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The interplay between the spin-orbit interaction (SOI) and magnetism produces interesting phenomena in
superconductors. When a two-dimensional (2D) system with a strong SOI is coupled to an s-wave supercon-
ductor, an in-plane magnetic field can drive the system into a gapless superconducting state and induce a
mirage gap at finite energies for an Ising superconductor. In this Letter, we demonstrate that when an s-wave
superconductor is proximitized to an altermagnet, the intrinsic anisotropic spin splitting of the altermagnet can
result in a gapless superconducting state and a pair of mirage gaps at finite energy. The gapless superconductivity
exhibits spin-polarized segmented Fermi surfaces, with coexisting spin-singlet and spin-triplet pairings that
have a d-wave character. Importantly, the gapless superconducting and mirage gap features are quantified
through quantum transport. Our results suggest that the altermagnet is an ideal platform for studying gapless
superconducting states and mirage gap physics.
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Introduction. The interplay of magnetism and supercon-
ductivity is an important research arena in condensed matter
physics [1–3]. While magnetism can hinder conventional su-
perconducting pairing, causing superconductivity to cease
when the magnetic field exceeds the Pauli limit [4], it can
also enable unconventional superconductivity with finite mo-
mentum and/or triplet pairing, leading to intriguing physics.
For example, in a two-dimensional (2D) system with a strong
spin-orbit interaction (SOI) proximity coupled with an s-wave
superconductor, an in-plane magnetic field can partially dis-
rupt pairing. This results in a segmented Fermi surface that
can be used to create Majorana bound states, provide in-
sights into the spin textures of the electron Fermi surface in
the normal state, and characterize the Fulde-Ferrell-Larkin-
Ovchinnikov state in unconventional superconductors [5–7].
Experimental evidence of this gapless superconducting state
has recently been observed [7]. Note that, in addition to the
discussed gapless superconducting states, there are two other
types: one featuring a Bogoliubov Fermi surface, where the
gapless states arise from the form factor in the excitation spec-
trum, as seen in p-wave and d-wave superconductors [8–10],
and the other created by applying an external magnetic field
(below the Pauli limit) to the superconductor, where the gap
is fully closed along the entire Fermi surface, as observed in
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Ref. [11]. Furthermore, in an Ising superconductor [12–17]
with an in-plane magnetic field, the presence of equal-spin-
triplet pairing at finite energy results in a mirage gap that
coexists with the quasiparticle density of states [18,19].

Recently, in addition to the ferromagnetic phase and an-
tiferromagnetic phase, a third magnetic phase called the
altermagnetic phase has been identified [20–28]. The alter-
magnet (AM) has a collinear antiferromagnetic structure with
a large nonrelativistic anisotropic spin splitting (ASS) [29,30],
which leads to several interesting physics phenomena unique
to AM. These include giant and tunneling magnetoresistance
[21], an anomalous spin Hall effect [24,31–33], spin-splitting
torque, a T -odd spin Hall effect [25–28], pronounced thermal
transport [34], and the spin Seebeck and spin Nernst effect
of magnons in the absence of Berry curvature due to the
giant spin splitting of the magnonic band [35,36]. Further-
more, there are numerous materials that exhibit the AM phase,
such as RuO2, MnTe, CrO, and CrSb, spanning from insu-
lators, semiconductors, and semimetals to metallic systems
[23], making it an ideal platform for material engineering
[37–40].

When an AM is sandwiched between two superconducting
leads, 0-π oscillation is predicted due to the finite momen-
tum pairing [41–43]. The dependence of Andreev reflection
on the orientation of AM relative to the interface, impu-
rity disorder, and tunneling barrier has been studied [44,45].
Additionally, it has been shown that first- and second-order
topological superconductivity can emerge in 2D AM metals
[46,47].
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In order to achieve a gapless superconducting state and
mirage gap in a 2D system proximitized to an s-wave
superconductor, it is typically necessary to have an in-plane
magnetic field and effective SOI. However, the in-plane
magnetic field can potentially destroy the proximitized super-
conducting state before the gapless superconducting state is
created, resulting in a very narrow window for the control and
manipulation of the gapless state. Our work demonstrates that
the use of an in-plane magnetic field is not necessary. Instead,
by tuning ASS, the AM proximitized to an s-wave super-
conductor (AM-SC) can transform the s-wave superconductor
into a gapless superconductor with a segmented Fermi surface
resembling a d-wave pattern. This segmented Fermi surface
exhibits different spin polarizations in different k directions.
Additionally, when the quasiparticle energy is nonzero, both
singlet and triplet pairing are allowed. Simultaneously, a mi-
rage gap also appears due to finite-energy pairing. Finally,
these compelling features are identified by the quantum trans-
port calculations.

