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Decades of research have revealed a deep understanding of topological quantum matter with protected edge
modes. We report that even richer physics emerges when tuning between two topological phases of matter whose
respective edge modes are incompatible. The frustration at the edge leads to novel boundary physics, such as
symmetry-breaking phases with exotic non-Landau transitions—even when the edge is zero-dimensional. As
a minimal case study, we consider spin chains with Z3 × Z3 symmetry, exhibiting two nontrivial symmetry-
protected topological (SPT) phases. At the bulk 1+1D critical transition between these SPT phases, we find
two stable 0+1D boundary phases, each spontaneously breaking one of the Z3 symmetries. Furthermore, we
find that a single boundary parameter tunes a non-Landau boundary critical transition between these two phases.
This constitutes a 0+1D version of an exotic phenomenon driven by charged vortex condensation known as
deconfined quantum criticality. This work highlights the rich unexplored physics of criticality between nontrivial
topological phases and provides insights into the burgeoning field of gapless topological phases.
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Symmetry-protected edge modes in phases of matter are
well-understood when there is a finite energy gap to creating
excitations in the bulk [1–3]. For instance, in 1D systems
[4–8] this leads to topologically protected ground state degen-
eracies which are exponentially localized near the endpoints
[9,10]. However, edge modes at phase transitions and criti-
cality [11–42] remain a fertile area of study. Although such
edge modes delocalize and disappear at phase transitions to
the trivial phase [Fig. 1(a)] [43–49], it has been realized that
transitions to other phases—such as spontaneous symmetry-
breaking phases [Fig. 1(b)] [28,37,50–53]—can leave part of
the edge mode intact.1

This raises a question which is fundamental for under-
standing the interplay between topology and criticality: What
is the fate of edge modes when the system transitions from one
topological phase to another nontrivial topological phase? To
what extent do edge modes survive at the critical point? While
previous work has studied this question in the noninteracting
fermion case [33,37,54], here we explore a more generic and
richer framework. Importantly, in our work, the edge modes
of one phase are incompatible with those of the other phase
due to differences in how they realize the symmetry action.
The resulting frustration gives rise to fascinating boundary
effects when both types of edge modes are forced to coexist
and compete at criticality.

As a minimal example of this scenario, we study a
transition between two Z3 × Z3-symmetric spin chain Hamil-
tonians [55], each phase hosting protected edge modes
transforming under distinct projective representations [4].

1For gapped SPT phases its value depends on the choice of ground
state. In contrast, gapless phases can have robust 0+1D symmetry
breaking on the edge [28,37,53].

These two gapped phases are simple examples of the
more general phenomenon of symmetry-protected topological
(SPT) phases. We find that edge degeneracy typically persists
at the critical point in two possible ways; more precisely, there
are two conformal boundary conditions each spontaneously
breaking one of the two Z3 symmetries [Fig. 1(c)]. These can
be thought of as spontaneous symmetry-breaking phases in
zero spatial dimensions. Moreover, we find a direct continuous
boundary transition between these two [Fig. 1(d)], where one
symmetry breaks exactly when another is restored. This is a
stark violation of the conventional Landau paradigm of phase
transitions which posits that symmetry subgroups only break
one at a time. In fact, it is a 0+1D manifestation of a decon-
fined quantum critical point (DQCP), an exotic phenomenon
originally proposed for 2+1D [56–76] and recently explored
in 1+1D [77–84]. Indeed, we discuss how even the mecha-
nism is quite similar to that in higher dimensions, namely,
condensing defects for one symmetry-breaking order gives
rise to long-range order for the other [58].

Moreover, we show that the bulk critical point itself has
a nontrivial topological invariant—making it an instance of
gapless SPT or symmetry-enriched criticality [37]. The con-
ventional lore for topologically nontrivial SPT phases, shown
rigorously in the gapped case, is that edge modes are guar-
anteed by a bulk-boundary correspondence. However, at the
boundary critical point reported in this work, edge modes
disappear. This shows that the notion of bulk-boundary cor-
respondence is more subtle for gapless SPT phases, opening
up exciting future research directions.

