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In this work, we establish a theoretical analysis of the emergence of layer-contrasted Nernst response perpen-
dicular to the direction of the temperature gradient in twisted moiré layers, called layer Nernst effect (LNE). This
phenomenon arises from the trigonal warping of the Fermi surface along with a layer-contrasted pseudomagnetic
field. Interestingly, the Fermi surface’s warping explicitly breaks intravalley inversion symmetry, which leads to
an imbalance between left- and right-moving carriers, thus resulting in a nonvanishing LNE. We then validate
our theoretical scheme by applying it to twisted bilayer graphene (TBG). Importantly, we find that the LNE
coefficient in TBG can reach values as high as 103 A/(m · K), surpassing those of previously known materials
by at least one order of magnitude. These results provide a theoretical foundation for utilizing TBG and other
twisted moiré layers as promising platforms to explore layer caloritronics and develop thermoelectric devices.
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Introduction. Nernst effects are of essential importance in
realizing the coordinated control of heat and charge in modern
electronics. Primarily, the Nernst effect is characterized by the
generation of an electric signal transverse to the temperature
gradient under a perpendicular external magnetic field [1,2].
Attributed to the endowed crucial properties of Berry curva-
ture, anomalous Nernst effect [3–7] and the cousin versions
in terms of the spin and valley degree of freedom [7–12]
have been largely studied. The linear Nernst effect quanti-
fied by Nernst coefficient linear in the temperature gradient
vanishes under time-reversal (T ) symmetry in general. In-
terestingly, recent studies have shown the nonlinear Nernst
current, which arises as a second-order response to the ap-
plied temperature gradient, can survive in T -invariant systems
[13–15].

Despite the intense studies over the past few decades, the
Nernst effect remains underutilized in practical applications
[2,16]. A small Nernst coefficient and/or thermal gradient
would lead to minuscule Nernst signals, significantly obstruct-
ing the probing and potential applications. As a result, the
Nernst effects of more evident response, namely, with a larger
Nernst coefficient, are still in high demand.

Long-period moiré materials formed in van der Waals
heterostructures have evoked significant interest since the
discovery of correlated insulator and superconductivity in
twisted bilayer graphene (TBG) [17–20]. Amounts of non-
trivial topological properties, including the spontaneous
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ferromagnetism [21,22] and various transport effects such as
the magnetoelectric and nonlinear Hall effects [23–30], have
been demonstrated in the moiré systems. In addition, it was
proposed recently that TBG can support the so-called layer
Hall effect [31,32], where layer-contrasted Hall current is gen-
erated due to interlayer hybridization, originating differently
from that induced by layer-locked Berry curvature [33]. In
contrast, only a few studies so far have focused on the thermo-
electric transports in TBG [34–37], which is significantly less
investigated. Based on the Onsager reciprocity [38], the layer-
contrasted Nernst response is expected to emerge naturally in
these systems supporting nonzero Hall response.

In this work, we propose a type of Nernst effect that offers
a remarkable Nernst response, namely, the layer Nernst effect
(LNE) in the T -invariant twisted moiré systems. Utilizing
the Boltzmann transport equation approach, we establish the
formalism for LNE induced by the layer velocity curvature
(LVC). This is of a fundamentally different origin from all the
previously reported Nersnt effects. We also explicitly demon-
strate the significant role of breaking the intravalley inversion
(I) by the trigonal warping effect. Importantly, the LNE is
forced to be zero if intravalley I is preserved when warping is
absent. Moreover, we find that the LNE conductivity of TBG
can reach magnitudes as high as approximately of the order
in 0.1–1 µA/K [effectively 102–103 A/(m · K) for a layer
device of nanometer-scale thickness], far better than the cur-
rently achieved large Nernst coefficients [0.5–45 A/(m · K)]
that have been reported in only a few topological materials
at similar temperatures [5,39–41]. Finally, we extend our
formalism of LNE to twisted multilayer graphene systems
and also analyze the intriguing layer responses in twisted
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double-bilayer graphene (TDBG), a system that has been suc-
cessfully fabricated in experiments recently [42,43].

