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Pair correlations of the hybridized orbitals in a ladder model for the bilayer nickelate La3Ni2O7
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To clarify the nature of high-temperature superconductivity in the bilayer nickelate La3Ni2O7 under pressure,
we investigate, using the density-matrix renormalization group method, the pair correlations in the two-orbital t-J
ladder model. While the interchain-intraorbital pair correlations exhibit a slow power-law decay in both orbitals,
the interorbital pair correlation also develops strongly enough to be comparable with the intraorbital correlations.
These intra and interorbital pair correlations are enhanced by Hund’s coupling, but more importantly, the
interorbital pair correlation develops even when interorbital pairing glue mediated by Hund’s coupling is absent.
Our finding suggests that the pair correlation in the present system develops as a hybridized two-orbital entity,
which may have some implications on the superconductivity in the bilayer nickelate.

DOI: 10.1103/PhysRevB.109.L201124

The recent discovery of high-temperature superconduc-
tivity under pressure with a Tc of ∼80 K in a bilayer
Ruddlesden-Popper nickelate La3Ni2O7 [1] has initiated a
new intensive wave of research in the field of condensed mat-
ter physics. Experimental reproductions that have followed
the initial discovery have indeed established the occurrence of
superconductivity in this material [2–7]. Also, already a large
number of theoretical studies have appeared after the discov-
ery of superconductivity [8–45]. Moreover, even the trilayer
nickelate La4Ni3O10 has been found to exhibit signatures of
superconductivity under pressure with a lower Tc of about
25 K [5,46–48], as expected theoretically [5].

Regarding the theories on La3Ni2O7 that focus on the
pairing mechanism, many of them agree on the point that the
pairing involves interlayer nature, where the large interlayer
hopping between the nearly half-filled d3z2−r2 orbitals (or the
interlayer magnetic exchange coupling induced by the inter-
layer hopping) plays an important role, which was a feature
theoretically pointed out for this material in Ref. [49] by one
of the present authors before the experimental discovery. In
fact, a nearly half-filled Hubbard (or t-J) model on a bilayer
lattice [49–53] or a two-leg ladder [54–56] has been known
to be favorable for superconductivity for many years. How-
ever, in La3Ni2O7, along with the nearly half-filled d3z2−r2

orbitals, there exist nearly quarter-filled dx2−y2 orbitals. The
role played by the coupling between the d3z2−r2 and dx2−y2

orbitals, namely, the single-particle hybridization and the two-
body interactions such as Hund’s coupling, and also, which
one of the two orbitals dominates in the pairing, have been
issues of debate.

In Ref. [39], three of the present authors discussed the
role played by those interorbital interactions using fluctuation
exchange approximation, which is basically a weak coupling

approach. On the other hand, we used the density-matrix
renormalization group (DMRG) method [57–59] to study the
interlayer pair correlations in a two-orbital two-leg Hubbard
ladder that mimics the electronic structure of La3Ni2O7 in
a one-dimensional system (but without considering the in-
terorbital two-body interactions) [40]. There it was found that
orbitals corresponding to the d3z2−r2 and dx2−y2 orbitals both
exhibit slowly decaying correlations, even without Hund’s
coupling, with the former somewhat dominating in the de-
caying power. DMRG has also been adopted to investigate
different types of models of La3Ni2O7 [41–45]. In terms of the
two-orbital models, the numerical elucidation of the interplay
of the d3z2−r2 and dx2−y2 orbitals is highly desired to approach
the pairing mechanism in La3Ni2O7.

Given this background, to further investigate the effect of
the interorbital interactions, here we study the pair correla-
tions using DMRG in a two-orbital t-J ladder that mimics
La3Ni2O7 in a similar manner as in Ref. [40], not only in-
cluding the interlayer exchange coupling explicitly, but also
considering Hund’s coupling. We find that Hund’s coupling
encourages the correlations of the interchain pairs of both
nearly half-filled (i.e., d3z2−r2 ) and nearly quarter-filled (i.e.,
dx2−y2 ) orbitals. More importantly, our calculation demon-
strates that the correlation of the interorbital pairs exhibits
a slow power-law decay, and this decaying behavior appears
even without Hund’s coupling. Our finding suggests that the
hybridized orbital due to interorbital hopping (that exists in
actual La3Ni2O7) obtains the quasi-long-range superconduct-
ing correlation.

