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Motivated by the recent discovery of magnetism and heavy quasiparticles in the van der Waals material CeSiI,
we develop an effective model that incorporates the conduction electrons residing at the silicene layer interacting
with the local moments of the Ce ions. Ce sites are arranged on two layers of triangular lattices, above and below
the silicene layer, and they are located at the center of the honeycomb lattice. This arrangement results in an
effective extended Kondo interaction along with a predominant ferromagnetic Ruderman-Kittel-Kasuya-Yosida
interaction. Via the mean-field theory of Abrikosov fermions, our analysis indicates that the ground state of the
monolayer can exhibit a nonmagnetic nematic heavy fermion phase that breaks C6 rotational symmetry for a
small Heisenberg exchange and a magnetically ordered phase for a large Heisenberg exchange. For intermediate
values, a coexistence of magnetic order and a uniform heavy Fermi liquid is stabilized where they reside on
separate Ce layers. We show that this phase can further be enhanced by an external electric field. Our results
provide a natural mechanism for the coexistence of magnetic order and heavy fermions in CeSiI and highlight
the possibility of unconventional nonmagnetic heavy fermions with broken rotational symmetry.
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Introduction. Heavy fermions are an archetypical class
of strongly correlated materials that possess local moments,
generally originating from lanthanide or actinide ions, in-
teracting with conduction electrons via an antiferromagnetic
Kondo interaction [1–3]. They host an array of exotic phe-
nomena including unconventional superconductivity, hidden
order, and strange metals [4–6]. Most heavy fermion materials
are intermetallics and exhibit strong chemical bonding along
all directions which prevent the isolation of two-dimensional
(2D) monolayers. In contrast, the recent discovery of mag-
netism and 2D heavy quasiparticles in CeSiI [7,8] provides
a rare example of a van der Waals (vdW) heavy fermion
platform. 2D vdW materials are highly tunable systems that
can be controlled via strain, gating, and electric field [9]. Fur-
thermore, they can be arranged in different stacking patterns
and twisted to form moiré superlattices which can give rise
to even richer phenomena that may not be possible to realize
in monolayers [10]. Therefore, introducing heavy fermions to
2D materials adds another dimension to the list of phenomena,
functionalities, and the potential for vertical integration in
vdW heterostructures.

CeSiI orders magnetically at Tc = 7.5 K. Neutron scatter-
ing experiments [7] show that the ordering wave vector is
q = (0.28, 0, 0.19), resulting in a spiral ground state with a
long wavelength, λ = 2π/qa ∼ 22 unit cells, considering a
monolayer. Furthermore, the Sommerfeld coefficient of CeSiI,
γCeSiI = 0.125 J mol−1 K−2, shows significant enhancement
compared to its nonmagnetic analog LaSiI, γLaSiI = 0.003
J mol−1 K−2, indicating the formation of heavy fermions [8].
The temperature dependence of resistivity, the Fano shape of
the tunneling spectrum, and the angle-resolved photoemission
spectroscopy experiments further corroborate the existence of
heavy quasiparticles [8].

Motivated by these advancements, we develop an effective
model for a monolayer CeSiI that involves the conduction

electrons at the silicene layer—a honeycomb lattice formed by
Si atoms—and the local moments at the Ce sites. Ce ions form
two layers of triangular lattices that sandwich the silicene
layer. Each Ce site sits at the center of the honeycomb lattice
and couples to six nearest-neighbor (NN) conduction electron
sites as depicted in Fig. 1. We solve this model with the
extended Kondo interactions using the mean-field theory of
Abrikosov fermions. Our main results are as follows: (i) Since
both Ce layers couple to the conduction electrons via the same
form factor, a uniform heavy fermion state only screens the
symmetric superposition of the local moments on each layer
while the antisymmetric superposition remains unscreened.
This results in an unstable phase with flat bands at the chem-
ical potential. (ii) Via a nonrestrictive mean-field ansatz, we
find that the channel symmetry can be spontaneously broken
and two types of heavy fermion phases can be stabilized.
The first one is a nonmagnetic phase where local moments
on layer 1 (2) couple primarily to the silicene sublattice A
(B) as depicted in Fig. 2(b). This phase preserves inversion
symmetry but breaks mirror reflection and C6 rotational sym-
metry and thus exhibits a nematic order parameter. The second
phase breaks the channel symmetry by ordering magnetically
on one layer and forming a uniform heavy fermion on the
other layer, resulting in a coexistence similar to experimental
observations. For a large Heisenberg interaction, both layers
order magnetically. (iii) We show that the stability of the
coexistent phase can be enhanced further via the application
of an external electric field.