General formalism of LNE in bilayer structures. Con-
ventionally, a current flow density can be obtained utilizing
Boltzmann transport theory if the flowing carrier’s velocity
along with its momentum- or energy-dependent distribution
function is known [44]. Due to the layerlike spatial separation
for the carriers in coupled bilayer systems, a layer-resolved
velocity could be defined as v̂L = {τz, v̂}/2, where v̂ is the
normal velocity operator, and τz acts on the layer pseudospin
space [45,46]. Following the conventional analogy, it leads us
to a layer-resolved current density, which can be written as

JL = −e
∫

k
f (k)vL(k). (1)

Here, vL(k) = 〈u(k)|v̂L|u(k)〉, ∫
k = ∫

d2k/(2π )2, and the
summation over the band [|u(k)〉] index has been omitted.
f (k) is the Fermi-Dirac distribution of the carriers in the
occupied states, which is apt to be perturbed by external
fields, giving rise to various transport responses. Considering
a homogeneous and uniform temperature gradient ∇T , its
first-order deviation in ∇T can be then obtained as f T

1 =
τ h̄−1[ ε(k)−μ

T ]∂α f0∇αT , with τ being the constant relaxation
time and ∂α = ∂/∂kα

. Such a temperature-driven deviation
directly brings us to the layer-contrasted current flow, linear
in and transverse to ∇T , which reads as

Jy
L = −τ

e

T

∫
k
[ε(k) − μ] f ′

0vx(k)vy
L(k)∇xT . (2)

Here f ′
0 = ∂ f0/∂ε and α = x is considered for ∇αT . Straight-

forwardly, the layer Nernst coefficient, defined as αL
N =

(αL
xy − αL

yx )/2, can be obtained as

αL
N (μ) = τ

e

2T

∫
k
[ε(k) − μ]�L(k)δF [ε(k) − μ], (3)

where �L(k) = v(k) × vL(k) is denoted as the LVC,
v(k) = h̄−1∇kε(k), and δF [ε(k) − μ] = −∂ f0/∂ε =
{4kBT cosh2[(ε(k) − μ)/2kBT ]}−1 is the deltalike function.
Note that LVC has the same physical origin as the layer
current vorticity introduced in Ref. [31]. The pure Nernst
coefficient for each layer is then given by αt

N = −αb
N = αL

N/2,
respectively, corresponding to the LNE current Jt/b for the
top/bottom layer, as schematically shown in Fig. 1(a).

Intuitively, as long as the current in each layer remains
different, the layer-resolved current naturally emerges in the
bilayer systems, i.e., JL = Jt − Jb �= 0, despite the detailed
driven fields. Specifically, however, whether LNE survives
depends on the symmetry constraints for the given bilayer
system. One easily finds �L(k) is intervalley T even but is
intravalley I odd, which indicates that a T invariance and I
breaking will be required to support the finite LNE response
in bilayer systems. Following a similar analogy, the layer Hall
conductivity σ L

H can also be obtained when electric field E ,
instead of ∇T , is applied (see Ref. [31] and the Supplemental
Material [47]). Interestingly, the Mott relation is found to be
well obeyed between σ L

H and αL
N at low temperatures, i.e.,

αL
N (μ) = π2k2

BT

3e

∂σ L
H (μ)

∂μ
, (4)

FIG. 1. (a) Schematic illustration of the layer Nernst effect in a
bilayer system. Under a temperature gradient ∇T , layer-contrasted
current flows, denoted as Jt and Jb for the top and bottom layers, are
generated perpendicularly to ∇T . (b) In the momentum space, the
original Brillouin zone of the bottom (blue) and top (brown) layers
is folded into the moiré Brillouin zone (mBZ, green). The trigonally
warped Fermi pockets are around the Brillouin zone corners. θ is the
twist angle between the two layers. (c) The layer pseudomagnetic
field (±Bp) drives the layer contrasted current flows under the ∇T .

which has been discussed extensively for the anomalous Hall
and Nernst effects [3], and is valid only when the energy
derivative of the electric coefficient is continuous and at rel-
atively low temperatures (kBT � μ) [50]. We also want to
mention that, in the second-order transport regime, the layer
Hall and Nernst current is found to be ∝ ∂k�L, which is T
odd, rendering the net contributions from terms ∝ E2 and
∝ (∇T )2 be zero for T -invariant systems. We can also expand
them to higher order terms like the Berry curvature multiple
in the recent studies [51,52].

Minimal model with warping effect. Before diving into
any realistic material systems, let us construct a minimal toy
model for the twisted moiré bilayers. Without losing gener-
ality, one can merely consider a single band on each layer
for simplicity. As illustrated in Fig. 1(b), a twist angle θ

between the two layers forms a moiré superlattice with an
enlarged lattice constant LM = a0/(2 sin θ

2 ), where a0 denotes
the original lattice constant. At small θ , the moiré super-
lattice can be modeled by a continuum Hamiltonian H =∑

ξ

∫
drψ†

ξ (r)Hξ (r)ψξ (r), where ξ = ± denotes the different
valleys, and H+ (H−) for valley K (K ′) is given by

H+(r) =
(

Hb(k) U (r)

U †(r) Ht (k)

)
. (5)

