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We study the entanglement Hamiltonian for a spherical domain in the ground state of a nonrelativistic free-
fermion gas in arbitrary dimensions. Decomposed into a set of radial entanglement Hamiltonians, we show that
the entanglement spectrum in each sector is identical to that of a hopping chain in a linear potential, with the
angular momentum playing the role of the subsystem boundary. Furthermore, the eigenfunctions follow from a
commuting differential operator that has exactly the form predicted by conformal field theory. Rescaled by the
radial Fermi velocity, this operator gives a perfect approximation of the entanglement Hamiltonian, except for
large angular momenta that belong to the edge regime in the analogous gradient chain. One thus finds that the
conformal field theory result becomes asymptotically exact only in one dimension.
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Entanglement plays a key role in characterizing the distinct
phases of quantum matter in ground states of many-body
systems [1–4]. The intricate nature of quantum correlations
is encoded in the reduced density matrix of a subsystem, or
equivalently, written in an exponential form, in the entan-
glement Hamiltonian (EH) [5]. One of the most remarkable
properties that has been uncovered in a broad range of
many-body systems is the locality of the EH [5]. Its precise
structure is, however, not only of theoretical interest, but also
fundamental to novel techniques aiming at a more efficient
spectroscopy and tomography of the reduced density matrix
in quantum simulators [6–9]. These protocols perform a vari-
ational learning of the EH from the available measurement
data, and have recently led to breakthrough results in ion-
trap [10] and cold-atom [11] experiments.

In the above-mentioned applications, it is crucial to have
an educated ansatz for the EH, which is mainly guided by the
Bisognano-Wichmann theorem of relativistic quantum field
theory [12,13]. This provides the EH of a half-infinite sys-
tem via the physical energy density, weighted by an inverse
temperature that increases linearly from the entanglement
cut, and is valid in arbitrary dimensions. Generalizations
to different geometries exist within conformal field theory
(CFT), and yield again a local result with a modified weight
function [14–17].

In practice, however, one typically faces a problem, where
Lorentz invariance is explicitly broken by the presence of a
lattice. Although quantum field theory may still provide an
effective low-energy description, it is crucial to address the
robustness of the results for the EH. In particular, the analyti-
cal solution for a free-fermion chain shows [18] that the lattice
EH indeed deviates from the CFT prediction, which can only
be recovered after taking a proper continuum limit [19–22].
Nevertheless, it has been demonstrated on a number of exam-
ples that the simple lattice discretization of the CFT ansatz
provides an excellent approximation of the actual EH at low
energies and for large subsystems [6,23–25].

Here we explore a different scenario, where the model
is defined in continuous space, but described by the

nonrelativistic Schrödinger equation. We focus on the free-
fermion gas, where the entanglement entropy has been studied
before [26–28], and shows a logarithmic area-law violation
in arbitrary dimensions due to the presence of a Fermi sur-
face [29–33]. Although this result was interpreted via the
contributions of independent gapless modes building up the
Fermi surface [34], the precise applicability of a CFT descrip-
tion in higher dimensions remained elusive.

Our main goal here is to directly address the EH of the
Fermi gas for a d-dimensional spherical domain A with radius
R, and compare it to the CFT prediction [14,15]

ĤCFT = πR

v

∫
A

dd x
(

1 − |x|2
R2

)
T00(x), (1)

where T00(x) is the energy density and v is the speed of
excitations, which makes ĤCFT dimensionless. Its form thus
corresponds to an inverse temperature that varies parabolically
in the radius and vanishes at the surface of the sphere. The
numerical check of Eq. (1) for a free massless scalar field
was carried out by first decomposing the EH into angular
momentum sectors, and then discretizing the remaining ra-
dial problem [35]. While a good agreement with CFT was
found at low angular momenta, for higher ones the results are
inconclusive.

Our main result is that, in any dimension d > 1, the CFT
description of the nonrelativistic Fermi gas breaks down at
large angular momenta. In particular, we show the equivalence
of the entanglement spectra in continuous free space to those
of a lattice problem with a linear potential [36]. The mapping
identifies the angular momentum with the subsystem bound-
ary on the chain, whereas the radius R sets the length of the
region with nontrivial fermion density. While the bulk of this
region admits an effective CFT description [37], characterized
by a spatially varying Fermi velocity, the fine structure close
to the dilute edge is not properly captured. The discrepancy is
demonstrated by comparing the actual entanglement spectra
and entropies to those that follow from parabolic deformations
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Eq. (1) of the physical Hamiltonian, which commute exactly
with the EH [38–40].