The rest of the Letter is organized as follows. We
introduce the model, discuss the origin of the ferromag-
netic (FM) nearest-neighbor (NN) exchange, and describe
the methodology including the mean-field theory. Then,
we present our results for different parameter regimes. Fi-
nally, we conclude with a summary of our results and an
outlook.
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FIG. 1. (a) Schematic of the model: Ce sites (yellow) form two
layers of triangular lattice. The silicene layer—a honeycomb lattice
formed by Si atoms (red and blue for the A and B sublattice)—is
sandwiched between the Ce layers. The arrows indicate the interac-
tion terms in our model including the Kondo interaction (JK ) between
the local moments and the conduction electrons as well as the intra-
(JH ) and interlayer (J ′

H ) Heisenberg exchange between the local mo-
ments. Iodine layers do not play a significant role in the low-energy
model and therefore they are omitted on the schematic. (b) Top
view of the model that shows the local moment interacting with six
conduction electron sites via the Kondo interaction. (c) Electric field
tuning of the monolayer: Applying the +V,−V potential shifts the
energy levels of the Ce layers, increasing the Kondo coupling on one
layer while decreasing on the other. The electric field does not affect
the chemical potential of the conduction electrons.

Model and methods. The first-principles calculations sug-
gest that the conduction electrons primarily occupy the
silicene bands [11,12]. These bands are self-doped by the Ce
d electrons, shifting the chemical potential far from the Dirac
point. We consider a model where the Ce local moments on
layer 1, 2 couple to the conduction electrons at six silicene
sites via the Kondo interaction. While the Kondo interaction
generates a Ruderman-Kittel-Kasuya-Yosida (RKKY) term
that can induce magnetic order, this is not captured within
the Abrikosov fermion mean-field theory that we employ. In
order to proxy the RKKY coupling, we consider FM intra- and
interlayer Heisenberg interactions among the local moments.
The Hamiltonian reads

H = −t
∑

〈i j〉σ
(c†

iAσ c jBσ + H.c.) − μ
∑

iσ s

c†
isσ cisσ

+
∑

i,δ,ν

Jν
Kσ f iν · σc(i+δ) − JH

∑

〈i j〉ν
σ f iν · σ f jν

− J ′
H

∑

i

σ f i1 · σ f i2, (1)

where ν = 1, 2 is the Ce layer index, s = A, B represent
the silicene sublattice, and δ denotes the six nearest Ce-Si

FIG. 2. Schematic of different phases and the corresponding ex-
citation spectra: (a) A uniform HFL phase where all φ’s are equal.
This phase has flat bands at zero energy and therefore it is unstable.
(b) A nematic heavy Fermi liquid where local moments in layer 1
primarily couple to one sublattice whereas the layer 2 couples to the
other sublattice. (c) A coexistence of magnetic order and a uniform
heavy Fermi liquid.

neighbors. c† and σc( f ) are the creation and spin operators of
the conduction electrons (local moments). J1(2)

K is the Kondo
coupling in layer 1(2), JH and J ′

H are the intra- and interlayer
Heisenberg exchanges, respectively. Equation (1) can be de-
rived from a Schrieffer-Wolff transformation of the periodic
Anderson model [13]. Note that this procedure gives rise to
additional terms such as a correlated hopping combined with
a spin flip [14]. However, we are restricting our analysis only
to the spin-spin interactions. Note that the extended Kondo
interaction is crucial to obtain topological phases in heavy
fermion systems [15–18]. It has also been investigated in
the context of d-wave heavy fermions [19,20] and unusual
magnetic interactions [21].