Z3 × Z3 cluster SPT chains. Define shift and clock
matrices

X =
⎛
⎝

0 0 1
1 0 0
0 1 0

⎞
⎠ and Z =

⎛
⎝

1 0 0
0 ω 0
0 0 ω2

⎞
⎠, (1)
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FIG. 1. SPT edge modes, criticality, and boundary DQCP. Panels
highlight what happens to SPT edge modes when tuning to quantum
criticality. Based on end-to-end long-range order of boundary order
parameters: (a) tuning to trivial phase destroys edge modes and
(b) edge modes can persist upon tuning toward a nontrivial phase,
like a symmetry-breaking phase [28,37,53]. (c) In this work, we show
a richer phenomenology at a transition between two distinct SPT
phases protected by Z3 × Z3 symmetry [Eq. (5)]; there are distinct
symmetry-breaking boundary conditions at criticality. (d) Moreover,
there is a direct continuous transition (“DQCP”) between these two
by tuning a boundary parameter.

where ω = e2π i/3. We consider quantum chains respecting the
Z3 × Z3 symmetry generated on even and odd sublattices:

U e =
∏

j

X2 j and U o =
∏

j

X2 j+1. (2)

Following Ref. [55], we define “cluster Hamiltonians” [51]
for two distinct nontrivial Z3 × Z3 SPT phases

Hω = −
∑

j

(Z2 j−1X2 jZ
†
2 j+1 + Z2 jX

†
2 j+1Z†

2 j+2 + H.c.),

Hω̄ = −
∑

j

(Z2 j−1X †
2 jZ

†
2 j+1 + Z2 jX2 j+1Z†

2 j+2 + H.c.). (3)

The effective low-energy action of U e and U 0 on each
boundary is such that they commute only up to a projective
phase ω or ω̄, leading to a threefold degenerate ground state
space (per edge) [55].

The edge projective symmetry action is detectable via
bulk string order parameters. That is, among operators of
the form · · · X2 j−6X2 j−4X2 j−2O2 j (a Ze

3-string operator), only
those with Zo

3-charged O2 j have have long-range order (LRO)
[85], and vice versa for the other symmetry. For instance, Hω

has LRO in an ω-charged Ze
3-string operator

lim
|k− j|→∞

〈Z2 j−1X2 jX2 j+2 · · · X2kZ†
2k+1〉 = 1, (4)

while Hω̄ has an ω̄-charged Ze
3-string operator. While the left

hand side of Eq. (4) is unity only for the fixed-point Hamilto-
nian Hω, it remains nonzero throughout the SPT phase [85].

Numerical method. We confirm our CFT analysis using
density matrix renormalization group (DMRG) simulations

[86,87] on finite chains of lengths 25 � L � 125. At each
length, we considered the limit of bond dimesnion χ → ∞,
with simulations run up to χ = 170 found to sufficiently guar-
antee convergence for ground state end-to-end correlators and
excited state energy levels. For technical efficiency, instead
of implementing the cluster Hamiltonian directly, we simu-
lated a unitarily equivalent three-state Potts chain as described
in Ref. [88].

Criticality and boundary symmetry breaking. We study
a linear interpolation between the two nontrivial cluster
Hamiltonians (3):

H (s, b) = (1 + s)Hω + (1 − s)Hω̄ − b(X1 + X2N+1 + H.c.).

(5)

Since we are interested in edge behavior, we have open
boundary conditions with j ∈ [1, 2N + 1] and boundary tun-
ing parameter b to explore generic boundary behavior.

This model exhibits a direct transition at the midpoint
s = 0. In fact, a local unitary (the SPT entangler [89]) maps
H1 �→ Hω �→ Hω̄ �→ H1, where H1 = −∑

j Xj + H.c. is a
trivial phase. So the bulk critical point can be mapped to
one between the trivial and SPT phase, H1 + Hω, which in
Ref. [44] was found to be be described by a certain orbifold
of two copies of the three-state Potts conformal field theory
(Potts2 CFT). However, these entangler transformations do
not apply for open boundary conditions, and we will find
Hω + Hω̄ has much richer boundary criticality than H1 + Hω;
we will also discuss how a bulk symmetry-protected topolog-
ical invariant detects this difference. We note that this s = 0
critical point belongs to a one-parameter family of theories
stabilized by Z3 × Z3, translation, and charge conjugation
(see Refs. [83,88,90,91] therein for details on adjacent bulk
phases).