The free Fermi gas in d dimensions is described by the
single-particle Hamiltonian

Ĥ = p̂2

2m
− μ, (2)

where p̂ = −i∇ is the momentum operator and the chemi-
cal potential μ = q2

F /2m sets the filling via the Fermi wave
number qF . The ground state is given by a Fermi sea F ,
with the plane-wave modes occupied in a spherical domain
|q| < qF . We are interested in a spherical subsystem A of ra-
dius R centered around the origin, |x| < R. The entanglement
Hamiltonian Ĥ is then defined via the reduced density matrix
and can be written as [41]

ρ̂A = 1

Z e−Ĥ, Ĥ = ln
(
K̂−1

A − 1
)
, (3)

in terms of an integral operator

(K̂A ψ )(x) =
∫

A
dd x′ K (x, x′) ψ (x′), (4)

that acts on wave functions in the domain A, with the kernel
given by the two-point correlation function

K (x, x′) =
∫

F

dd q
(2π )d

eiq(x−x′ ). (5)

We first discuss the simplest case of a one-dimensional
(1D) system, where A = [−R, R]. After a rescaling y = x/R,
the integral operator Eq. (4) is given by the famous sine kernel

K (y, y′) = sin c(y − y′)
π (y − y′)

, (6)

which depends on the dimensionless parameter c = qF R. To
construct the EH via Eq. (3), one needs to solve K̂Aψk =
ζkψk to find the eigenvalues and eigenfunctions of K̂A.
This can be done by considering instead the differential
operator [38,42,43]

D̂ = − d

dy
(1 − y2)

d

dy
− c2(1 − y2), (7)

which commutes with the integral operator, [K̂A, D̂] = 0. The
bounded solutions of the equation D̂ ψk = χk ψk within the
domain |y| < 1 are known as the angular prolate spheroidal
wave functions [44,45], ψk (y) = S0k (c, y), and exist for a dis-
crete set of eigenvalues χk with k = 0, 1, . . . . The eigenvalues
of K̂A then follow from the radial spheroidal wave functions
as ζk = 2c

π
[R0k (c, 1)]2 [38].

It is easy to see that the operator Eq. (7) is a simple
parabolic deformation of the original Hamiltonian Eq. (2).
Comparing with Eq. (1), one can identify it with the CFT
expression after proper rescaling

ĤCFT = πR

vF

D̂

2mR2
= π

2c
D̂, (8)

where the speed must be identified with the Fermi velocity
vF = qF /m. The spheroidal eigenvalues χk can be computed
using Mathematica, and thus the spectrum of ĤCFT can be
compared against that εk = ln(ζ−1

k − 1) of the actual EH in

FIG. 1. Single-particle entanglement spectra εk of Ĥ (full sym-
bols) in one dimension, compared against the spectra of ĤCFT (empty
symbols) for various values of c. The inset shows the deviations.

Eq. (3). These are shown in Fig. 1, with the full/empty sym-
bols corresponding to εk and π

2c χk , respectively, while the
inset shows their difference. Note that the index k was shifted
by k0 − 1/2, with k0 = 2c/π , to align the low-energy part of
the spectra. One clearly observes that the deviation dimin-
ishes for increasing c, suggesting the asymptotic equivalence
Ĥ → ĤCFT of the operators. This is supported by analytical
results [46–48], as well as further numerical evidence [49]. In
particular, for finite c one has a series expansion

Ĥ = ĤCFT +
∞∑

n=1

1

cn
Pn+1(ĤCFT), (9)

where Pn is an nth-order polynomial. The nth correction term
is thus an increasingly nonlocal differential operator of order
2(n + 1), which is, however, suppressed by cn. Furthermore,
using the lowest-order terms in Eq. (9), we find that the entan-
glement entropy S = −Tr [ρA ln ρA] is reproduced by ĤCFT

up to a correction scaling as δS ∝ ln(c)/c2, which agrees well
with our numerics [49].

