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Mytraya Gattu ,1 G. J. Sreejith ,2 and J. K. Jain 1

1Department of Physics, 104 Davey Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802, USA
2Indian Institute of Science Education and Research, Pune 411008, India

(Received 12 December 2023; accepted 10 May 2024; published 22 May 2024)

From the vantage point of an incompressible fractional quantum Hall (FQH) state, an electron injected into
it is a complex bound state of an odd number of composite fermions (CFs) dressed by a cloud of particle-hole
pairs of CFs, where each CF itself is the bound state of an electron and an even number of quantized vortices.
Recent scanning tunneling microscopy experiments provide a spectroscopic probe of the internal energy levels of
this bound state, yielding unique information on the short-distance correlations in the FQH liquids. We present
detailed calculations showing that the internal energy levels of this bound state, as manifested in the energy-
resolved local density of states, depend sensitively on the filling factor and on whether an electron is added or
removed. In general, multiple, approximately equally spaced peaks are predicted, with their separation providing
a measure of a renormalized CF cyclotron energy. We discuss what aspects of experiments are explained by our
model and which ones remain to be explained.
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A recent breakthrough in performing scanning tunneling
microscopy (STM) on fractional quantum Hall (FQH) liquids
in graphene [1,2] promises valuable new insights into the
microscopic structure of the FQH states [3]. These measure-
ments are made possible by the direct access to graphene, in
contrast to the quantum wells which are embedded deep in
GaAs heterostructures.

The FQH states are “non-Fermi liquids” of electrons, in
that their “elementary particles” (i.e., weakly interacting par-
ticles) are not electrons but composite fermions (CFs) [4–7],
which are bound states of electrons and an even number
(2p) of quantized vortices, often pictured as bound states
of electrons and 2p flux quanta, where a flux quantum is
defined as �0 = hc/e. The CFs are distinct from electrons,
as evident from the fact that they experience a reduced mag-
netic field B∗ = B − 2pρ�0 where ρ is the electron (or CF)
density. Incompressible ground states occur at filling factors
ν = n/(2pn + 1), where CFs fill n CF Landau levels, called
� levels (�Ls). A CF excited to a higher �L is called a
quasiparticle (QP), and a missing CF in a filled �L is called
a quasihole (QH); each of these carries a fractional charge of
magnitude e/(2pn + 1) [6]. It is not a priori obvious what
information STM, which injects an electron into this state,
provides.

In the constant height mode, STM measures the tunneling
spectral function A(E ), or the local density of states (LDOS),
given by the sum of A+(E ) and A−(E ), representing electron
and hole tunneling into the sample [8–10],

A+(E ) =
∑

m

|〈m, N + 1|c†|0, N〉|2δ(E − EN+1
m + EN

0

)
,

A−(E ) =
∑

m

|〈m, N − 1|c|0, N〉|2δ(E − EN
0 + EN−1

m

)
, (1)

where c† (c) creates (destroys) a localized electron in the low-
est Landau level (LLL), |0, N〉 is the incompressible ground
state of N electrons with energy EN

0 ≡ E0, and |m, N ± 1〉
represents the mth eigenstate of the system with N ± 1 elec-
trons with eigenenergy EN±1

m . The energies will be quoted
below relative to the chemical potential μ, which is given,
in the thermodynamic limit, by the energy per particle of the
incompressible ground state (including the interaction with
the background).

From the perspective of the FQH state, the electron (hole)
injected by an STM tip is a bound state of 2pn + 1 QPs (QHs)
dressed by CF excitons. While the size of the electron/hole is
approximately 5–6lB (lB = √

h̄c/eB is the magnetic length),
QPs and QHs are much larger (∼20lB at 2/5 [6]), as their
size is determined by the effective magnetic length lB∗ =√

h̄c/eB∗. The STM experiments are a spectroscopic probe
of the eigenstates of the multi-QP/QH complex that couple
to a localized electron/hole. An early theoretical study pre-
dicted a sharp peak in the spectral function for both electron
and hole [8]. The recent STM experiments [1] observe more
intricate additional structures, which has motivated the present
Letter.

An evaluation of the LDOS requires a knowledge of the
eigenstates up to high energies. Exact diagonalization (ED)
is possible only for systems which are generally too small
to bring out the full structure, and ED also will not provide
a physical understanding of the results. We proceed by the
method of CF diagonalization (CFD) [11], wherein one di-
agonalizes the Coulomb interaction in the correlated basis of
all CF states up to a certain CF kinetic energy (CFKE). This
has been shown to provide an excellent representation of the
eigenstates of interacting electrons in the FQH liquid (see, for
example, Ref. [12]).
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We assume below that the physics arises entirely from a
single Landau level (LL) which is equivalent to the spin-
polarized LLL of GaAs; we thus neglect any form factors
arising from the hybridization of spin, valley, or layer de-
grees of freedom [13]. We do not include the effect of any
tip-induced deformation of the FQH liquid and assume that
the electron tunnels into a point in a translationally invariant
region of the FQH state. Our study also does not consider
inelastic tunneling processes involving degrees of freedom,
such as phonons, external to the FQH system.