Quasiparticle spectrum. The Hamiltonian of AM is given
by

H0(k) = ξkσ0 + tJ
(
k2

x − k2
y

)
σz,

where ξk = (tk2 − μ), k2 = k2
x + k2

y , μ is the chemical poten-
tial, and σi is the Pauli matrix in spin space. tJ denotes the
strength of ASS in the altermagnet. The Fermi momentum
is defined as kF = √

μ/t . The spin-splitting Fermi surfaces
in the AM are highly anisotropic, as shown in Fig. 1(a).
The spin-up (red solid line) and spin-down (blue solid line)
bands are well separated in the kx and ky directions, with the
spin splitting having opposite signs. However, there is still
degeneracy along the directions of |kx| = |ky| due to the C4

symmetry. This type of ASS d-wave-like Fermi surface is
referred to as d-wave magnetism [23].

When the altermagnet is proximitized by an s-wave super-
conductor, the Bogoliubov–de Gennes (BdG) Hamiltonian in
the Nambu basis (ck,↑, ck,↓, c†

−k,↑, c†
−k,↓) becomes [48]

HBdG =
(

H0(k) �iσy

−�iσy −H∗
0 (−k)

)
, (1)

where � represents the proximity-induced pairing poten-
tial. The spin of Bogoliubov quasiparticles is defined as
Sk = 〈c†

kσck − h†
kσ

∗hk〉 [5], where ck = (ck,↑, ck,↓) and hk =
(c†

−k,↑, c†
−k,↓) are the electron annihilation and hole creation

operators at momentum k, respectively, and 〈· · ·〉 denotes the
average over the eigenstates of the BdG Hamiltonian. Note
that HBdG commutes with the spin operator Sz [49]. This in-
dicates that the quasiparticle spectrum exhibits spin-splitting
characteristics. In the calculation, we set t = 1, μ = 0.16, and
� = 0.001 [52].

By diagonalizing the BdG Hamiltonian, one can determine
the quasiparticle spectrum. Figure 1(b) shows the quasipar-
ticle spectrum as a function of kx, with ky fixed at 0. It
is observed that there is a main superconducting gap for
both spin components. Additionally, by calculating the spin-
dependent density of states (DOS) in Fig. 1(b), we notice that
the superconducting gaps experience spin splitting due to the
presence of the exchange interaction tJ . In reality, numerous
AM materials exhibit different exchange interactions [22].

FIG. 1. (a) Schematic Fermi surfaces in the normal states of the
AM. (b) Quasiparticle spectrum of Eq. (1) and corresponding density
of states (DOS) with tJ = 3�. (c) Quasiparticle energy spectrum
near the Fermi momentum kF under different tJ values when ky = 0.
(d)–(f) The Fermi surfaces for E1 = 0, E2 = 0.6�, and E3 = 2�

with tJ = 10�. The red solid lines represent the spin-up components,
while the blue solid lines represent the spin-down components. Note
that in (d), when E = 0, the spin is completely degenerate. The
spin-up and spin-down components are distinguished by solid and
dashed lines, respectively.

Hence, our objective is to comprehend the superconducting
properties of these materials when they are in proximity to an
s-wave superconductor.

To analytically analyze the evolution of the quasiparticle
spectrum versus tJ , our focus is on the Fermi momen-
tum kF . After diagonalizing the BdG Hamiltonian, four
eigenvalues E±,± = ±TJ ± �, where TJ = tJk2