We now proceed to the case d � 2, which considerably
simplifies using the rotational symmetry of both A and F .
Indeed, setting x = r n, the Hamiltonian can be decomposed
by considering the ansatz for the wave function

ψ (r n) = 	(r)

r (d−1)/2
Y
,i(n), (10)

where Y
,i(n) are d-dimensional spherical harmonics [50],
with n being a vector on the surface of the unit sphere,
parametrized by d − 1 angular coordinates. The quantum
number 
 = 0, 1, . . . corresponds to the angular momentum,
and i = 1, . . . , M
 indexes the linearly independent spherical
harmonics with fixed 
. In this basis, the Hamiltonian Ĥ =⊕


,i Ĥ
,i becomes block diagonal and in the respective sector
reads

Ĥ
,i = 1

2m

(
− d2

dr2
− q2

F + (
 + d−2
2 )2 − 1/4

r2

)
. (11)
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Note that Ĥ
,i does not depend on the quantum number i, such
that one simply has a degeneracy in each sector 
 � 1 with
corresponding multiplicity

M
 = 2
 + d − 2




(

 + d − 3


 − 1

)
, (12)

while M0 = 1. Thus the problem boils down to treating the
one-dimensional Hamiltonian Eq. (11), where one has an
extra contribution from the centrifugal potential. The dimen-
sionality enters via the multiplicities Eq. (12) and a shift of the
angular momentum index 
. For simplicity, we will discuss the
2D case below, as the generalization to d > 2 is trivial.

The eigenvalue problem of the kernel Eq. (5) was consid-
ered in Ref. [39], see Ref. [49] for details. One first rewrites
it as the absolute square of an exponential kernel K ′(y, z) =
eicyz in the scaled coordinates y = x/R and z = q/qF . Sep-
arating variables using the ansatz Eq. (10), one is led to
consider the radial eigenvalue problem K̂′


	
,k = γ
,k	
,k ,
with the kernel given by K ′


(y, z) = J
(cyz)
√

c2yz. Note that
y = |y| � 1, z = |z| � 1, and the eigenvalues of the original
operator K̂
 follow as ζ
,k = |γ
,k|2. The squared kernel can
then be written as

K
(y, y′) = 2c2
√

yy′KBe,
(c2y2, c2y′2) (13)

via the Bessel kernel defined as [51]

KBe,
(u, v) =
√

vJ
(
√

u)J ′

(

√
v) − √

uJ
(
√

v)J ′

(

√
u)

2(u − v)
. (14)

Note that the factor in Eq. (13) in front of the Bessel kernel can
be absorbed by a change of variables u = c2y2 and v = c2y′2,
such that the spectrum of K̂
 on the domain [0,1] is identical
to that of K̂Be,
 on [0, c2].

Analogously to the 1D case, one can find again a commut-
ing differential operator in each angular momentum sector,
[K̂
, D̂
] = 0, which reads [39,52]

D̂
 = − d

dy
β(y)

d

dy
−

(
c2 − 
2 − 1/4

y2

)
β(y), (15)

with β(y) = 1 − y2. Clearly, Eq. (15) can be interpreted as the
parabolic deformation of the radial Hamiltonian Eq. (11). Its
eigenvalue equation reads D̂
	
,k = χ
,k	
,k , and the eigen-
functions were dubbed generalized prolate spheroidal wave
functions. Their asymptotic expressions for c, k � 1 were
studied in Ref. [39]. Moreover, high-precision numerical com-
putation of the eigenvalues ζ
,k and χ
,k is available via an
open-source MATLAB code [53,54].

Before turning to the numerics, however, one needs an
argument to fix the velocity in the CFT expression Eq. (1).
Indeed, the inhomogeneous part of the radial Hamiltonian
Eq. (11) can be interpreted as a spatially varying chemical
potential μ
(r). In other words, the effective Fermi energy
of the radial motion is reduced by the centrifugal energy of
the orbital one. Furthermore, we argue that the only relevant
radius in our problem is that of our subsystem, and thus the
effective chemical potential should be evaluated at r = R.
Assuming R � 1, one obtains for the radial Fermi velocity

vF,
 =
√

2μ
(R)

m
= vF

√
1 − 
2

c2
. (16)

In particular, vF,
 vanishes at 
 = c, which corresponds to
the angular momentum where the classical turning point is
given by R. For all 
 > c, the eigenfunctions of Eq. (11)
have exponentially small amplitudes within A, and thus their
contribution to the EH should be negligible.

Alternatively, the emergence of the Fermi velocity Eq. (16)
can be understood by mapping the problem to that of an
inhomogeneous quantum chain. This can be achieved using
a remarkable identity found in Ref. [55], which establishes
a connection between the Bessel kernel Eq. (14) and the
analogous discrete Bessel kernel

KdBe,c(i, j) = c Ji−1(c)Jj (c) − c Ji(c)Jj−1(c)

2(i − j)
, (17)

where i, j ∈ Z. The identity relates the trace of an integer
power of the corresponding operators [55]

Tr [0,c2]

(
K̂n

Be,


) = Tr [
+1,∞)
(
K̂n

dBe,c

)
, (18)

where the subscripts denote the domains of the respective
kernels, over which the trace is carried out, with the right-hand
side being the trace of an ordinary matrix. Since the relation
holds for arbitrary n, this implies that the spectra of the two
operators are identical.

