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Fragile dislocation modes in obstructed atomic topological phases
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We here introduce the concept of fragile dislocation modes, which are localized only in a fraction of a
topological phase while otherwise leaking into the bulk continuum. As we demonstrate here, such dislocation
modes are hosted in an obstructed atomic topological phase in the two-dimensional Su-Schrieffer-Heeger model
but only in a finite region with an indirect gap at high energy. They are realized as chiral pairs at finite
energies with protection stemming from a combination of the chiral (unitary particle-hole) and the point group
(C4v) symmetries, but only when the indirect gap is open. In this regime, we corroborate the stability of the
defect modes by following their localization and also by explicitly adding a weak chemical potential disorder.
Our findings should, therefore, be consequential for the experimental observation of such modes in designer
topological crystals and classical metamaterials.
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Introduction. The hallmark feature of topological phases
are topological electronic bands characterized by the bulk
topological invariants [1–5], which thus cannot be local-
ized on the real-space lattice [6], resulting in the hallmark
bulk-boundary correspondence [7,8]. In this case, topologi-
cal lattice dislocation defects can host special topologically
and symmetry-protected localized modes, providing a com-
mon mechanism for the bulk probing of topological phases
covering a wide range of first-order phases [9–21], higher-
order phases [20,22–24], as well as the dynamical Floquet
[25] and non-Hermitian topological systems [26–28]. The
experimental observations of such dislocation modes were
reported in both quantum materials [29,30] and classical meta-
materials [31–35]. This defines the so-called bulk-dislocation
correspondence, with an apparent “duality” being at play:
Topological electronic wave functions in the bulk therefore
lacking Wannier representation in the real space yield local-
ized modes on the dislocation defects, provided that the band
inversion is at a finite momentum in the Brillouin zone (BZ)
[9–14,20–22]. On the other hand, the absence of the localized
dislocation mode does not imply topological triviality of the
phase, with the paradigmatic example being the Z2 topologi-
cal insulator featuring the band-inversion at the � point [11].

Obstructed atomic topological phases possess a Wannier
representation but at a Wyckoff position away from the lattice
site [36], with the one-dimensional (1D) Su-Schrieffer-Heeger
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(SSH) model as possibly the simplest example [37]. Due to
this topological obstruction, they can feature charge fraction-
alization and nontrivial disclination responses [38,39]. Given
the existence of this class of topological phases, a natural
question arises regarding the dislocation response therein
since the phase admits a Wannier representation and, there-
fore, may obstruct the existence of the dislocation modes.
In contrast, its topological nature, which can be expressed
through the band representations at high-symmetry points
(HSPs) [36,40], is expected to yield localized dislocation
modes, when the band inversion is at finite momentum. As we
show here, the answer is a superposition of the two previously
discussed possibilities: The dislocation modes become fragile.

Two notable aspects of our results set them apart from
previous studies on the lattice-dislocation modes in topolog-
ical states [9–14,20–22]. First, we demonstrate the existence
of fragile dislocation modes, which are localized and stable
but only in a particular region within the topological phase
characterized by an indirect band gap, and exemplify it in
the case of a two-dimensional (2D) SSH model. Second, we
show that their stability is due to the subtle interplay between
the lattice symmetry, electronic topology, and the form of a
spectral (indirect) gap in the obstructed topological state. As
such, fragile dislocation modes can serve as bulk probes of
the obstructed topological phase but only in its part featuring
the indirect band gap. In the following, we provide a detailed
summary of our key results.