We evaluate the spectral function in the spherical geom-
etry [14], which has N electrons on the surface of a sphere
moving under the influence of a radial magnetic field B with
a total magnetic flux 2Q�0. The kinetic energy of the elec-
trons is quantized into LLs with orbitals in the nth LL (n =
0, 1, . . . ) forming an angular momentum multiplet of angular
momentum quantum number l = Q + n and can be labeled
by the Lz quantum number −l � m � l . The single-particle
orbitals in the nth LL are given by the monopole harmonics
YQ,l,m(�) [15,16] where � = (θ, φ) are the coordinates on the
surface of the sphere. In particular, the n = 0 LL orbitals are
given by YQ,Q,m ∼ uQ+mvQ−m where u = cos(θ/2) exp(ıφ/2)
and v = sin(θ/2) exp(−ıφ/2). Jain’s CF wave function for
the incompressible state at filling ν = n/(2pn + 1) is given
by [4,6]


ν= n
2pn+1

= PLLLφn

∏

i< j

(uiv j − viu j )
2p, (2)

where φn is the Slater determinant corresponding to the in-
compressible integer quantum Hall (IQH) state with n filled
LLs on a sphere with 2Q� = 2Q − 2p(N − 1) flux passing
through it. PLLL projects the wave function into the n = 0
LL, which we implement by the method in Refs. [17,18]. A
single QH (QP) can be constructed by replacing φn by a state
containing a single hole in the nth LL (particle in the n + 1th
LL). Neutral excitons are made of QP-QH pairs.

Hole. Tunneling of an electron out of the FQH system
creates a hole. For the Jain fractions ν = n/(2pn + 1), the
state with a hole at a point, say the north pole � = ω = (u =
1, v = 0) has quantum numbers L = Q, Lz = −Q and is given
by

cω
 n
2pn+1

(�1, . . . , �N ) ∝ 
 n
2pn+1

(�1, . . . , �N−1, ω)

= PLLL

N−1∏

i< j=1

(uiv j − viu j )
2pφn(�1, . . . , �N−1, ω)

N−1∏

j=1

v
2p
j ,

where cω annihilates an electron at ω, the north pole. The
resulting state is in the CF form, i.e., it is the LLL projec-
tion of a wave function containing a Jastrow factor. It can
be represented exactly as the linear combination of a finite
number of simple CF states, referred to as the minimal basis,
with 2pn + 1 QHs clustered near the north pole [see Sec. VI
of Supplementary Material (SM) [19] and Ref. [20] therein].
The minimal bases for ν = 1/3 and ν = 2/5 are schematically
shown in Figs. 1 and 2 (the explicit basis function can be con-
structed in the standard manner—by writing the correspond-
ing IQH wave function, multiplying by the Jastrow factor,
and then projecting into the LLL), along with the CFKE rel-
ative to the minimum CFKE basis function. (At ν = 2/5, one

FIG. 1. Left panel: The minimal basis for a hole at ν = 1/3
enclosed by a dashed box. Right panel: A typical configuration
of a basis state with unit CF kinetic energy (CFKE). Here and in
the following figures the horizontal lines represent the � levels,
and the CFs are shown as blue dots decorated by two flux quanta
(arrows). The spherical geometry is assumed, where Lz is the an-
gular momentum of the orbital and Q∗ is the monopole strength
experienced by CFs.

combination of these states occurs at an L different from the
L of the hole state, leaving only three basis functions.) These
figures also show how a larger CF basis can be constructed
by adding CF excitons. The dimension of the minimal basis
is independent of N but increases rapidly with n along the
sequence ν = n/(2pn + 1) (Sec. VI of SM [19]).

CFD in the minimal basis produces approximate eigen-
states along with their spectral weights. A comparison with
exact diagonalization in small systems validates this minimal
basis for spectral function calculation (Sec. IV of SM [19]).
We also perform CFD within an enlarged basis that also
contains states with additional excitons. We find that these do
not produce new peaks but cause a broadening of the peaks
at the corresponding CFKE. The hole peak at ν = 1/3 is not
broadened.