The matrix defined in Eq. (17) is precisely the correlation
matrix of a hopping chain with a linear potential [36], and
unitary equivalent to the one describing domain-wall melt-
ing [56]. The parameter c now plays the role of the half-width
of the front region, where the fermion density differs from
one and zero. Moreover, the angular momentum 
 is identified
with the position of the entanglement cut. In turn, the expres-
sion Eq. (16) simply corresponds to the spatial dependence of
the Fermi velocity due to the variation of the filling within the
front region [57,58]. The CFT prediction for the respective EH
thus reads

Ĥ
,CFT = π

2
√

c2 − 
2
D̂
. (19)

To test the validity of the ansatz Eq. (19), we evaluate and
compare the entropies obtained from Ĥ
 and Ĥ
,CFT, as shown
in Fig. 2. The agreement is excellent in the bulk of the profile,
where the asymptotics of the spectra ε
,k with 
/c fixed were
studied numerically for the gradient chain [59]. The resulting
entropy profile

S
 = 1
6 ln(c) + 1

4 ln[1 − (
/c)2] + C, (20)

where C ≈ 0.4785 is a nonuniversal constant [60,61], is
shown by the red line. In fact, Eq. (20) can also be derived
using a curved-space CFT approach [37], where the inhomo-
geneous metric is chosen to absorb the spatial variation of the
Fermi velocity. While Eq. (20) gives an accurate description of
the bulk entropy profile, it does not capture the fine structure
around the edge 
 ≈ c, where also the ansatz Eq. (19) seems
to break down. Indeed, using the scaling variable (
 − c)/c1/3,
the correlation matrix Eq. (17) can be approximated by the
Airy kernel [62], and S
 displays a corresponding edge scal-
ing [63]. As shown by the inset of Fig. 2, the same holds
true for the difference δS
 = S
 − S
,CFT, which shows a data
collapse for various values of c.

The situation is very similar in d > 2 dimensions, where
the index of the Bessel kernel is 
 + (d − 2)/2. This is a
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FIG. 2. Entanglement entropies S
 (full symbols) and S
,CFT

(empty symbols), calculated using the ansatz Eq. (19) for c = 20π .
The red solid line shows the result Eq. (20). Inset: Difference of
the entropies in the appropriately rescaled edge regime, for various
values of c.

half-integer in odd dimensions, such that the one-to-one corre-
spondence with the gradient chain is lost. Nevertheless, when
plotted against the shifted index 
 + (d − 2)/2, the entropy
profile S
 smoothly interpolates between the data points of the
d = 2 case. Applying the same shift in the scaling factor in
Eq. (19), the plot of the 3D case is almost identical to Fig. 2.
One thus concludes that the CFT ansatz breaks down for
high angular momenta 
 ≈ c − (d − 2)/2. Due to the increas-
ing multiplicities M
 with the dimensionality, however, the
leading-order mismatch of the total entropy in d � 2 scales as

δS =
∑




M
 δS
 ∝ cd−2

(d − 2)!
c1/3. (21)

Thus, in sharp contrast to the 1D case, the entropy deviation
becomes divergent in the c → ∞ limit. This is a consequence
of the edge-scaling regime in angular-momentum space,
which is not properly described by CFT. The scaling Eq. (21)
is consistent with our numerics in Fig. 3, albeit with strong
subleading corrections.

The mapping to the gradient chain, with resulting entropy
profile Eq. (20), also allows us to obtain the analytical result
for the total entropy

S =
∑




M
 S
 
 σd cd−1 ln c + Ad cd−1, (22)

where the prefactors can be calculated as [49]

σd = 1

3(d − 1)!
, Ad = 4 C − ψ

(
d+1

2

) − γ

2(d − 1)!
, (23)

with ψ (x) being the digamma function and γ the Euler-
Mascheroni constant. It is easy to check that the prefactor
of the area-law violating term agrees with the general ex-
pression found in Refs. [29,32]. The area-law contribution is
nonuniversal, and follows from the summation of the second
and third terms in Eq. (20) [49]. We tested the prediction
Eq. (22) by adding a subleading term Bd cd−2 and fitting to

FIG. 3. Deviation of the total entropy from the one calculated via
the CFT EH for various dimensions, scaled according to Eq. (21).
The red solid line with slope 1/3 is a guide to the eye.

our numerical data. The results σ2 = 0.3332, A2 = 0.651 and
σ3 = 0.1667, A3 = 0.2285 for the 2D and 3D cases, respec-
tively, are in excellent agreement with Eq. (23). Note that
our result on Ad also agrees with the conjecture formulated
in Ref. [64]. One should also remark that, in free massless rel-
ativistic theories, no violation of the area law occurs [65–67].