F cos 2θ , θ =
arctan(kF,y/kF,x ), and kF,x/y represents the Fermi momenta
along the kx/ky direction. The ASS results in a direction-
dependent spin splitting, which is maximum at θ = nπ/2,
n = 0, 1, 2, 3 and zero for θ = nπ/4, n = 1, 3, 5, 7. The main
superconducting gap is determined by E−+ − E+− = (2� −
2TJ ). When tJ is zero, there is no spin-splitting superconduct-
ing gap, i.e., E+/−,+ − E+/−,− = 2�. For small TJ < �, we
have E−,− < E+,− < E−,+ < E+,+. As tJ increases, the main
superconducting gap (2� − 2TJ ) decreases and eventually
closes when TJ = � for some k points. Since the spin splitting
vanishes when θ = nπ/4, n = 1, 3, 5, 7 due to C4 symmetry,
the main superconducting gap always remains open at these
specific k points. At the same time, a finite-energy super-
conducting gap can be formed. This type of finite-energy
superconducting gap is referred to as a mirage gap [18]. The
location (midpoint of the gap) and width of the mirage gap are
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determined by

ε±
0 = (E±,+ + E±,−)/2 = ±tJk2

F cos 2θ,

δ = E+,+ − E+,− = E−,+ − E−,− = 2�. (2)

As tJ increases further, the order of the eigenvalues can
change. Specifically, E−,− < E−,+ < E+,− < E+,+. This im-
plies that normal states appear at E = 0, and a segmented
Fermi surface emerges in the system. Figure 1(c) shows a
plot of the quasiparticle spectrum evolution under different
ASS strengths tJ = 3�, 6.25�, and 10� with ky = 0. No-
tably, the main superconducting gap diminishes and closes as
tJ increases. When it reaches a critical value of 6.25�, the
main superconducting gap closes and a mirage gap δ forms,
as depicted in the middle panel of Fig. 1(c). Furthermore,
upon further increasing tJ = 10�, although the main super-
conducting gap disappears at E = 0, a pair of mirage gaps
still exist at finite energy (|ε0| � �). In this situation, we
investigate three different Fermi surfaces, which are presented
in Figs. 1(d)–1(f). Due to the vanishing of spin splitting at θ =
nπ/4, n = 1, 3, 5, 7, segmented Fermi surfaces are formed at
|E | < �, and the superconducting gap always appears around
these specific points. The segmented Fermi surfaces indicate
the presence of gapless superconducting states in the system.
Interestingly, there is no spin splitting for the segmented
Fermi surfaces when E = 0. As the energy increases, the
spin splitting starts to appear and eventually fully separates
in k space. For instance, when E = E2, we observe spin-
polarized segmented Fermi surfaces in Fig. 1(e). Here, the
main superconducting gap and mirage gaps coexist. Even
when the energy exceeds �, the mirage gap persists. There
is some overlap between the spin-up and spin-down surfaces,
as depicted in Fig. 1(f). Therefore, AM materials offer an
ideal platform for observing both gapless superconducting and
mirage gap physics simultaneously. In the next section, we
will explore the pairing mechanism of the superconducting
gaps.

Pairing mechanism. The general pairing-correlation func-
tion is defined as follows [18,53,54],

F (k, E ) = �(F0σ0 + F · σ )iσy, (3)

where F0 and F represent the singlet and triplet pairing cor-
relations, respectively. We can use F (k, E ) to express the
pairing wave function

|	〉 = F0(| ↑↓〉 − | ↓↑〉) + Fx(| ↓↓〉 − | ↑↑〉)

+ iFy(| ↓↓〉 + | ↑↑〉) + Fz(| ↑↓〉 + | ↓↑〉). (4)

In the above expressions, the abbreviations |k ↑,−k ↓〉 are
used to represent |↑↓〉. The pairing correlations can be ob-
tained by solving the Gorkov equation [18,53–55],[

E − H0(k) −�iσy

�iσy E + H∗
0 (−k)

][F (k, E )

Ḡ(k, E )

]
=

[
0
1

]
. (5)

Eliminating Ḡ(k, E ) in Eq. (5), we have the components of
the pairing-correlation function F (k, E ) for the proximity-
coupled altermagnet state

F0(k, E ) = (
E2 − �2 − ξ 2

k + t2
J

)/
M(k, E ),

Fz(k, E ) = −2EtJ/M(k, E ), (6)

FIG. 2. (a) The pair correlations f0 and fz as a function of E for
tJ = 10� when kF,y = 0. (b)–(d) Polar plot of the pair correlations at
different energies E1 = 0, E2 = 0.6�, and E3 = 2� for tJ = 10�.