To address the issues, we consider a two-orbital t-J model
[see Fig. 1], which is an effective model of the two-orbital
Hubbard model in the strong coupling limit. Our t-J model
set in the ladder lattice prohibits the doubly occupied orbital
at 3/8 filling, and the Hamiltonian Ĥ = Ĥt + ĤJ consists of
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FIG. 1. Two-orbital t-J ladder at 3/8 filling. The x and z orbitals
correspond to the d3z2−r2 and dx2−y2 orbitals, respectively, in the
bilayer nickelate.

the one-body term

Ĥt = −
∑
μ,ν

tμν

‖
∑

j,l

∑
σ

( ˆ̃c†
j,l,μ,σ

ˆ̃c j+1,l,ν,σ + H.c.)

− t zz
⊥

∑
j

∑
σ

( ˆ̃c†
j,1,z,σ

ˆ̃c j,2,z,σ + H.c.)

+ �E

2

∑
j,l

(n̂ j,l,x − n̂ j,l,z ) (1)

and the spin interaction term

ĤJ = Jxx
‖

∑
j,l

(
Ŝ j,l,x · Ŝ j+1,l,x − 1

4
n̂ j,l,xn̂ j+1,l,x

)

+ Jzz
⊥

∑
j

(
Ŝ j,1,z · Ŝ j,2,z − 1

4
n̂ j,1,zn̂ j,2,z

)

− 2JH

∑
j,l

(
Ŝ j,l,x · Ŝ j,l,z + 1

4
n̂ j,l,xn̂ j,l,z

)
. (2)

ˆ̃c j,l,μ,σ = ĉ j,l,μ,σ (1 − n̂ j,l,μ,σ̄ ) is the projected annihilation op-
erator of ĉ j,l,μ,σ for an electron with spin σ (=↑,↓) at site j
in chain l (= 1, 2), and orbital μ (= x, z), where n̂ j,l,μ,σ =
ĉ†

j,l,μ,σ
ĉ j,l,μ,σ (n̂ j,l,μ = ∑

σ n̂ j,l,μ,σ ) is the number operator
and σ̄ indicates the opposite spin of σ . Considering the bilayer
nickelate system within a one-dimensional effective model,
the orbitals x and z are associated with the dx2−y2 and d3z3−r2

orbitals, respectively. Ŝ j,l,μ = (1/2)
∑

σ,σ ′ ĉ†
j,l,μ,σ

σσ,σ ′ ĉ j,l,μ,σ ′
is the spin operator at site j in chain l , and orbital μ, where
σ is a set of Pauli matrices σ = (σ 1, σ 2, σ 3). �E (>0) is the
energy difference between two orbitals, where the energy of
the x orbital is higher than the energy of the z orbital, i.e., the z
(x) orbital becomes nearly half (quarter) filling. tμν

‖ and tμν

⊥ de-
note the intrachain and interchain hoppings, respectively. Jμν

‖
and Jμν

⊥ indicate the intrachain and interchain spin-exchange
couplings, respectively, and JH (>0) is the Hund’s (interorbital
ferromagnetic) coupling.

As for the interchain hopping tμν

⊥ , assuming that the over-
lap between two dx2−y2 orbitals along the z (rung) direction
is small enough, we consider only interchain hopping t zz

⊥ for
the d3z2−r2 orbital. In the high-symmetry structure (without
tilt) of the bilayer nickelate under pressure, the interlayer hop-
ping between the dx2−y2 and d3z2−r2 orbitals is zero, justifying

FIG. 2. Local electron density nμ( j) = 1/2
∑

l〈n̂ j,l,μ〉 at JH = 0
(left panel) and JH = 1 (right panel), where Jzz

⊥ = 0.5.

t xz
⊥ = 0. On the other hand, we take into account all intrachain

hoppings. In this paper, we set t xx
‖ = 1 as the energy unit and

assume t zz
‖ = 0.25 and t xz

‖ = 0.5 to make a correspondence
to the ratios of the intralayer hoppings estimated by the first-
principle calculation in La3Ni2O7 [39]. We use t zz

⊥ = 0.7 and
�E = 1 employed in Ref. [40] that suggests a good signature
for superconductivity in the two-orbital Hubbard model. The
results with different values of t zz

⊥ and �E are presented in the
Supplemental Material [60].