The spiral ground state of CeSiI with a long wavelength,
λ ∼ 22a, indicates that the angle between the magnetic mo-
ments within a unit cell is quite small (	θ ∼ 16◦) and locally,
they can approximately be considered FM. One of the sim-
plest ways to generate such a spiral is to consider a spin
Hamiltonian with a large FM NN exchange (J1) and a weak
antiferromagnetic (AFM) next-nearest-neighbor (NNN) ex-
change (J2). Performing a Luttinger-Tisza analysis [22] on

L201118-2



NEMATIC HEAVY FERMIONS AND COEXISTING … PHYSICAL REVIEW B 109, L201118 (2024)

the J1 − J2 Hamiltonian results in H = ∑
q J (q)SqS−q, where

J (q) = −J1
∑

	 cos q · � + J2
∑

	′ cos q · �′, where we sum
over 	 and 	′ which are the NN and NNN vectors, respec-
tively. For J2/J1 � −0.11, it is possible to obtain a spiral
ground state with q that is similar to the experimental value.
For the remainder of this Letter, we only consider a FM NN
Heisenberg exchange to avoid the intricacies arising from a
large unit cell.

Next, we describe the mean-field approach. We
begin by representing the local moment spins in terms
of Abrikosov fermions [23–26]: σ f iν = f †

iνσ σσσ ′ fiνσ ′ ,
subject to the constraint

∑
σ f †

iνσ fiνσ = 1. We
decouple the Kondo interaction term in the hy-
bridization channel, ( f †

iνασαβ fiνβ )(c†
i+δα′σα′β ′ci+δβ ′ ) =

−2( f †iναci+δα )(c†
i+δβ fiνβ ) ≈ ∑

s φνs(
∑

δs
c†

i+δssσ
) fiνσ + H.c.,

where s = A, B, and δs are vectors connecting the center of
the hexagon to the s sublattice. The Kondo hybridization
is φνs = 〈 f †

iνσ (
∑

δs
ci+δssσ )〉/3 = 〈s(k) f †

kνσ
cksσ 〉/3, where

s(k) = ∑
δs

eik·δs . We decouple the Heisenberg interaction

σα
f iνσ

α
f jν = Mασ α

f jν + Mασα
f iν where Mα

ν =〈σα
f iν〉=〈 f †

iνσ
α fiν〉.

The mean-field Hamiltonian reads

HMF = −t
∑

kσ

(c†
kAσ

ckBσ + H.c.) − μ
∑

kσ s

c†
ksσ cksσ

−
∑

k,ν

2Jν
K

∑

s

φνs
∗
s (k)c†

ksσ fkνσ + H.c.

− 3JH

∑

kν

Mν · ( f †
kν

σ fkν )

− J ′
H

∑

kν

M1 · ( f †
k2σ fk2) + M2 · ( f †

k1σ fk1)

−
∑

kνσ

λν ( f †
kνσ

fkνσ − 1). (2)

We estimate the mean-field order parameters
{φ1A, φ1B, φ2A, φ2B, M1, M2} and the Lagrange multipliers
{λ1, λ2} self-consistently. For the remainder of this Letter
we fix Jν

K/t = 0.65 (the bandwidth is 6t) and the chemical
potential μ sufficiently away from the Dirac points, resulting
in nc = ∑

iσ c†
iσ ciσ = 0.82.