Figure 3 shows the spectral function on the hole side
(E < μ) shaded in green. The energy of each peak and its

FIG. 2. The top four panels depict the minimal basis that fully
captures the hole added to the incompressible state at ν = 2

5 . The
red arrows indicate how these states are obtained starting from the
minimum energy state (top left). All excitations are confined to a
localized region depicted by the dashed box. The bottom two panels
give examples of CF basis states beyond the minimal basis. Their
inclusion in CFD broadens the delta function peaks of the minimal
basis.
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FIG. 3. The spectral function A(E ) for ν = 1
3 , 2

5 , and 3
7 calculated

using CF theory. The energy is measured in units of e2/εlB, where ε

is the dielectric constant, measured relative to the chemical potential
μ. With the exception of the electron side (E > μ) of ν = 3/7, the
energy and the spectral weight under each peak (shown near its top)
represents the thermodynamic value (obtained by extrapolation [19]).
The heights of the peaks are proportional to their spectral weights.
For ease of viewing, we have substituted the δ function in Eq. (1) by a
normal distribution of width 0.01e2/εlB. For E > μ at ν = 3

7 , results
are shown for a system of N = 34 particles; the spectral weights are
even smaller in the thermodynamic limit.

integrated spectral weight, shown on the figure, are thermody-
namic values estimated from CFD (Sec. IV of SM [19]). The
spectral weights add to unity. The line shapes of the peaks are
schematic; for some cases, the line shapes obtained from CFD
are shown in Sec. IV of SM [19].

Electron. We obtain the electron spectral function by per-
forming CFD within a restricted but sufficiently large CF basis
that allows us to reliably identify the resonant energy levels
as well as their tunneling spectral weights. The state with
an electron added at the north pole (with quantum numbers

FIG. 4. Examples of CF configurations used to represent an elec-
tron at ν = 1

3 . We consider different configurations of CFs in the
dashed region.

L = Lz = Q) is given by [8]

c†
ω
 n

2pn+1
(�1, . . . , �N )

∝ A
[
YQ,Q,Q(�N+1 = ω)
 n

2pn+1
(�1, · · · ,�N )

]
. (3)

This does not have a CF form, because prior to LLL projec-
tion, each term in the antisymmetrized sum contains a Jastrow
factor

∏N
i< j=1(uiv j − viu j )2p that does not include all N + 1

particles. The electron state thus cannot be exactly represented
as a linear superposition of states with a simple CF structure.
We proceed by constructing a CF basis which satisfies the
following: (i) The lowest n �Ls are fully occupied, (ii) there
is an upper cutoff on the total CFKE, (iii) there is a cutoff
on the �L index, and (iv) the total angular momentum quan-
tum numbers are L = Lz = Q. Consider for example ν = 1/3,
shown in Fig. 4. With a net CFKE �2 and �L index �3,
a basis of 16 CF configurations is obtained, some of which
are shown in Fig. 4. The calculated A+(E ) has two peaks,
shown in Fig. 3, where the energy of each peak and its weight
are thermodynamic estimations (see SM [19]). Note that the
weights do not add to one—we speculate that the remainder
is distributed in a smooth high-energy tail. This indicates a
fundamental asymmetry between the additions of a hole and
an electron in a FQH system. Figure 5 shows what the density

FIG. 5. The left panel shows the density profile of the final state
of an electron tunneling into an empty LL. (The states are shown
schematically in rectangular boxes.) The right panel shows the den-
sity profile (relative to the uniform density ground state) of the final
state of an electron tunneling into the 1/3 FQH state for each of
the two peaks in Fig. 3. (In the right panel, the density has been
multiplied by a factor of 2 for clarity, and the black curve shows
the density profile of an electron tunneling into an empty LLL.) The
configurations of the excited CFs that contribute most significantly
to the two peaks are also shown schematically. The radius of each
disk is ∼9lB.
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profiles of the added electron look like for the two peaks at
ν = 1/3.

Qualitative understanding of the results. The spectral func-
tions shown in Fig. 3 represent the principal result of our
study. To gain insight into its features, we consider a model
where the CFs are taken as noninteracting. Within this model
the energies can be expressed in terms of the ν-dependent CF
cyclotron energy h̄ω∗

ν . For example, the separation between
the first electron and the first hole peaks is given by 4h̄ω∗

1/3 at
ν = 1/3 and 8h̄ω∗

2/5 for ν = 2/5, and the separation between
the peaks within the electron or the hole spectral function
is h̄ω∗

ν . While this captures the qualitative features, all these
energies are renormalized by the inter-CF interaction, which
is significant here given the physical proximity of the ex-
cited CFs. The peaks are approximately equally spaced for
the electron and also for the hole, making it meaningful to
identify the separation with a renormalized h̄ω∗

ν . Note that the
renormalized h̄ω∗

ν ’s for the electron and the hole sides are not
equal at a given ν. On intuitive grounds, one expects that the
CF cyclotron energy on the hole side should be larger than
that on the electron side because the local B∗ for the hole is
larger due to the reduced density; this is consistent with the
behavior seen in Fig. 3. The multiple peaks thus reflect the
�L structure that is renormalized by the residual interaction
between the CFs. This understanding can be extended to other
fractions not accessible to detailed theoretical study.