In conclusion, we have found that the EH of a nonrel-
ativistic Fermi gas is well reproduced by the appropriately
rescaled parabolic deformation of the physical Hamiltonian.
While in 1D the relation becomes asymptotically exact in the
limit of large subsystems, the situation in higher dimensions
is much more subtle. First, the CFT prediction can only be
applied in the angular momentum sectors, after rescaling with
the Fermi velocity of the radial motion. Since this velocity
carries a nontrivial dependence on 
, the relation cannot be
lifted back to the total EH and rewritten as a deformation of
the total energy density as in Eq. (1). In sharp contrast, for
relativistic Dirac fermions the form of the total EH is identical
to those in the sectors [67]. Second, for the nonrelativistic case
some deviations persist even in the sectors for large angular
momenta. Using the mapping to the gradient chain, these dis-
crepancies can be traced back to the dilute edge regime of the
fermionic density, where the fine structure of the correlations
does not admit a CFT description. Hence, translating Eq. (1)
to nonrelativistic systems requires proper insight and care.

Our work opens up various directions for future research.
One could address how the shape of the Fermi surface, which
is known to be crucial for the entropy scaling [29,32], affects
the results for the EH. A further natural extension would
be the study of a trapped Fermi gas [68], where the CFT
predictions for the EH are also available [69]. Finally, one
should investigate how the results generalize to particles with
bosonic statistics.

I thank I. Peschel and E. Tonni for fruitful discussions
and correspondence. In my numerical calculations I used the
open-source code available online [54]. The author acknowl-
edges funding from the Austrian Science Fund (FWF) through
Project No. P35434-N.

L201113-4



ENTANGLEMENT HAMILTONIAN OF A NONRELATIVISTIC … PHYSICAL REVIEW B 109, L201113 (2024)

[1] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement
in many-body systems, Rev. Mod. Phys. 80, 517 (2008).

[2] P. Calabrese, J. Cardy, and B. Doyon, Entanglement entropy in
extended quantum systems, J. Phys. A: Math. Theor. 42, 500301
(2009).

[3] J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws
for the entanglement entropy, Rev. Mod. Phys. 82, 277 (2010).

[4] N. Laflorencie, Quantum entanglement in condensed matter
systems, Phys. Rep. 646, 1 (2016).

[5] M. Dalmonte, V. Eisler, M. Falconi, and B. Vermersch, Entan-
glement Hamiltonians: From field theory to lattice models and
experiments, Ann. Phys. (NY) 534, 2200064 (2022).

[6] M. Dalmonte, B. Vermersch, and P. Zoller, Quantum simulation
and spectroscopy of entanglement Hamiltonians, Nature Phys.
14, 827 (2018).

[7] C. Kokail, R. van Bijnen, A. Elben, B. Vermersch, and P. Zoller,
Entanglement Hamiltonian tomography in quantum simulation,
Nature Phys. 17, 936 (2021).

[8] C. Kokail, B. Sundar, T. V. Zache, A. Elben, B. Vermersch, M.
Dalmonte, R. van Bijnen, and P. Zoller, Quantum variational
learning of the entanglement Hamiltonian, Phys. Rev. Lett. 127,
170501 (2021).

[9] T. V. Zache, C. Kokail, B. Sundar, and P. Zoller, Entanglement
spectroscopy and probing the Li-Haldane conjecture in topolog-
ical quantum matter, Quantum 6, 702 (2022).

[10] M. K. Joshi, C. Kokail, R. van Bijnen, F. Kranzl, T. V. Zache, R.
Blatt, C. F. Roos, and P. Zoller, Exploring large-scale entangle-
ment in quantum simulation, Nature (London) 624, 539 (2023).

[11] Q. Redon, Q. Liu, J.-B. Bouhiron, N. Mittal, A. Fabre, R. Lopes,
and S. Nascimbene, Realizing the entanglement Hamiltonian of
a topological quantum Hall system, arXiv:2307.06251 [cond-
mat.quant-gas].

[12] J. J. Bisognano and E. H. Wichmann, On the duality condition
for a Hermitian scalar field, J. Math. Phys. 16, 985 (1975).

[13] J. J. Bisognano and E. H. Wichmann, On the duality condition
for quantum fields, J. Math. Phys. 17, 303 (1976).