Apart from the ground state phase diagram, we also explore
the effects of electric field tuning. We consider a setup where
+V and −V voltages are applied by top and bottom gates.
This does not affect the chemical potential of the silicene
layer. However, the energy levels of the local moments on
layer 1(2), ε f 1(2), increase (decrease) with respect to the chem-
ical potential due to the potential drop, ε f 1/2 → ε f 1/2 ∓ e	V .
Since Ce ions primarily fluctuate via f 1 ↔ f 0, the Kondo
exchange on two layers gets modified as follows, J1/2

K =
t2
c f /(ε f ∓ e	V ) = JK0/(1 ∓ e	V/ε f ), where JK0 = t2

c f /ε f is
the Kondo coupling in the absence of an external electric field.

Results and discussion. There are two key ingredients
in our model that differentiate it from a standard Kondo-
Heisenberg model. The first one is the extended Kondo
exchange where each local moment couples to six conduction
electrons. The second is the presence of two layers of local
moments that couple to the conduction electrons via the same
form factor. To illustrate the impact of the latter, we consider

our model with only a single layer of local moments. Our
mean-field analysis shows that a uniform heavy Fermi liq-
uid (HFL) forms with φA = φB and M = 0 for small JH/JK .
A first-order transition to a magnetically ordered state takes
place at JH/JK = 0.52. Similar behavior has been observed
in other Kondo-Heisenberg type models [26]. Note that the
uniform HFL has the same φ for all six bonds and carry zero
magnetization whereas the magnetically ordered phase has
φ = 0 for all bonds. In the large JK limit of this model, a
Kondo insulator will not be observed when the conduction
band is half filled. The reason for this can be attributed to
the mismatch in the number of electrons. The number of
conduction electrons at half filling is twice the number of
local moments. Hence, even after all local moments form
singlets, the residual conduction electrons will prevent the
Kondo insulator phase.

Proceeding with the original model with two layers of
local moments, we recognize that a uniform HFL with φ1A =
φ1B = φ2A = φ2B is not attainable in this case. As shown in
Fig. 2(a), a uniform HFL has doubly degenerate flat f bands
at zero energy. This phase is unstable to perturbations and
cannot be the ground state. To elucidate the origin of the flat
bands, we perform a rotation to a basis with the symmetric
and antisymmetric linear combinations of the f fermions as
f †

pσ = ( f †
1σ + f †

2σ )/
√

2 and f †
mσ = ( f †

1σ − f †
2σ )/

√
2. For uni-

form HFL with equal φ’s for all bonds, it is clear that in
Eq. (2) only the symmetric linear combination couples to the
conduction electrons whereas the antisymmetric combination
remains unscreened, resulting in flat bands at E = 0. There-
fore, the uniform HFL solution shows a resemblance to an
underscreened Kondo model where the conduction electrons
are unable to screen all of the local moments [27]. However,
we note that there are exactly two local moments and two
conduction electron site per unit cell and thus our model
should not be underscreened. This paradox arises due to the
fact that the local moments on layer 1 and 2 couple to the
conduction electrons with the same form factor (equal φ’s).
Accordingly, only a linear combination of them gets screened.
To overcome this issue, we perform unrestricted mean-field
calculations where we allow {φ1A, φ1B, φ2A, φ2B} to be differ-
ent from each other in order to break the channel symmetry
between the layers. We obtain two nonuniform HFL phases:
(i) a nonmagnetic nematic HFL and (ii) a coexistence of a
uniform HFL on one layer and magnetic order on the other
layer.

Nematic heavy Fermi liquid. As depicted in Fig. 2(b), in
this phase the local moments in layer 1 couple primarily to
one sublattice whereas layer 2 couples to the other sublat-
tice, such as φ1B = φ2A � φ1A = φ2B. This phase preserves
the inversion symmetry whereas it breaks sublattice, mir-
ror reflection, and C6 rotational symmetry. Consequently, it
exhibits a nematic order parameter. Nematic HFL was first
proposed by Ref. [28] in the context of chiral spin liquids
hybridizing with metals. However, in our model it is generated
self-consistently. Since nematic HFL breaks point group sym-
metries, it exhibits a Ginzburg-Landau type phase transition
with Tc set by the Kondo temperature. It is one of the rare
examples of a phase transition driven by the Kondo effect and
in that sense it is similar to hastatic order [29] and Kondo
stripe order [30].
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FIG. 3. Ground state phase diagram as a function of JH/JK and
J ′

H/JK . We obtain a nonmagnetic nematic HFL, a coexisting mag-
netic order and HFL, and a magnetic order on both layers. All of the
phase transitions are first order.