Key results. By performing a numerical analysis of a 2D
SSH model featuring a paradigmatic obstructed topological
phase [41–43], we find that a single dislocation can bind
several pairs of modes at finite energies throughout this phase
(Fig. 1), which are localized (Fig. 2) due to the dislocation-
flux correspondence [20,22], and symmetry protected against
hybridization with each other. Crucially, a numerical anal-
ysis of the evolution of the modes’ localization throughout
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FIG. 1. Two-dimensional (2D) Su-Schrieffer-Heeger (SSH)
model with a single dislocation. (a) The lattice featuring a single
dislocation with the Burgers vector b = 2aex . a is the distance
between nearest-neighbor sites. The sites within the unit cell are
labeled as α = 1, . . . , 4, and with different colors. The dashed (solid)
lines denote intra- (inter-)unit-cell hoppings t (τ ) [Eq. (1)]. (b) Band
structure for the defect-free system along high-symmetry lines in the
Brillouin zone with the corresponding spectrum displayed in Fig. S2
of the Supplemental Material (SM) [46]. Notice an indirect band gap
between the two positive (negative) energy bands, which closes for
|t/τ | = 0.5, as shown in the SM Sec. S1. (c) The spectrum of the 2D
SSH model with a single dislocation and open boundaries. Notice
two chiral pairs of dislocation modes (red marked), with energies
E = ±0.72 and E = ±1.13. The corresponding LDOS in Fig. 2
implies that these modes are localized. The system size is 40 × 40
unit cells. In (b) and (c), we set t = 0.3 and τ = 1. See Fig. S1 of
the SM for additional band-structure plots.

the topological phase demonstrates their stability (Fig. 3),
but only in its finite region, with the modes dissolving into
the bulk when a high-energy indirect gap closes, and the
system becomes gapless, while remaining topological (see
also Fig. 4). Furthermore, when localized, the dislocation
modes are robust with respect to a weak chemical-potential
disorder (Fig. 5). Finally, possible experimental relevance of
these fragile dislocation modes in metamaterials and designer
materials platforms is outlined, particularly in a silicon-based
designer lattice [44] and a silicon dielectric metasurface
platform [45].

2D SSH model. We start with the Bloch Hamiltonian of
the 2D SSH model on a square lattice, Ĥ = ∑

k �
†
kHk�k,

where [41]

Hk =
3∑

i, j=0

Ai j (k) σi ⊗ σ j, (1)

with the nonvanishing form factors given by

A10 = t + τ cos(2kxa), A11 = t + τ cos(2kya),

A23 = −τ sin(2kxa), A12 = −τ sin(2kya). (2)

TABLE I. Irreducible representations of the electronic bands in
the topological and trivial phase of the 2D SSH model [Eq. (1)] at
the high-symmetry points (HSPs) in the Brillouin zone. The bands
are labeled as shown in Fig. 1(b). The parameters t and τ represent,
respectively, intra-unit-cell and inter-unit-cell hoppings [see also
Eq. (1)]. Notice that only bands 2 and 3 touching at zero energy at
the � and M points transform under the two-dimensional E represen-
tation of the C4v group at these HSPs. All other band representations
are one dimensional.

C4v HSPs C2v HSPs

Phase Bands � M � X Y

Topological 1 B2 A1 a2 b1 a2

|t/τ | < 1 2, 3 E E b1 + b2 a1 + a2 a1 + a2

4 A1 B2 a1 b2 b1

Trivial 1 B2 B2 a2 a2 a2

|t/τ | > 1 2, 3 E E b1 + b2 b1 + b2 b1 + b2

4 A1 A1 a1 a1 a1

Here, �k = (c1,k, c2,k, c3,k, c4,k )� represents the annihilation
operator for the states at four sites in the unit cell [Fig. 1(a)],
with k as the momentum, and a is the nearest-neighbor dis-
tance. Parameter t (τ ) represents the intra- (inter-)unit-cell
hopping amplitude. We fix τ = 1 hereafter, σ0 is the 2 × 2
identity matrix, and σi (i = 1, 2, 3) are the usual Pauli ma-
trices. See Sec. S1 of the Supplemental Material (SM) [46].
Importantly, as shown in Fig. 1(b), high-energy bands are
separated by an indirect band gap from the low-energy ones
for |t/τ | < 0.5. Furthermore, this Hamiltonian features the
C4v point group, and the chiral (unitary particle-hole) symme-
try, {�,Hk} = 0, generated by � = σ3 ⊗ σ0. This symmetry
implies that the eigenstates of the Hamiltonian (1) forming a
chiral pair (�k,��k ) are with the same absolute value but op-
posite signs of energy, Hk�

n�k = (−1)nEk�
n�k (n = 0, 1),

and the chiral operator exchanges the irreducible representa-
tions (irreps) of the C4v group, A1 into B2, and vice versa.