Unlike in gapped SPT phases, string operators [Eq. (4)]
no longer have LRO at criticality. Instead they decay al-
gebraically with universal exponents distinguishing Hω +
Hω̄ and H1 + Hω. For example, considering charges of the
‘lightest’ string operators, i.e., those with the smallest such
exponents, Hω + Hω̄ has two degenerate U e-string opera-
tors with U o charges {ω, ω̄} [e.g., the lattice string operator
Eq. (4)], while H1 + Hω has charges {1, ω}; these correspond
to string operators with LRO in the nearby symmetric phases.
This bulk topological invariant proves that these two CFTs
cannot be connected by a Z3 × Z3-symmetric path without
passing through a multi-critical point or tuning off criticality.

In gapped SPTs, LRO of charged strings (4) directly im-
ply edge modes. Analogously, we might expect a similar
bulk-boundary correspondence can distinguish the “trivial”
transition H1 + Hω from the “topological” one Hω + Hω̄.
To explore this, we turn to a more concrete analysis of
Eq. (5), using analytic and numerical methods inspired by
Ref. [37].

In the fine-tuned case b = 0, zero mode operators Z1 and
Z2N+1 commute with H [Eq. (5)]. Their Zo

3 charge implies
a threefold degenerate spectrum. Morally, Z1 and Z2N+1 are
order parameters for a spontaneous symmetry-breaking (SSB)
boundary and are indeed LRO in time. They are also phase-
locked across the critical bulk: 〈Z1〉 = 〈Z2N+1〉 in all three
ground states (i.e., unlike in gapped SPTs, degeneracies are
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FIG. 2. Edge modes and boundary dissolution at SPT criticality.
We consider Eq. (5) with open boundaries. (a) For b < 1, the bound-
ary spontaneously breaks U o. This degeneracy’s finite-size splitting
matches the CFT prediction ∼L−5/3. Edge modes become exactly
degenerate in the CFT limit. (b) At b = 1, the boundary undergoes
a transition between two distinct symmetry-breaking phases. Here,
we find a unique ground state. Red dots denote the numerically ex-
tracted universal finite-size spectrum (for L = 25; here v = 3

√
3π ).

Remarkably, this matches the spectrum of Potts CFT without bound-
aries (black lines). This signifies that at this point, the bulk-boundary
distinction is blurred (see main text).

not independent for both edges). We call this boundary phase
“o-SSB.” Note that bulk gaplessness is what ensures a well-
defined boundary SSB; in contrast, in gapped SPT phases
end-to-end LRO requires a certain basis of degenerate ground
states. Indeed, gapped SPT edge modes, being genuine zero-
dimensional systems, have no robust notion of “phase of
matter.”

Adding nonzero b splits degeneracy for finite systems,
similar to the exponentially small finite-size splitting of
gapped SPTs [10,92]. At criticality (s = 0), edge modes split
algebraically ∼1/Nα with boundary-condition-dependent ex-
ponent α. Crucially α > 1, such that degeneracy is relative to
bulk finite-size splitting ∼1/N [37]. We numerically confirm
this faster-than-1/N splitting, and hence boundary stability,
in Fig. 2(a). Later we derive a mapping to the Potts model,
implying the universal exponent α = 5/3.

The other easy limit, b → ∞, projects X1 = X2N+1 = 1,
i.e., throws out sites 1 and 2N + 1 and operators acting on
them. One has the same model as when b = 0, but with
j ∈ [2, 2N]. The story above repeats, except now U e is spon-
taneously broken at the boundary, not U o. This is a distinct
boundary phase (“e-SSB”) from b = 0, raising the question
of what boundary transition occurs as we tune the boundary
coupling.

We note this perturbatively stable boundary symmetry
breaking requires the exotic topological nature of the model
Hω + Hω̄. For comparison, the trivial gapless theory H1 + Hω

has a generically nondegenerate conformal spectrum and
no boundary symmetry breaking except at some unstable
fine-tuned boundary points. The difference lies in the
so-called boundary disorder operators, i.e., operators toggling
between superselection sectors of 0+1D SSB ground states.
For H1 + Hω, perturbing a fine-tuned degenerate edge with
infinitesimal X1 will disorder the 0+1D SSB and flow to
a unique symmetry-preserving edge. In contrast, Hω + Hω̄

has no RG-relevant symmetry-allowed boundary disorder
operator with which we can perturb the edge. This intuitively

TABLE I. The most relevant disorder operators of the odd
symmetry-breaking boundary (b < 1) are order parameters of the
even symmetry-breaking boundary (b > 1) and vice versa. Here we
show left boundary lattice expressions 1. Restoring one symmetry
requires condensing said disorder operator, thereby spontaneously
breaking the other symmetry; this is the mechanism leading to the
0+1D “non-Landau” DQCP.