with M(k, E ) = (E2 − �2 − ξ 2
k + t2

J )2 − 4E2t2
J . From

Eq. (6), one can see that, even when in proximity to an s-wave
superconductor, both spin-singlet and spin-triplet pairings can
coexist with a nonzero energy E in AM-SC. Furthermore, if
we focus primarily on phenomena near the Fermi surface, we
can introduce the dimensionless Green’s functions f0/z(kF , E )
to characterize the pairing amplitude of F0/z [56,57],

f0/z(kF , E ) =
∮

dξk

π
iF0/z(k, E ). (7)

Figure 2(a) presents the dimensionless Green’s functions
f0/z(kF , E ) as a function of quasiparticle energy, with kF,y = 0
and tJ = 10�. It is observed that there is no pairing formed
around E = 0, indicating that the main superconducting gap is
closed at ky = 0. However, both singlet and triplet pairings are
nonzero in the mirage gap shown in the quasiparticle spectrum
in Fig. 1(c). This also confirms the coexistence of spin-singlet
and spin-triplet pairings of AM-SC. Note that f0 and fz have
even and odd parities with respect to the energy E . Moreover,
we investigate the anisotropic property of pairing by plotting
f0/z(kF , E ) in the polar axis under different energies labeled
in Fig. 1(c). From Fig. 2(b), we observe that the singlet pairing
is nonzero around θ = nπ/4, n = 1, 3, 5, 7. This is consistent
with what we found in the quasiparticle spectrum shown in
Fig. 1(d). The AM-SC exhibits a gapless feature. However, the
triplet pairing is always zero at E1 = 0, which is in agreement
with Eq. (6). If the quasiparticle energy is increased to E2,
triplet pairing emerges, presenting a different feature com-
pared to singlet pairing. When the energy is further shifted
upward to E3 = 2�, the pairings become zero in the spin-
overlapping region as shown in Fig. 1(f). This is different from
the pairing at E1 = 0 in the k space. It is worth noting that the
polar plot of the pairings exhibits a fourfold rotational symme-
try in all cases. In the following, we will discuss how to use the
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FIG. 3. (a) Schematic diagrams of an altermagnet-
superconductor junction. θ represents the incident angle of the
electrons in the normal altermagnet. (b) The polar plot of the
Andreev reflection coefficients T A for different tJ values at E = 0.
(c) The Andreev reflection coefficient T A plotted against EF for
different tJ values with θ = 0◦. (d)–(f) Polar plots showing the
spin-resolved Andreev reflection coefficients plotted against θ at
different energies: E = 0, 0.6�, and 2� for tJ = 10�.

transport properties to reflect the interesting superconducting
gap and pairing information of an AM-SC.

Quantum transport. We primarily study the transport prop-
erties (Andreev reflections) of an altermagnet-superconductor
junction, as depicted in Fig. 3(a). In this configuration, the
s-wave superconductor is positioned on a section of an AM,
resulting in an Andreev reflection coefficient T A that can be
utilized to identify the associated superconducting informa-
tion. Detailed quantum transport calculation approaches can
be found in the Supplemental Material [49]. First, the polar
plot of the Andreev reflection coefficients T A changes from
isotropic to anisotropic d-wave character as the ASS increases
when E = 0, as shown in Fig. 3(b). The persistence of quan-
tized T A around |kx| = |ky| in all cases corresponds to the
disappearance of spin splitting. Figure 3(c) shows the Andreev
reflection coefficient T A as a function of E under different
ASS strengths tJ = 3�, 6.25�, and 10�, with an electron in-
cident angle of θ = 0◦. It can be observed that T A is quantized
to 2 when |E | < 0.48� for tJ = 3�, which indicates the pres-
ence of a main superconducting gap for both spin components
[see Fig. 1(c)]. However, this quantization disappears when tJ
is increased up to 6.25�. In this case, the main superconduct-
ing gap closes and two spin-splitting mirage gaps at |ε0| =
� just emerge. Correspondingly, the spin-resolved Andreev

FIG. 4. Polar plots showing (a)–(c) the spin-resolved quasiparti-
cle transmission coefficient T N

σ and (d)–(f) the conductance G plotted
against θ at different energies: E = 0, 0.6�, and 2� for tJ = 10�.

reflection coefficients [58–60] T A
σ are quantized to 1 within the

mirage gap, as shown in the Supplemental Material [49]. Due
to the proximity effect, the Andreev reflection coefficients T A

σ

do not immediately decrease to zero when the energy is out-
side the mirage gap, hence a nonquantized value of T A around
E = 0 in Fig. 3(c). When tJ is large enough, the two spin-
splitting mirage gaps are well separated, and the quantized T A

reappears. However, there are still nonzero Andreev reflection
coefficients around E = 0. This can be seen in Fig. 3(c),
where T A approaches quantization to 1 within the mirage gaps
for tJ = 10�. The center of the quantized T A

σ corresponds to
the location ε±

0 of the mirage gap. The range of quantization,
which is independent of tJ , is equal to 2�. These results
are consistent with the analytic expressions given in Eq. (2).
Our theoretical calculations yield quantifiable data about the
superconducting gap.