Each layer (indicated via l = b/t) is then governed by
Hl = −a2

0tk k̃
2
l + a3

0λ(k̃3
lx − 3k̃lx k̃2

ly), where k̃l = k − K l , tk
denotes the usual kinetic energy. A finite λ introduces
the trigonal warping effect, leaving the warped Fermi
pockets around each Brillouin zone corner, as shown in
Fig. 1(b). The interlayer coupling in Hξ is given by
U (r) = w[1 + e−iG2·r + e−i(G1+G2 )·r], with Gi = 4π/(

√
3LM )
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FIG. 2. (a) Moiré bands of valley ξ = + from the continuum
model of Eq. (5) with the interlayer tunneling strength w = 0.02tk

and θ = 3◦. (b) Momentum-space profile of v(k) × vL (k) [�L (k)]
in units of �0 = a2

0t2
k /h̄2 for the top moiré band in (a). In (a),

(b) λ = 0.6tk . (c) The Nernst coefficient αL
N versus hole filling factor

nh calculated from the continuum model under different trigonal
warping strength λ. (d) αL

N with intralayer moiré potential δV (r). The
temperature is set as kBT = 10−3tk .

(cos 2(i − 1)π/3, sin 2(i − 1)π/3) being the moiré reciprocal
lattice vectors, and w being the interlayer tunneling strength.
The latter significantly affects the moiré energy bands, be-
cause of which, the top two valence bands exhibit an evident
energy gap, as shown in Fig. 2(a).

In Fig. 2(b) we plot the LVC �L of the top moiré band, and
the calculated LNE coefficient αL

N is shown in Fig. 2(c). Units
�0 = a2

0t2
k /h̄2 and α0 = eτkBtk/h̄2 are utilized here, and the

temperature is set as kBT = 10−3tk . One may observe αL
N = 0

when the warping strength λ equals zero in Fig. 2(c). This is
because λ = 0 explicitly restores the intravalley I symmetry,
rendering the LNE to vanish. More details are discussed in the
Supplemental Material [47].

We have also demonstrated that the presence of intralayer
moiré potential [49,53], does not alter our conclusion. To
illustrate this, we consider a moiré potential described by
δV (r) = 2V0

∑3
j=1 cos(G j · r + lψ ). The numerical results

for αL
N with V0 = 0.02tk and ψ = 91◦ are shown in Fig. 2(d),

and more related results are discussed in the Supplemental
Material [47]. Based on the minimal model, an estimation of
αL

N ∼ 0.03 µA/K can be made accordingly, utilizing parame-
ters for MoS2 [54] with a0 = 3.2Å, t ≈ 0.86 eV, λ ≈ 0.14 eV,
and τ ∼1 ps.
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FIG. 3. (a) The calculated moiré bands of TBG at θ = 2◦. The
solid (dashed) lines denote the K and K ′ valley, respectively, while
the purple and orange lines represent the lowest conduction and high-
est valence bands, respectively. (b) Momentum-space profile of layer
velocity curvature �L within the lowest conduction band (orange) in
(a). (c) αL

N as a function of filling factor ne for different temperatures
T at θ = 2◦. (d) αL

N as a function of ne for different θ at T =10 K.

LNE response in TBG.—Now we apply the previously
formalized LNE to TBG. For small twist angle θ , the low-
energy states of each layer in TBG can be effectively captured
by a continuum model consisting of Dirac fermions, with
an approximate Fermi velocity h̄vF ≈ 5.96 eV·Å [55]. Ad-
ditionally, the interlayer coupling in TBG introduces both
the intrasublattice tunneling uAA (AA stacking) and the
intersublattice tunneling uAB (AB stacking). According to
the Bistritzer-MacDonald model [55], these two tunneling
strengths are considered to be ∼110 meV. As shown in
Fig. 3(a), we present the energy bands for both the K and
K ′ valleys of TBG at θ = 2◦. Figure 3(b) depicts the LVC
�L(k) for the lowest conduction band of the K valley, while
the profile around the K ′ valley could be mapped out through
the T symmetry operation.

We investigate the properties of αL
N for TBG by nu-

merically solving the continuum model with an estimated
scattering time τ ∼ 1 ps [56]. Generally, the effective scatter-
ing time τ is estimated to be within 1 ∼ 10 ps [57]. As shown
in Fig. 3(c), αL

N presents a great gate tunability. Evidently, αL
N

becomes larger with increasing temperatures, which is bene-
ficial for experimental probing. We also show the twist angle
dependence of αL

N in Fig. 3(d). It can be observed that αL
N ex-

hibits more significant amplitudes at relatively smaller angles,
attributed to the enhanced density of states there. Moreover,
the two side peaks around ne = 0 merge together when θ

approaches the magic angle (see θ = 1.2◦), leaving αL
N �= 0

at the charge neural point. However, as shown in Fig. 3(c), we
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FIG. 4. (a) The Fermi surface of TBG near K points for uAA = 0
and uAA = 0.8uAB at θ = 2◦ and the Fermi energy μ = 40 meV.
(b) The calculations of αL