Topological phases in the 2D SSH model [Eq. (1)] are
distinguished by the relative difference of the irreps of high-
energy electronic bands at the HSPs M and X (Y ) with respect
to the � point [42]. In a topologically trivial phase, with the
Wyckoff position centered at the site of the unit cell, the irreps
at the HSPs are equal, as explicitly shown in Table I. In the
topological phase, on the other hand, the band irreducible
representations of the C4v (C2v) point group at the M (X and Y )
point(s) differ relatively to the � point, moving the Wyckoff
position to the center of the unit cell (away from any atomic
position) [47] (see also Table I). Importantly, only the two
closest-to-zero energy bulk bands touching at the M and �

points transform under the 2D E representation of the C4v

group at these HSPs. This then directly pertains to the irrep
content of the the corner modes, with one pair transforming
under the E irrep while the other two such modes belong to
A1 and B2 irreps [43]. The gap between the bulk and the edge
states closes at |t | = 1, separating the topological and trivial
(featureless metallic) phase.

Fragile dislocation modes in the 2D SSH model. We now
include a dislocation defect in the lattice [Fig. 1(a)], with
the Burgers vector b = 2aex, equal to a primitive lattice
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FIG. 2. Two chiral pairs of the fragile dislocation bound states in the topological phase. Positive energy modes at (a) E = 0.72 and
(c) E = 1.13, respectively, transform under A1 and B2 irreducible representations of the C4v group while their chiral partners at (b) E =
−0.72 and (d) E = −1.13, exchange the representation, i.e., transform under B2 and A1 representations, respectively, therefore transforming
differently under the vertical and horizontal mirror reflections, with the A1 mode being invariant, while the B2 changing its sign under these
operations. Notice that the modes are localized within a few unit cells in the defect core. Zoom-in of each mode is shown in the inset. The
values of the parameters are identical to Fig. 1. The red (blue) color denotes the positive (negative) phase of the wave function �i, while the
circle’s area is proportional to the amplitude |�i| at the lattice site i. Sites with an amplitude value less than 10−2 are left empty. Consult
the Supplemental Material [46] for additional details.

vector. Since the lowest-energy bands touch at the M point,
the dislocation acts as an effective π flux, 	dis = KM · b =
π [9–11]. Furthermore, the Burgers vector is orthogonal to
the gapped edges, and the dislocation therefore binds finite-
energy modes [20,22], which, as we show here, remain stable
until the indirect band gap closes, and dissolve into the bulk
continuum.

To this end, we numerically diagonalize the 2D SSH model
in Eq. (1), on a real-space lattice with a single dislocation and
open boundary conditions [see Fig. 1(a)], using the KWANT

code [48]. In the spectrum, displayed in Fig. 1(c), we show
two chiral pairs of modes at finite energies, representing two
localized dislocation modes. The corresponding local den-
sity of states (LDOS) is displayed in Fig. 2, and shows that
the modes within the chiral pair transform under A1 and B2

representations of the C4v group (see also Sec. S2 and Fig. S3
in the SM [46]). Furthermore, the defect modes with the same
sign of energy transform under different 1D irreps. The modes
are buried within the edge continuum, separated by an indirect
gap from the bulk [Fig. 1(c) and Fig. S4 in the SM [46]],
and as such protected from the mixing with bulk modes. The
hybridization with edge modes is avoided due to the geometry
(bulk-edge separation). However, as the indirect gap starts to
close, the two bulk bands approach the energy of the dislo-
cation modes, and eventually hybridize at the gap closing,
t = 0.5, since the dislocation and (some of) the bulk modes
become degenerate and transform under the same irreps, A1