As for the spin interactions, we consider the intrachain
antiferromagnetic coupling for the x orbital Jxx

‖ (>0) and in-
terchain antiferromagnetic coupling for the z orbital Jzz

⊥ (>0).
Since Jzz

‖ and Jxz
‖ are small relative to Jxx

‖ and Jzz
⊥ in the bilayer

nickelate, we neglect Jzz
‖ and Jxz

‖ for simplicity. To comprehen-
sively investigate the roles of the essential spin interactions
in pairing properties within the two-orbital ladder model, we
set Jzz

⊥ and JH as variables while keeping Jxx
‖ = 0.5. Assuming

that the antiferromagnetic J is on the order of 4t2/U (where U
is the Hubbard repulsion), we have Jxx

‖ 
 0.5 and Jzz
⊥ 
 0.25

for U = 8 with t xx
‖ as the energy unit. The ratio Jzz

⊥ /Jxx
‖ , how-

ever, could vary from two due to unaccounted factors in the
aforementioned estimation such as the interorbital repulsion
U ′ and the ligand p orbital between the nickel ions.

As shown in Fig. 1, the z orbitals form the nearly half-
filled ladder consisting of the strong interchain coupling (t zz

⊥
and Jzz

⊥ ) and weak intrachain coupling (t zz
‖ ). The electrons

in the x orbitals, which do not possess interchain couplings,
are originally itinerant along the chain direction, while the
interorbital hopping t xz

‖ hybridizes the x and z networks. In
addition, Hund’s coupling JH aligns the spins in the x and z
orbitals within the single ion.

To compute the ground state of the two-orbital t-J ladder,
we employ the DMRG method implemented in the ITensor
library [61]. We carry out the DMRG calculations in lad-
ders of lengths L = 48 (2 × 48 sites) with open boundary
conditions. In this paper, we show the results at the bond
dimension m = 10 000, where the truncation errors are on
the order of at most 10−6. We examine the m and L de-
pendence of the results in the Supplemental Material [60].
As shown in Fig. 2, the z (x) orbital is nearly half (quarter)
filling in the ground state. Electron filling of each orbital
is not significantly changed by Hund’s coupling JH. While
nx( j) exhibits an oscillation when JH = 1, the oscillations are
small around the center of the ladder and a charge-density-
wave character is not substantial. To explore the nature of
superconductivity in the two-orbital t-J ladder, we calculate
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FIG. 3. Pair correlation functions Pμμ

⊥ (r) for various values of
Hund’s coupling JH. (a) Pxx

⊥ (r) at Jzz
⊥ = 0.25 (upper panel) and Jzz

⊥ =
0.5 (lower panel). (b) Pzz

⊥ (r) at Jzz
⊥ = 0.25 (upper panel) and Jzz

⊥ =
0.5 (lower panel). The insets show the decay exponents of Pμμ

⊥ (r),
where the exponent Kμμ is extracted by fitting the crests of the data
points at r � 6.

the pair correlation function Pμμ

⊥ (r) = 〈�̂†
j,μμ�̂ j+r,μμ〉, where

�̂ j,μμ = ( ˆ̃c j,1,μ,↑ ˆ̃c j,2,μ,↓ − ˆ̃c j,1,μ,↓ ˆ̃c j,2,μ,↑)/
√

2 is the inter-
chain spin-singlet pair annihilation operator on orbital μ (=
x, z) at site j. Here, we show the pair correlation function for
the reference site j = jref = L/4.

In Fig. 3, we compare the pair correlation functions Pμμ

⊥ (r)
for various values of Jzz

⊥ and JH. We find that the pair corre-
lations of both orbitals exhibit power-law decays (Pμμ

⊥ (r) ∝
r−Kμμ), as is consistent with the behavior in the two-orbital
Hubbard ladder [40]. Reflecting the presence of many carriers
in the x orbitals close to quarter filling Pxx

⊥ (r) is larger than
Pzz

⊥ (r) in the range we plotted. In one-dimensional systems, on
the other hand, the correlations persisting over long distances
are also crucial, and therefore we show the decay exponent
Kμμ in the inset of Fig. 3. Here, a smaller Kμμ is preferable to
a quasi-long-range order (i.e., slower decay of the pair corre-
lation). As seen in Fig. 3(b), the decay of Pzz

⊥ (r) at Jzz
⊥ = 0.5 is

slower (i.e., has smaller Kzz) than that at Jzz
⊥ = 0.25. This ten-

dency is consistent with the case in the one-orbital t-J ladder,
in which a larger J⊥ is favorable for the pair formation [54,55].
Moreover, our calculations in the two-orbital t-J ladder show
that Hund’s coupling JH enhances the pair correlations at long
distances, supporting a smaller decay exponent Kzz. Pxx