Coexistence of magnetic order and HFL. This phase breaks
the channel symmetry by ordering magnetically on one layer
and forming a uniform HFL on the other layer such as φ1A =
φ1B �= 0, φ2A = φ2B = 0 as depicted in Fig. 2(c). Unlike spin
density wave type magnetism observed in heavy fermions
such as Ce3Pd20Si6 [31], the coexisting phase in our model
has a clear phase separation in real space. A similar separation
of magnetic order and heavy quasiparticles has been observed
in modulated magnetic textures in CeRhIn5 [32], CeAuSb2

[33], and also in CeSb but in momentum space [34].
In Fig. 3, we present the ground state phase diagram as a

function of JH/JK and J ′
H/JK . For J ′

H = 0, the ground state
evolves from a nematic HFL to a coexisting magnetic order
and HFL to a polarized magnetic phase as a function of JH .
For a small interlayer Heisenberg interaction J ′

H the nematic
HFL is unaffected. On the contrary, for the coexistence phase,
J ′

H acts as a static magnetic field for the HFL and destabilizes
it quite rapidly. All of the phase transitions are first order and
are determined by the energy crossings of the corresponding
phases. In the large JK limit, a Kondo insulator would be
observed at half filling of the conduction band. There are two
electrons in the conduction band and two local moments per
unit cell. Consequently, singlet formation at large JK will al-
low for a Kondo insulator phase. However, in our calculations
we do not observe this Kondo insulator phase as (k) vanishes
at the Dirac point. This prevents a gap from opening when the
conduction band is half filled, accordingly no Kondo insulator
is observed.

Next, we discuss the electric field tuning of the phase
diagram. As described above, the external electric field mod-
ifies the Kondo coupling on two layers as J1/2

K = JK0/(1 ∓
e	V/ε f ) while maintaining the same chemical potential for
the conduction electrons. As shown in Fig. 4, an electric
field enhances the stability of the coexistence of magnetic

FIG. 4. Effects field tuning of the phase diagram for J ′
H/JK =

0.01: Electric field shifts the energy levels of the local moments and
therefore increases the Kondo interaction on one layer while decreas-
ing it on the other layer. This significantly enhances the stability of
the coexistence of magnetic order and HFL.

order and HFL over the other phases. This is due to the fact
that increasing the Kondo coupling on the layer where the
HFL resides lowers the energy whereas decreasing the Kondo
coupling on the magnetic layer does not impact the energy.
In total, the energy of the coexistent phase decreases signifi-
cantly. Conversely, the nematic HFL has finite hybridization
on both layers, and the modification of the Kondo couplings
approximately cancel each other and the energy is not affected
in significant manner.

There are several key experimental signatures of the
nonuniform heavy fermion phases that we predict. For in-
stance, NMR experiments can distinguish if the magnetic
order is uniform or if there is a phase separation of mag-
netism and HFL on different layers. Regarding the nematic
HFL, C6 symmetry breaking can be deduced from angle-
dependent transport, Raman spectroscopy, as well as the
finite-temperature phase transition.

Conclusions. We constructed a low-energy model for the
vdW heavy fermion material CeSiI and studied its phase
diagram via mean-field theory. We showed that the unique
geometry of the interactions prevents a uniform HFL. In
return, we showed that a nematic HFL or a coexistence of
magnetic order and HFL can be stabilized. In particular, the
coexistent phase can be further enhanced by the application of
an external electric field. Interesting future directions include
heterostructures involving CeSiI and its moiré superlattices.
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