and B2.
Stability of the dislocation modes. To establish the stability

of the modes, we follow the evolution of the localization of
a representative mode throughout the topological phase (see
Fig. 3). Notice first that when the indirect gap is open, the
spectral weight of the mode is peaked around the defect center
[Figs. 3(a)–3(d)]; see also Fig. 2(a) for the mode’s real-space
profile when t = 0.3. Once the indirect-bulk-gap closing (t =
0.5) is approached, the maximum spectral weight decreases
significantly, as can be seen in Fig. 3(e). Upon entering the
gapless regime, the dislocation modes dissolve into the bulk
[Fig. 3(f)] due to the hybridization. See also Fig. S5 in the SM
[46] for the evolution of the defect mode’s LDOS.

The indirect gap and the energy splitting between the two
dislocation modes exhibit an analogous behavior, and the
dislocation defect may serve as a bulk probe of the bulk-
boundary correspondence in the topological phase through
these fragile topological modes but only up to the closing of
indirect band gap. In Fig. 4, we observe that the gap between
the two dislocation modes evolves almost linearly with the
ratio t/τ , analogously to the indirect band gap, δEind/τ =
2 − 4t/τ , as shown in Sec. S1 of the SM [46]. However,
the dislocation modes are stable only up to the closing of
the indirect gap, taking place at |t/τ | = 0.5, while the cor-
ner modes remain localized until the topological transition
takes place at |t/τ | = 1, as shown in Fig. S6 in the SM [46].
We furthermore analyze the stability of the modes with re-
spect to the chemical-potential disorder on average preserving
both chiral and C4v symmetries. We clearly observe that the
modes remain localized for a weak chemical-potential disor-
der [Fig. 5(a)], while for the strong disorder, they delocalize
into the bulk [see Fig. 5(b)].

Mechanism of the modes’ emergence and dissolution.
To explain the emergence of dislocation modes, we in-
voke the chiral and C4v symmetries of the 2D SSH model
[Eq. (1)], which, in fact, guarantee their existence, together
with dislocation-flux correspondence [22]. To this end, we
first recall that the dislocation modes form by the Volterra
process connecting the two edges across the removed line
of unit cells ending at the dislocation center [Fig. 1(a)]. The
low-energy modes localized at the two sides of the “trench,”
formed before the dislocation is constructed, hybridize to
yield well-localized dislocation modes. The 2D SSH topo-
logical metal has two zero-energy (finite-energy) modes at
the lower (upper) corners of the trench, shown in Fig. S3 of
the SM [46], for a representative value t = 0.3. Two pairs
of the top trench modes transform under even (A) and
odd (B) representations of the C2 group, which become
one-dimensional A1 and B2 irreps of the C4v group after re-
connecting the sides of the trench, and thereby restore C4v

symmetry (see also Sec. S2 of the SM [46]). This irrep content
is fixed by the invariance of the modes under the two diagonal
reflections in the unit cell. After the edges are reconnected, the
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FIG. 3. Localization of the closest-to-zero positive-energy dislocation mode in the topological phase. The local density of states (LDOS) of
the mode is shown for the following values of the intra-unit-cell hopping parameter t [Eq. (1)]: (a) t = 0; (b) t = 0.1; (c) t = 0.2; (d) t = 0.3;
(e) t = 0.4; (f) t = 0.5. We fix τ = 1, the system size is 40 × 40 unit cells, and the LDOS is shown only up to 10 lattice sites from the
dislocation center (LDOS farther away is negligible). Distance is given in units of the nearest-neighbor spacing, a. The LDOS profile of the
mode for t = 0.3 is shown in Fig. 2(a). See Sec. S4 of the Supplemental Material [46] for analogous plots of the corner modes.