⊥ (r) in
Fig. 3(a) also shows a similar decay tendency against Jzz

⊥ and
JH. As summarized in the insets of Fig. 3, we find that larger
JH as well as larger Jzz

⊥ makes Kμμ smaller for both orbitals,
i.e., they promote the quasi-long-range superconducting order.
Arbitrariness in the choice of data points used for fitting and
the choice of the reference site may affect the results for Kμμ.
We confirm that the Jzz

⊥ and JH dependence of Kμμ gives a sim-
ilar tendency to Fig. 3 even when different fitting procedures
or averaged pair correlations are used (see the Supplemental
Material [60]). While Kxx > Kzz in most of the parameter sets

FIG. 4. Interorbital pair correlation functions Pxz
⊥ (r) at JH = 0

(left panel) and JH = 1 (right panel), where Jzz
⊥ = 0.5. Intraorbital

pair correlation functions Pμμ

⊥ (r) are also presented for comparison.
The insets show the decay exponents of Pxz

⊥ (r) denoted by Kxz with
Kxx and Kzz. The exponent Kxz is extracted by fitting the crests of the
data points at r � 6.

used in Fig. 3, Kxx is comparable to Kzz, suggesting that both
orbitals cooperatively contribute to the pairing.

Curiously, Pxx
⊥ (r) exhibits a comparable power-law decay

with Pzz
⊥ (r) even at JH = 0 (and Jxx

⊥ = 0). This indicates that
the orbital hybridization via t xz

‖ is a crucial factor for the
pair correlation of the x component at JH = 0 because the
interorbital coupling JH (= 0) does not create the local in-
terchain spin correlation between the x orbitals, as we shall
see explicitly later. A developed x-component pair correlation
without JH is also seen in the two-orbital Hubbard ladder
[40]. The present result is even more curious than in the
case of the Hubbard ladder because the intrachain-interorbital
exchange coupling Jxz

‖ , which is proportional to ∼(t xz
‖ )2/U

in the Hubbard ladder (at U  �E , t xz
‖ ) and can induce the

interchain x-x spin correlation through z-z spin correlation,
is absent in the present model. Here, to examine the interor-
bital contribution to the pairing more directly, we compute
the correlation of the interchain-interorbital spin singlet pair
described by �̂ j,xz = ( ˆ̃c j,1,x,↑ ˆ̃c j,2,z,↓ − ˆ̃c j,1,x,↓ ˆ̃c j,2,z,↑)/

√
2 and

present its correlation function Pxz
⊥ (r) in Fig. 4. The decay of

Pxz
⊥ (r) is comparable to that of Pxx

⊥ (r) and Pzz
⊥ (r) at JH = 0,

suggesting that the x-z singlet pair also strongly contributes
to the superconducting correlation. The decay exponent Kxz is
presented in the inset of Fig. 4, where Kxz is the smallest and
comparable to Kxx and Kzz. Even if we extract Kμν from the
averaged pair correlation P̄μν

⊥ (r), we find a small decay expo-
nent for the x-z pair (see the Supplemental Material [60]). Our
numerical demonstration implies that the interorbital compo-
nent is also a considerable ingredient for the pairing in the
presence of t xz

‖ . A slow decay of Pxz
⊥ (r) also appears at JH = 1

and the decay exponent Kxz is still the smallest, suggesting the
significance of the x-z component of the pair regardless of JH.

To understand the underlying spin structure, we present
the local interchain spin correlation Fμν

⊥ ( j) = 〈Ŝ j,1,μ · Ŝ j,2,ν〉
and its average F̄μν

⊥ in Fig. 5. At JH = 0, F zz
⊥ ( j) is close

to the value of the ideal spin-singlet (= −0.75) because of
Jzz
⊥ that directly forms the spin-singlet, whereas F xx

⊥ ( j) and
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FIG. 5. Interchain spin correlation functions Fμν

⊥ ( j) = 〈Ŝ j,1,μ ·
Ŝ j,2,ν〉 for various values of Hund’s coupling JH (where Jzz

⊥ = 0.5).
(a) Intraorbital components F xx

⊥ ( j) and F zz
⊥ ( j). (b) Interorbital com-

ponent F xz
⊥ ( j). (c) JH dependence of the averaged spin correlation

F̄μν

⊥ , where Fμν

⊥ ( j) is averaged over the sites from j = 12 to j = 36.