ν = n/(2n − 1) FQH states. On account of the particle-
hole symmetry of the problem within a LL, the spectral
function for the electron (hole) tunneling into a state at ν =
1 − n/(2pn + 1) is identical, modulo a rigid shift in the en-
ergy, to that for the hole (electron) tunneling into a state at
filling ν = n/(2pn + 1).

Comparison with experiment. A number of aspects that
might be relevant in experiments are not included in our
model. The effects of disorder and LL mixing, screening
of the interaction by the backgate, and the role of spin are
neglected, and it is assumed that the influence of the STM
tip’s potential on the FQH state is negligible. (We have con-
sidered the effect of screening in SM [19], and find that
it does not affect the results significantly so long as the
screening length is large compared to the size of the electron
wave packet. For completeness, we have also evaluated the
dependence on finite thickness, which may be relevant for
FQH liquids in semiconductor quantum wells, using a model
interaction proposed in Ref. [21].) With this caveat, let us
consider how the above results compare to the experiment of
Ref. [1].

In Ref. [1], the behavior for hole (electron) at n/(2n + 1)
does not match with that for the electron (hole) at 1 − n/(2n +
1). Much more structure is seen for ν > 1/2 than for ν < 1/2.
This underscores the importance of LL mixing, which breaks
particle-hole symmetry. Why LL mixing is more significant
for ν < 1/2 is an important question, which very likely in-
volves subtle physics that is beyond the scope of the current
Letter.

Experiments do see sharp peaks, as expected from above
discussion and from previous studies [8]. On the electron side
of ν = 2/3, there is a sharp peak (see Fig. 3(b) of Ref. [1]),
which we identify with the single peak on the hole side at
ν = 1/3 (Fig. 3). An additional structure is seen on the elec-
tron side of ν = 2/3 including a broad peak, the origin of
which is unclear. On the hole side of 2/3 there is a sharp
peak with a shoulder, which could be two unresolved peaks, as
expected from Fig. 3. For the hole side of 2/5, or the electron
side of 3/5, we expect three peaks, which may be consistent
with experiments (see Fig. 3(b) of Ref. [1]). On the hole side
of 3/5, our study predicts three peaks with a small weight;
experimentally, a broad peak is seen with a smaller weight.

For a more quantitative comparison, we note that the
separation between the closest electron and hole peaks is ap-
proximately 0.53 e2/εlB and 0.45 e2/εlB for ν = 1/3 and ν =
2/5. Assuming ε = 3.5ε0 and B = 14 T, this translates into
29 and 24 meV. Experimentally, the separation is ∼16 meV
for ν = 2/3 and ∼12 meV for ν = 3/5. The separation
between the peaks on the electron side of ν = 3/5 is on
the order of ∼3 meV in experiments, which corresponds to
0.054 e2/εlB. This is to be compared to the theoretical sep-
aration of 0.09 e2/εlB. While the origin of the factor of ∼2
discrepancy between the theoretical and experimental gaps is
not known at present, we note that a similar level of mismatch
exists for various gaps for the FQHE states in GaAs, often
attributed to LL mixing and disorder. At this stage, it is not
possible to tell in experiments how the renormalized h̄ω∗

ν ’s
differ on the hole and the electron sides.

Theoretically, we expect weaker peaks on the electron side
of ν = n/(2n + 1) or the hole side of ν = 1 − n/(2n + 1).
This appears to be the case as seen in Fig. 3(a) of Ref. [1].

Finally, while multiple peaks arise fundamentally from the
fractionalization of an electron into an odd number of CFs,
these cannot be used to deduce the fractional braiding statis-
tics of the QPs/QHs [22,23], which is well defined only when
the separation between QPs/QHs is large compared to their
size [24–27]. It has been proposed that disorder-mediated tun-
neling can help reveal the fractional statistics through STM [9]
and that the STM signals contain signatures of entanglement
in the FQH phase [10].

Note added. Recently, we became aware of an independent
study by Pu et al. [28] which has a significant overlap with
our work.
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