dislocation modes are at finite energy due to the hybridization
and the π -flux localization, with the chiral symmetry forc-
ing them to organize in chiral pairs. Furthermore, the chiral
pairs, in general, are with absolute values of energy ε1 > ε0,
where ε1 (ε0) corresponds to the finite- (zero-) energy modes
before the reconnection. If positive energy dislocation modes
transform under B2 and A1 irreps, their chiral partners at
negative energies swap the irreps (transform under A1 and B2).
Therefore, the modes are pairwise protected, independently
of the energy splitting between the modes. Now, the crucial
part is that the high-energy bulk bands near the M point
also transform under the same A1 and B2 representations of
the C4v group, and therefore dislocation modes are protected
from hybridization as long as the indirect gap between the
positive energy bands is finite. Once this gap closes, the modes

FIG. 4. Evolution of the energy difference between the two frag-
ile dislocation modes with positive energy that remain localized
up to the indirect band gap closing in the topological phase. The
system size is 40 × 40 unit cells, and open boundary conditions are
employed.

dissolve in the bulk since the spectral gap protection is no
longer operative, as explicitly shown in Fig. S5 in SM [46].
Finally, even though the dislocation modes transform under
the same irreps as the edge modes, the mixing between them
is suppressed by the geometry (bulk-edge separation).

Experimental feasibility. The prime candidate for the re-
alization of the proposed fragile dislocation modes is the
Si lattice, recently shown to host the 2D SSH model in a
rectangular geometry [44]. Such tunable lattice geometry, in
particular, should make it possible to readily implement a
dislocation defect and probe the defect modes using scanning
tunneling spectroscopy. Furthermore, engineered metasur-
faces, such as a recently reported silicon-based system [45],
provide another viable path to their realization via hopping
control. Photonic [31,49] and acoustic crystals [50], mechan-
ical resonator networks [32], and topolectric circuits [51–54]
represent additional potential platforms for their realization.

Discussion and outlook. In this Letter, we have demon-
strated that dislocation defects in an obstructed atomic
topological phase can host fragile dislocation modes: the de-
fect modes which are stable, but only in a finite fraction of the
topological phase. Furthermore, our findings shed light on the
importance of spectrum structure within the same topological
phase for defect response.

Our findings are expected to corroborate future stud-
ies of the stability of obstructed atomic topological phases
against disorder and interactions. Their generalization to
higher-dimensional SSH models [55], where crystalline,
particle-hole, and time-reversal symmetries may provide
further protection to the fragile dislocation modes, is an inter-
esting prospect for future investigation, relevant for quantum
materials, e.g., bismuth [56].

L201407-4



FRAGILE DISLOCATION MODES IN OBSTRUCTED ATOMIC … PHYSICAL REVIEW B 109, L201407 (2024)

FIG. 5. Effect of the random chemical potential on the local
density of states corresponding to the dislocation modes in Fig. 2(a).
We implement the chemical potential μ such that at a lattice point i,
μi = μ(1 + δi ) where the random variable δi ∈ [−x, x] is uniformly
distributed, with x as the variation. We take a fixed variation, x = 0.1,
and the values of chemical potential (a) μ = 0.3 and (b) μ = 3.0.
The color code is the same as in Fig. 2, and sites with an amplitude
<10−2 are left empty. Zoom-in of each mode is shown in the inset.

In closing, our work leaves an open question regarding
the possible existence of the symmetry-protected dislo-
cation bound states in the continuum (BICs) [57]. This
issue is especially pertinent given that BICs are rele-
vant in a variety of topological condensed-matter systems
[58–63]. Further research into the bulk-defect correspon-
dence in obstructed atomic topological phases, driven
by our findings, may uncover novel observable conse-
quences, e.g., experimental probes of topological classifica-
tions based on the symmetry content of electronic bands
[36,40].
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