F xz
⊥ ( j) are nearly zero reflecting Jxx

⊥ = Jxz
⊥ = 0. At large JH,

on the other hand, antiferromagnetic correlations in F xx
⊥ ( j)

and F xz
⊥ ( j) are enhanced by JH, implying that the effective

x-x and x-z spin couplings are generated by the combination
of Jzz

⊥ and JH as pointed out by the previous studies [19,21].
While the z-z component is suppressed by JH, its magnitude is
still the largest. Hence, the glue of the z-z pair is active even
at larger JH.

The enhancement of the interchain x-x and x-z spin-singlet
correlations (F xx

⊥ and F xz
⊥ ) upon increasing JH is consistent

with the enhancement of the x-x and x-z pair correlations
(Pxx

⊥ and Pxz
⊥ ) seen in Figs. 3 and 4 as JH is increased. On

the other hand, there are some contrasting features between
the interchain spin correlations and pair correlations. First,
at JH = 0, both x-z and x-x spin correlations are very small,
which is naturally expected in the absence of Jxx

⊥ , Jxz
⊥ , and Jxz

‖ .
This is in striking contrast to the fact that even at JH = 0, the
interchain x-z and x-x pair correlations exhibit a slow decay.
In other words, quasi-long-range interchain pair correlation
develops in the x-z and x-x channel even in the absence of
pairing glues mediated by Jzz

⊥ and JH [19,21]. This suggests
that in the presence of t xz

‖ , the pairs must be described by
x-z hybridized entities, where the pairing glue fundamentally
originates from the strong interchain exchange coupling Jzz

⊥ of
the nearly half-filled z orbitals, but x-z and x-x interchain pair
correlations are also comparably strong. Second, although JH

reduces the spin-singlet correlation of the z-z component [see
Fig. 5], JH enhances the pair correlation Pzz

⊥ (r) [see Fig. 3].
This may also support our picture that the pairs should be
described by x-z hybridized entities in the presence of t xz

‖ .
Namely, the enhancement of the x-z pair correlation with
increased JH results in an enhanced pair correlation of the x-z
hybridized entity as a whole, and hence leads to the enhance-
ment of the z-z pair correlation.

Since the hybridization due to t xz
‖ gives the nonlocal effects,

an interpretation of the pair in real space is nontrivial. The

optimal definition of the local pair and examination of its
pair correlation in strongly correlated and hybridized two-
orbital systems is an important open issue. We must also note
that the hybridization effect in one-dimensional systems is
strong relative to the actual two-dimensional La3Ni2O7, in
which the hybridization between the dx2−y2 and d3z2−r2 or-
bitals vanishes along the kx = ±ky line on the square lattice
[1]. Hence, our idea for the ladder system may potentially
overestimate the effect of t xz

‖ in the actual two-dimensional
bilayer nickelate. Also, we considered only Hund’s coupling
JH as the interorbital two-body interaction. The effect of other
interorbital interactions such as the interorbital repulsion U ′
or the pair hopping Jpair remains an open issue. In fact, if
we apply the fluctuation exchange approximation, which is
basically a weak coupling approach, to a three-dimensional
model of La3Ni2O7, we find that while JH alone does enhance
superconductivity within a realistic parameter range, both U ′
and Jpair suppress superconductivity [62] so that the two-body
interorbital interactions in total result in a slight suppression
of superconductivity [39].

To summarize, we have investigated the pair correlations
using DMRG in a two-orbital t-J ladder including Hund’s
coupling that mimics La3Ni2O7. Our calculation demonstrates
that the correlation of the interorbital x-z pairs exhibits a slow
power-law decay as well as the x-x and z-z pairs, and they
are promoted by Hund’s coupling JH. Our numerics suggest
that the hybridized entity due to the interorbital hopping t xz

‖
obtains the quasi-long-range superconducting correlation. The
necessity of such a picture for describing the pairing state in
the two-orbital ladder system may have some implications on
the superconductivity in the bilayer nickelate.

Note added. Recently, we became aware of another theo-
retical study that performs DMRG calculations in a t-J model
[45] during the finalization process of the present study. The
model studied there is similar to ours, and the tendency of the
pair correlation against Hund’s coupling is consistent while
the different parameter regimes are studied. Besides, we stud-
ied the interorbital pair correlations, which were not studied
in this, or any other previous studies.
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