = 2 for
some i0. In Fig. 3(b), we show the overlap of the Z2 state with

the eigenstates of the model for the case of the standard PXP
(blue) and our perturbed model with ri0 = 2; the characteristic
peaks that are known from the PXP model disappear (the same
behavior is observed for all other Fock states in the largest
sector). Thus, weak, local perturbations of the PXP model
disrupt the scars (thus also the LLS, Z2 and Z′

2 in the notation
of Ref. [32]), which implies that the phase with LLS that we
uncover at higher μ/N is not connected to the scarred phase
of the PXP model.

At this point, it is natural to question how a local per-
turbation can disrupt global quantities such as the eigenstate
overlaps; after all, in the thermodynamic limit, a local pertur-
bation should be negligible, so how is it capable of eliminating
the oscillations? The resolution to this paradox is that the
eigenstates most directly pertain to infinite-time results of
observables via the ETH. Thus, as we show in Fig. 3(c), the
oscillations starting from a Néel Z2 state with a model with
a single ri0 = 2 results in oscillations decaying inside a light
cone spreading out from i0; only after a time ∝N will they
decay everywhere. The effect is visible in spectral properties
such as the eigenstate expectation values only because those
are relevant for the infinite-time limit.

Conclusion. In this Letter we have studied an ensemble
of random, local, constrained models parametrized by the
mean constraint range μ. We find that typical members of the
ensemble transition from a low-μ/N phase with no LLS to a
high-μ/N phase with a high density of LLS. This appears to
contradict known results for the PXP model, which is a special
case for μ = 1. We reconcile the two results by showing that
increasing the constraint range at a single site of PXP causes
its unique spectral features to disappear.

A number of open questions on the nature and origins of
these LLS remain. Numerical experiments with the Lanczos
methods (not shown) suggest that the dynamics of some, but
not all, of our LLS is well reproduced by replacing the Hamil-
tonian by the adjacency matrix of a hypercube with the initial
LLS as a node [20]. Can this idea be extended to include all of
them? Do all LLS correspond to dynamics on a small number
of special subgraphs (analogously to how the PXP LLS are
due to adjacency matrices corresponding to a hypercube, or
the “motifs” of Ref. [30])? We leave the answers to such
questions for future work.
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mal free descriptions of many-body theories, Nat. Commun. 8,
14926 (2017).

[33] P. Sala, T. Rakovszky, R. Verresen, M. Knap, and F. Pollmann,
Ergodicity breaking arising from Hilbert space fragmentation
in dipole-conserving Hamiltonians, Phys. Rev. X 10, 011047
(2020).

[34] S. Pai, M. Pretko, and R. M. Nandkishore, Localization in
fractonic random circuits, Phys. Rev. X 9, 021003 (2019).

[35] V. Khemani, M. Hermele, and R. M. Nandkishore, Localization
from Hilbert space shattering: From theory to physical realiza-
tions, Phys. Rev. B 101, 174204 (2020).

[36] Viewing the spin model as a single-particle hopping problem on
a graph, the adjacency matrix of which is the Hamiltonian, not
all sites are reachable by allowed hops from all others.

[37] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.109.L220301 for where we describe the
construction of the largest connected cluster of the Hamiltonian,
display level statistics inside that cluster and show the effect of
different LLS thresholds.

[38] Y. A. Alaoui and B. Laburthe-Tolra, A method to dis-
criminate between localized and chaotic quantum systems,
arXiv:2307.10706.

L220301-5

https://doi.org/10.1103/PhysRevLett.124.186601
https://doi.org/10.1103/PhysRevE.104.054105
https://doi.org/10.1016/j.aop.2021.168415
https://doi.org/10.1103/PhysRevB.105.224203
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1103/PhysRevB.87.134202
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1038/nature24622
https://doi.org/10.1103/PhysRevLett.106.025301
https://doi.org/10.1038/s41567-018-0137-5
https://doi.org/10.1103/PhysRevB.98.155134
https://doi.org/10.1103/PhysRevB.101.165139
https://doi.org/10.1103/PhysRevLett.123.030601
https://doi.org/10.1103/PhysRevB.108.075131
https://doi.org/10.1103/PhysRevX.13.031013
https://doi.org/10.1103/PhysRevLett.53.1515
https://doi.org/10.1103/PhysRevB.99.161101
https://doi.org/10.1103/PhysRevB.103.104302
https://doi.org/10.1103/PhysRevResearch.2.033044
https://doi.org/10.1103/PhysRevB.105.245137
https://doi.org/10.21468/SciPostPhys.14.6.174
https://doi.org/10.1103/PhysRevResearch.2.023159
https://doi.org/10.1038/ncomms14926
https://doi.org/10.1103/PhysRevX.10.011047
https://doi.org/10.1103/PhysRevX.9.021003
https://doi.org/10.1103/PhysRevB.101.174204
http://link.aps.org/supplemental/10.1103/PhysRevB.109.L220301
https://arxiv.org/abs/2307.10706