[14] P. D. Hislop and R. Longo, Modular structure of the local
algebras associated with the free massless scalar field theory,
Commun. Math. Phys. 84, 71 (1982).

[15] H. Casini, M. Huerta, and R. C. Myers, Towards a derivation
of holographic entanglement entropy, J. High Energy Phys. 05
(2011) 036.

[16] G. Wong, I. Klich, L. A. P. Zayas, and D. Vaman, Entanglement
temperature and entanglement entropy of excited states, J. High
Energy Phys. 12 (2013) 020.

[17] J. Cardy and E. Tonni, Entanglement Hamiltonians in two-
dimensional conformal field theory, J. Stat. Mech.: Theory Exp.
(2016) 123103.

[18] V. Eisler and I. Peschel, Analytical results for the entanglement
Hamiltonian of a free-fermion chain, J. Phys. A: Math. Theor.
50, 284003 (2017).

[19] R. E. Arias, D. D. Blanco, H. Casini, and M. Huerta, Local
temperatures and local terms in modular Hamiltonians, Phys.
Rev. D 95, 065005 (2017).

[20] V. Eisler, E. Tonni, and I. Peschel, On the continuum limit of the
entanglement Hamiltonian, J. Stat. Mech.: Theory Exp. (2019)
073101.

[21] G. D. Giulio and E. Tonni, On entanglement Hamiltonians of
an interval in massless harmonic chains, J. Stat. Mech.: Theory
Exp. (2020) 033102.

[22] F. Rottoli, S. Scopa, and P. Calabrese, Entanglement Hamil-
tonian during a domain wall melting in the free Fermi chain,
J. Stat. Mech.: Theory Exp. (2022) 063103.

[23] G. Giudici, T. Mendes-Santos, P. Calabrese, and M. Dalmonte,
Entanglement Hamiltonians of lattice models via the
Bisognano-Wichmann theorem, Phys. Rev. B 98, 134403
(2018).

[24] T. Mendes-Santos, G. Giudici, M. Dalmonte, and M. A.
Rajabpour, Entanglement Hamiltonian of quantum critical
chains and conformal field theories, Phys. Rev. B 100, 155122
(2019).

[25] J. Zhang, P. Calabrese, M. Dalmonte, and M. A. Rajabpour,
Lattice Bisognano-Wichmann modular Hamiltonian in critical
quantum spin chains, SciPost Phys. Core 2, 007 (2020).

[26] P. Calabrese, M. Mintchev, and E. Vicari, Entanglement entropy
of one-dimensional gases, Phys. Rev. Lett. 107, 020601 (2011).

[27] P. Calabrese, M. Mintchev, and E. Vicari, Entanglement en-
tropies in free-fermion gases for arbitrary dimension, Europhys.
Lett. 97, 20009 (2012).

[28] M. Mintchev, D. Pontello, A. Sartori, and E. Tonni, Entangle-
ment entropies of an interval in the free Schrödinger field theory
at finite density, J. High Energy Phys. 07 (2022) 120.

[29] D. Gioev and I. Klich, Entanglement entropy of fermions in
any dimension and the Widom conjecture, Phys. Rev. Lett. 96,
100503 (2006).

[30] M. M. Wolf, Violation of the entropic area law for fermions,
Phys. Rev. Lett. 96, 010404 (2006).

[31] T. Barthel, M.-C. Chung, and U. Schollwöck, Entanglement
scaling in critical two-dimensional fermionic and bosonic sys-
tems, Phys. Rev. A 74, 022329 (2006).

[32] H. Leschke, A. V. Sobolev, and W. Spitzer, Scaling of Rényi
entanglement entropies of the free Fermi-gas ground state: A
rigorous proof, Phys. Rev. Lett. 112, 160403 (2014).

[33] P. Pfeiffer and W. Spitzer, Logarithmically enhanced area-laws
for fermions in vanishing magnetic fields in dimension two,
arXiv:2307.01699 [math-ph].

[34] B. Swingle, Entanglement entropy and the Fermi surface, Phys.
Rev. Lett. 105, 050502 (2010).

[35] N. Javerzat and E. Tonni, On the continuum limit of the entan-
glement Hamiltonian of a sphere for the free massless scalar
field, J. High Energy Phys. 02 (2022) 086.

[36] V. Eisler, F. Iglói, and I. Peschel, Entanglement in spin chains
with gradients, J. Stat. Mech.: Theory Exp. (2009) P02011.

[37] J. Dubail, J.-M. Stéphan, J. Viti, and P. Calabrese, Conformal
field theory for inhomogeneous one-dimensional quantum sys-
tems: the example of non-interacting Fermi gases, SciPost Phys.
2, 002 (2017).