N for uAA = 0, 0.8uAB and uAB. At uAA = 0,
αL

N = 0 because of the intravalley inversion symmetry. (c) Schematic
structure of the twisted multilayer graphene system. (d) The gate de-
pendence of αN for each layer in TDBG at θ = 2◦. The temperature
is set as T = 30 K.

would again obtain αL
N = 0 at ne = 0 when T → 0. In contrast

to the layer Hall response [31,47], LNE is even in the filling
number, consistent with the relations given by Eq. (4). It is
worth noting that αL

N in TBG does not require the twist angles
to be well tuned, which greatly differs from the Berry curva-
ture dipole’s nonlinear transport effects in such systems [24].

As discussed earlier, intravalley I symmetry breaking is
necessary to support a finite LNE in moiré bilayers. This, here
in TBG, is exactly realized by the finite interlayer tunneling,
thus guaranteeing a finite LNE. As shown in Fig. 4(a), the
Fermi surface features an obvious I symmetry with uAA = 0,
which results in a zero LNE transport response. However,
such symmetry is immediately broken by uAA �= 0, revealed
by the trigonally warped Fermi surface; hence, a nonzero LNE
transport response appears. The results discussed in Fig. 3
exactly belong to this regime, and more numerical results of
αL

N with various uAA can be seen in Fig. 4(b).
Interestingly, what is discussed above for LNE in TBG

can be well captured by a pristine TBG model in the pseudo-
Landau level representation [58], which is written as

Hξ (k, r) = h̄vF

[
k − ξ

e

h̄
A(r)τz

]
· σ + 3uAAτy. (6)

It can be easily recognized that, at the chiral limit
(uAA = 0), TBG preserves intravalley I symmetry [59,60],
i.e., IHξ (k, r)I† = Hξ (−k,−r) with the inversion operator

I = τzσz. Therefore, LNE is forced to vanish in TBG. This
explains the numerical results shown in Fig. 4(b). Moreover,
one finds above an effective vector potential A(r), which pro-
vides a large layer-contrasted pseudomagnetic field in TBG
[see Fig. 1(c)]. For example, a field of the order of magnitude
∼200 T can be obtained at θ = 2◦. Microscopically, such
an effective field can drive the carriers to transport along
opposite directions in each layer (consistent with the picture
constrained by symmetries) and give rise to the LNE response.

Application to twisted multilayer systems. Having studied
the LNE in TBG, we now embark on other twisted multilayer
systems. Generally, we consider a system in which M-layer
graphene is stacked on top of another N-layer graphene, form-
ing a twist angle θ , as depicted in Fig. 4(c). The layer Nernst
coefficient can be similarly derived from the projected layer
velocity v̂i

L of the ith layer with v̂i
L = {v̂, P̂i}/2, where P̂i is

the projection operator onto the target ith layer. Under the
overall T symmetry, the Nernst coefficients in each layer are
explicitly constrained by

∑
i α

i
N = 0.

We take the TDBG with M = 2 and N = 2 as an exam-
ple. In Fig. 4(d), we illustrate the gate dependence of LNE
coefficient αN for each layer within TDBG at a twist angle
of θ = 2◦. Notably, prominent αN values appear in the sec-
ond and third layers, constituting the adjacent layers twisted
with each other in TDBG. For the first and fourth layers,
nonzero LNE responses can also be seen due to the presence
of interlayer coupling in bilayer graphene. The observable
asymmetry of αN around the ne = 0 is ascribed to the absence
of particle-hole symmetry. These results further verify our
previous symmetry analysis and indicate that LNE is quite
general in various layer structures.

Discussion and conclusion. We have introduced the LNE in
several twisted moiré systems, along with the gate tunability,
twisted angle, and temperature dependencies. Remarkably, we
find the twisted bilayers can support LNE with a very large
transport coefficient. A closer comparison between the LNE
coefficient found for TBG and other material systems studied
to date is necessary. To the best of our knowledge, large Nernst
responses with αN ∼ 10 A/(K · m) and αN ∼ 15 A/(K · m)
have been reported in magnetic Weyl semimetals Co3Sn2S2

[40] and UCo0.8Ru0.2Al [41], respectively. Another higher
record is then held by the single crystal MnBi with αN ∼
45 A/(K · m) [61]. For TBG considered in this work, αL

N ≈
0.5 µA/K can be obtained at a moderate temperature T =
70 K (roughly the same T as in the above materials) and an
easily achieved twisted angle θ = 2◦. When considering the
thickness about 0.5 nm of bilayer graphene, such a response
coefficient is converted to be ∼103 A/(K · m).
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