Order operator Disorder operator

o-SSB Z1 X1Z (†)
2

e-SSB X1Z (†)
2 Z1 (or X2Z (†)

3 )

1These are lattice expressions for the boundary disorder operators at
the extreme limits b = 0 and b = ∞; moreover, for generic b their
expansion in continuum field is dominated by a boundary disorder
operator. We also mention that Z1 is identically zero at b = ∞, but
for finite b > 1 is in the same universality as X2Z3.

matches the bulk topological invariants and also follows from
CFT (explained in Refs. [88,93]) The relevant perturbation,
shown in Table I, carries nontrivial charge under the unbroken
symmetry and thus cannot be generated under RG!

Finally, we remark that the boundary order parameters
and disorder operators for the gapless regime match localized
projective symmetry generators from the adjacent gapped SPT
phases. Although the gapped SPT phase is agnostic with re-
spect to automorphisms of Z3 × Z3, the gapless theory selects
a specific choice of projective symmetry generators to play the
role of boundary order parameter or disorder operator. This
physically corresponds to the fact that the boundary of the
gapless phase has genuine 0+1d SSB, in contrast to the edge
of a gapped SPT phase.

DQCP in zero dimensions. To recap, for b ≈ 0, Hω + Hω̄

with open boundaries spontaneously breaks the odd-sublattice
Z3 symmetry, while for b → ∞, it breaks the even one. It
turns out these two phases persist for all b, except at b = 1,
where there is a direct transition. This boundary transition
is continuous, and both symmetries are unbroken there. In-
deed, for b = 1, we find no ground state degeneracy (Fig. 2),
contrary to a naive expectation from the bulk topological
invariant.

Tuning left and right boundary couplings simultaneously
[see Eq. (5)] lets us use order parameters’ end-to-end correla-
tions to detect the transition, which occurs independently on
both edges. In particular 〈Z1Z†

2N+1〉 is nonzero in the o-SSB
boundary phase (0 � b < 1) and zero in the e-SSB boundary
phase (b > 1) and vice versa for 〈X1Z2Z†

2N X †
2N+1〉. The square

root gives the boundary vacuum expectation value (vev). Us-
ing DMRG, we obtain Fig. 1(d) and clearly see the direct
continuous transition at b = 1. Later, we analytically show
both vevs vanish at b = 1 with unbroken symmetry and no
ground state degeneracy.

This continuous SSB-to-SSB transition resembles decon-
fined quantum criticality points (DQCP) in higher dimensions.
A key feature of DQCP is that the “vortex” in one ordered
phase is charged under the symmetry broken in the other. Thus
they cannot simultaneously condense, leading to a Landau-
forbidden transition. The same mechanism prevails here, with
the role of vortices played by relevant boundary disorder
operators of Table I. Another salient DQCP feature is an
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FIG. 3. Mapping critical Z3 × Z3 cluster chain with boundaries
to a single Potts chain. There is an exact unitary map from a finite
open cluster chain to a finite closed Potts chain with defects. First
we apply a Kramers Wannier transformation on odd sites and ap-
propriately parametrize the resulting even sites to have the form of
two c = 4/5 Potts chains only coupled at their boundaries by the
boundary perturbation. Then we “unfold” this doubled system by
simply viewing it as a single Potts system on a closed loop with
defects and twisted sectors.

emergent symmetry exchanging nearby SSB phases, which
we will show indeed occurs at b = 1. Despite these similar-
ities, an anomalous symmetry is arguably missing. Indeed, a
bona fide zero-dimensional anomaly is usually understood to
be a projective representation; since this implies degeneracy,
it cannot be present at b = 1. Thus, following Ref. [83], we
use the term DQCP in a slightly broader context, namely, a
non-Landau transition between distinct SSB phases stabilized
by condensing charged defect operators.