[38] D. Slepian and H. O. Pollak, Prolate spheroidal wave functions,
Fourier analysis and uncertainty - I, Bell Syst. Tech. J. 40, 43
(1961).

[39] D. Slepian, Prolate spheroidal wave functions, Fourier analysis
and uncertainty - IV: Extensions to many dimensions; general-
ized prolate spheroidal functions, Bell Syst. Tech. J. 43, 3009
(1964).

[40] V. Eisler and I. Peschel, Free-fermion entanglement and
spheroidal functions, J. Stat. Mech.: Theory Exp. (2013)
P04028.

[41] I. Peschel and V. Eisler, Reduced density matrices and entan-
glement entropy in free lattice models, J. Phys. A: Math. Theor.
42, 504003 (2009).

L201113-5

https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1088/1751-8121/42/50/500301
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1016/j.physrep.2016.06.008
https://doi.org/10.1002/andp.202200064
https://doi.org/10.1038/s41567-018-0151-7
https://doi.org/10.1038/s41567-021-01260-w
https://doi.org/10.1103/PhysRevLett.127.170501
https://doi.org/10.22331/q-2022-04-27-702
https://doi.org/10.1038/s41586-023-06768-0
https://arxiv.org/abs/2307.06251
https://doi.org/10.1063/1.522605
https://doi.org/10.1063/1.522898
https://doi.org/10.1007/BF01208372
https://doi.org/10.1007/JHEP05(2011)036
https://doi.org/10.1007/JHEP12(2013)020
https://doi.org/10.1088/1742-5468/2016/12/123103
https://doi.org/10.1088/1751-8121/aa76b5
https://doi.org/10.1103/PhysRevD.95.065005
https://doi.org/10.1088/1742-5468/ab1f0e
https://doi.org/10.1088/1742-5468/ab7129
https://doi.org/10.1088/1742-5468/ac72a1
https://doi.org/10.1103/PhysRevB.98.134403
https://doi.org/10.1103/PhysRevB.100.155122
https://doi.org/10.21468/SciPostPhysCore.2.2.007
https://doi.org/10.1103/PhysRevLett.107.020601
https://doi.org/10.1209/0295-5075/97/20009
https://doi.org/10.1007/JHEP07(2022)120
https://doi.org/10.1103/PhysRevLett.96.100503
https://doi.org/10.1103/PhysRevLett.96.010404
https://doi.org/10.1103/PhysRevA.74.022329
https://doi.org/10.1103/PhysRevLett.112.160403
https://arxiv.org/abs/2307.01699
https://doi.org/10.1103/PhysRevLett.105.050502
https://doi.org/10.1007/JHEP02(2022)086
https://doi.org/10.1088/1742-5468/2009/02/P02011
https://doi.org/10.21468/SciPostPhys.2.1.002
https://doi.org/10.1002/j.1538-7305.1961.tb03976.x
https://doi.org/10.1002/j.1538-7305.1964.tb01037.x
https://doi.org/10.1088/1742-5468/2013/04/P04028
https://doi.org/10.1088/1751-8113/42/50/504003


VIKTOR EISLER PHYSICAL REVIEW B 109, L201113 (2024)

[42] E. L. Ince, Ordinary Differential Equations (Dover Publications,
New York, 1956), p. 201.

[43] Note that the differential operator used in Ref. [36] differs by
an additive constant c2.

[44] J. Meixner and F. W. Schäfke, Mathieusche Funktionen und
Sphäroidfunktionen (Springer Berlin, 1954).

[45] C. Flammer, Spheroidal Wave Functions (Stanford University
Press, Stanford, 1957).

[46] D. Slepian, Some asymptotic expansions for prolate spheroidal
wave functions, J. Math. Phys. 44, 99 (1965).

[47] D. Slepian and E. Sonnenblick, Eigenvalues associated with
prolate spheroidal wave functions of zero order, Bell Syst.
Techn. J. 44, 1745 (1965).

[48] J. des Cloizeaux and M. L. Mehta, Some asymptotic expres-
sions for prolate spheroidal functions and for the eigenvalues of
differential and integral equations of which they are solutions,
J. Math. Phys. 13, 1745 (1972).

[49] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.109.L201113 for details.

[50] C. Frye and C. J. Efthimiou, Spherical Harmonics in p Dimen-
sions (World Scientific, Singapore, 2014).

[51] C. A. Tracy and H. Widom, Level spacing distributions and the
Bessel kernel, Commun. Math. Phys. 161, 289 (1994).