Next, we will use angle-dependent transport to demonstrate
the properties of the segmented Fermi surface in the gapless
superconducting phase. In Figs. 3(d)–3(f), the polar plot dis-
plays the spin-resolved Andreev reflection coefficients (T A

σ )
versus θ at three different energies labeled in Fig. 1(c). The red
solid lines represent the spin-up Andreev reflection coefficient
(T A

↑ ), while the blue dashed lines represent the spin-down
Andreev reflection coefficient (T A

↓ ). For E1 = 0.0�, T A
↑ and

T A
↓ are fully degenerate. The profile of T A

σ has C4 symme-
try and centers at θ = nπ/4, n = 1, 3, 5, 7. However, as E
increases, they start to separate from each other. When the
Fermi energy increases to E2, the spin-up and spin-down parts
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connect on the principal horizontal and vertical axes, respec-
tively [see Fig. 3(e)]. Further increasing E > �, i.e., E3 = 2�

in Fig. 3(f), both spin components are zero around θ = nπ/4,
n = 1, 3, 5, 7. The profiles of T A

↑ and T A
↓ reduce to C2 symme-

try and rotate to center at the principal horizontal and vertical
axes, respectively. It is observed that the quantized T A

σ aligns
with the range of the superconducting gap regions shown in
Fig. 1.

To gain comprehensive insight into the full conductance
features accessible in experiments, we first present the po-
lar plot of the quasiparticle transmission coefficients T N

σ ,
as shown in Figs. 4(a)–4(c). The spin-up and spin-down
quasiparticle transmission coefficients are represented by
red solid and blue dashed lines, respectively. These coeffi-
cients, T N

↑ and T N
↓ , are fully degenerate when E1 = 0.0�.

However, they begin to separate as E increases. When the
energy E2 = 0.6�, the spin-up and spin-down parts are well
separated, as shown in Fig. 4(b). Upon further increasing
E > � [i.e., E3 = 2� in Fig. 4(c)], both spin components
overlap around θ = nπ/4, n = 1, 3, 5, 7. Furthermore, the
quasiparticle transmission coefficient in the polar plot is
spin polarized around θ = nπ/2, n = 0, 1, 2, 3 when E 	= 0.
Comparing with the Andreev reflections, the quasiparticle
transmission coefficients T N

σ align with the segmented Fermi
surface.

Finally, we discuss the total conductance, as shown
in Figs. 4(d)–4(f). In the low-bias limit, the conductance

in the AM-SC junction can be expressed as G =
e2

h

∑
σ (T N

σ + 2T A
σ ). when E = 0, the conductance reaches

4 around θ = nπ/4, n = 1, 3, 5, 7 due to the Andreev
reflections in the main superconducting gap, whereas the
conductance dominated by the normal state in other regions
is approximately to 2. As E increases up to 0.6�, the
conductance in the mirage gap increases up to 3 around the
principal horizontal and vertical axes. When E is equal to
2�, the total conductance around θ = nπ/4, n = 1, 3, 5, 7
reduces to 2 due to the further separation of the spin-resolved
Andreev reflections. It can be seen that the total conductance
keeps C4 symmetry. Given the recent angle-resolved
measurements of the transport property of the third-order
nonlinear Hall effect [61], we may anticipate observing the
angle-resolved total conductance in the AM-SC system.

Conclusion. In summary, we have demonstrated that in
the absence of SOI, the AM-SC can display d-wave-like
gapless superconducting states. Moreover, both singlet and
triplet pairings occur simultaneously at finite energy, resulting
in the emergence of mirage gaps in the system. These key
features have been validated and quantified through quantum
transport calculations. Our findings highlight the AM as an
ideal platform for studying gapless superconducting states and
mirage gap physics.
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