We numerically verify symmetry restoration and nonde-
generacy at b = 1 by computing a finite chain’s spectrum,
Fig. 2(b). Remarkably, this spectrum coincides with the
known analytic result for a single Potts chain with periodic
(twisted) boundary conditions [94]. This is no coincidence, as
we now demonstrate.

Mapping to single Potts chain. Remarkably, the open chain
in Eq. (5) is unitarily equivalent to a single three-state Potts
chain on a ring with some defects depending on b. The map-
ping is summarized in Fig. 3 (further details are provided in
Ref. [88]). The Ze

3 physical symmetry is the global Z3 symme-
try of the Potts ring, while the eigenvalues of the Zo

3 generator
label the Z3 twisted boundary conditions of the Potts ring. The
result is that b tunes the strength of a single exchange term on
opposite sides of the ring. The DQCP at b = 1 corresponds to
translation symmetry, where the spectrum matches that of the
Potts chain on a ring, which is nondegenerate.

With this mapping, dominant boundary operators are
identified through the Potts defect conformal field theory
[95–100] confirming our claims in Fig. 1. For example, at
b < 1, the dominant symmetry-allowed boundary perturba-
tion corresponds to an irrelevant ψAψB† CFT operator of

dimension 4/3 coupling the two chains’ endpoints (Fig. 3),
while the Ze

3-charged disorder operator corresponds to ψA of
dimension 2/3 leading to the |s|5/9 scaling of Fig. 1(c). Sim-
ilary, at the DQCP, scalings of Figs. 1(c) and 1(d) arise from
the 2/15 dimensional Ze

3 (Zo
3) charged boundary operators

σ σ̄ (μμ̄) and the 4/5 dimensional the symmetric boundary
perturbation εε̄.

Furthermore, the Potts chain’s Kramers-Wannier duality
interchanges U e and U o symmetries and all order and disor-
der operators. It sends b = 1 + δb to b = 1 − δb for δb � 1,
acting as an emergent duality in the boundary phase diagram.
Two such transformations translate the Potts ring. At b = 1,
the emergent translation symmetry relates boundary degrees
of freedom to bulk degrees of freedom. Thus the boundary
critical point is also a “delocalized” QCP.

Outlook. We studied a minimal example of competition
between two inequivalent types of topologically protected
edge mode with Z3 × Z3 symmetry. We found that as a
result of this competition, there are effectively fewer edge
modes at criticality, and they organize themselves into one
of two distinct boundary-symmetry-breaking phases break-
ing only a three-fold subgroup. Most strikingly, there is an
unconventional direct boundary transition between these two
symmetry-breaking regimes. At this boundary transition, edge
modes disappear and emergent features of a deconfined quan-
tum critical point appear. These results were obtained using
conformal field theory and tensor network simulations on a
critical one-dimensional open-chain lattice model on an open
chain with a Z3 × Z3 symmetry.

SPT transitions and edge modes of gapless systems merit
further study. Our results encourage exploring other direct
transitions between nontrivial SPT phases, where, as we have
exemplified, novel boundary physics is expected. Examples
include boundaries of the Z2 × Z2 × ZT

2 SPT-SPT’ transition
in Eq. (28) of Ref. [37] and the c = 2 multicritical point where
all three Z3 × Z3 SPT phases meet. Another major open
question regards bulk-boundary correspondence for gapless
SPT phases. Remarkably we have found that even with a
nontrivial bulk topological invariant, boundary edge modes
can disappear in a boundary DQCP. It remains unknown how
general this phenomenon is. Insights might also be gained
by understanding boundary conditions as RG flows to 1+1D
gapped phases [101–103]. Another open question is to explore
higher-dimensional analogs, such as transitions between non-
trivial 2+1D Zn SPTs.

Finally, it would be exciting to explore these phenom-
ena in experiment. Intriguingly, Z3 × Z3 SPT phases have
been predicted in optical lattices of cold alkaline-earth atoms
[104,105]. While numerical simulations found a direct first-
order transition between the two nontrivial SPT phases, our
work suggests a broader phase diagram can have a direct
continuous transition, where one would observe 0+1D bound-
ary DQCP. To facilitate such experimental explorations, one
can map the three-body cluster Hamiltonian to a two-body
interacting system [106], similar to what has been done for
the Z2 case [107].
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