[52] Note that the differential operator used in Ref. [37] differs by
an additive constant c2 + 
2 − 1/4.

[53] R. R. Lederman, Numerical algorithms for the computation
of generalized prolate spheroidal functions, arXiv:1710.02874
[math.NA].

[54] http://github.com/lederman/prol
[55] H. Moriya, R. Nagao, and T. Sasamoto, Exact large deviation

function of spin current for the one dimensional XX spin chain
with domain wall initial condition, J. Stat. Mech.: Theory Exp.
(2019) 063105.

[56] S. Scopa and D. Karevski, Scaling of fronts and entanglement
spreading during a domain wall melting, Eur. Phys. J. Spec.
Top. 232, 1763 (2023).

[57] N. Allegra, J. Dubail, J.-M. Stéphan, and J. Viti, Inhomoge-
neous field theory inside the arctic circle, J. Stat. Mech.: Theory
Exp. (2016) 053108.

[58] V. Eisler and D. Bauernfeind, Front dynamics and entanglement
in the XXZ chain with a gradient, Phys. Rev. B 96, 174301
(2017).

[59] V. Eisler and I. Peschel, Surface and bulk entanglement in free-
fermion chains, J. Stat. Mech.: Theory Exp. (2014) P04005.

[60] B. Q. Jin and V. E. Korepin, Quantum spin chain, Toeplitz
determinants and the Fisher Hartwig conjecture, J. Stat. Phys.
116, 79 (2004).

[61] R. Süsstrunk and D. A. Ivanov, Free fermions on a line: Asymp-
totics of the entanglement entropy and entanglement spectrum
from full counting statistics, Europhys. Lett. 100, 60009 (2012).

[62] C. A. Tracy and H. Widom, Level-spacing distributions and the
Airy kernel, Commun. Math. Phys. 159, 151 (1994).

[63] V. Eisler and Z. Rácz, Full counting statistics in a propagating
quantum front and random matrix spectra, Phys. Rev. Lett. 110,
060602 (2013).

[64] N. R. Smith, P. Le Doussal, S. N. Majumdar, and G.
Schehr, Counting statistics for noninteracting fermions in a
d-dimensional potential, Phys. Rev. E 103, L030105 (2021).

[65] M. Srednicki, Entropy and area, Phys. Rev. Lett. 71, 666 (1993).
[66] M. Huerta and G. van der Velde, Modular Hamiltonian of the

scalar in the semi infinite line: dimensional reduction for spher-
ically symmetric regions, J. High Energy Phys. 06 (2023) 097.

[67] M. Huerta and G. van der Velde, Modular Hamiltonian in
the semi infinite line. Part II. Dimensional reduction of Dirac
fermions in spherically symmetric regions, J. High Energy
Phys. 01 (2024) 062.

[68] D. S. Dean, P. L. Doussal, S. N. Majumdar, and G. Schehr,
Noninteracting fermions in a trap and random matrix theory,
J. Phys. A: Math. Theor. 52, 144006 (2019).

[69] E. Tonni, J. Rodríguez-Laguna, and G. Sierra, Entanglement
hamiltonian and entanglement contour in inhomogeneous 1D
critical systems, J. Stat. Mech.: Theory Exp. (2018) 043105.

L201113-6

https://doi.org/10.1002/sapm196544199
https://doi.org/10.1002/j.1538-7305.1965.tb04200.x
https://doi.org/10.1063/1.1665903
http://link.aps.org/supplemental/10.1103/PhysRevB.109.L201113
https://doi.org/10.1007/BF02099779
https://arxiv.org/abs/1710.02874
http://github.com/lederman/prol
https://doi.org/10.1088/1742-5468/ab1dd6
https://doi.org/10.1140/epjs/s11734-023-00845-1
https://doi.org/10.1088/1742-5468/2016/05/053108
https://doi.org/10.1103/PhysRevB.96.174301
https://doi.org/10.1088/1742-5468/2014/04/P04005
https://doi.org/10.1023/B:JOSS.0000037230.37166.42
https://doi.org/10.1209/0295-5075/100/60009
https://doi.org/10.1007/BF02100489
https://doi.org/10.1103/PhysRevLett.110.060602
https://doi.org/10.1103/PhysRevE.103.L030105
https://doi.org/10.1103/PhysRevLett.71.666
https://doi.org/10.1007/JHEP06(2023)097
https://doi.org/10.1007/JHEP01(2024)062
https://doi.org/10.1088/1751-8121/ab098d
https://doi.org/10.1088/1742-5468/aab67d

