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Creation and manipulation of higher-order topological states by altermagnets
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We propose to implement tunable higher-order topological states in a heterojunction consisting of a two-
dimensional (2D) topological insulator and the recently discovered altermagnets, whose unique spin-polarization
in both real and reciprocal space and null magnetization are in contrast to conventional ferromagnets and
antiferromagnets. Based on symmetry analysis and effective edge theory, we show that the special spin splitting
in altermagnets with different symmetries, such as d wave, can introduce Dirac mass terms with opposite signs
on the adjacent boundaries of the topological insulator, resulting in the higher-order topological state with
mass-domain-bound corner states. Moreover, by adjusting the direction of the Néel vector, we can manipulate
such topological corner states by moving their positions. By first-principles calculations, taking a 2D topological
insulator bismuthene with a square lattice on an altermagnet MnF2 as an example, we demonstrate the feasibility
of creating and manipulating the higher-order topological states through altermagnets. Finally, we discuss the
experimental implementation and detection of the tunable topological corner states, as well as the potential
non-Abelian braiding of the Dirac corner fermions.

DOI: 10.1103/PhysRevB.109.L201109

Introduction. Topological insulators (TIs), which have
the helical edge states protected by time-reversal symmetry
(TRS), set off an upsurge in topological matter research [1,2].
Recently, the introduction of higher-order topological states
has expanded the topological matter research [3–34]. For the
traditional first-order topological states like TIs, the differ-
ence between the dimensions of the topological boundary
states and the bulk states is referred to as the codimension
dc which satisfies dc = 1. In contrast, the higher-order topo-
logical states have a codimension dc greater than one. For
example, a second-order topological insulator in d dimen-
sions exhibits the topologically protected hallmark boundary
states of lower dimensionality (d − 2), such as corner states
in two dimensions (2D) or hinge states in three dimen-
sions (3D). Currently, only a few materials, such as SnTe
[10], bismuth [9], EuIn2As2 [19], and MnBi2nTe3n+1 [28],
are predicted to be 3D higher-order topological insulators
(HOTIs). Experimental observation of the hinge states has
so far been limited to bismuth [9,34]. As for 2D HOTIs,
various candidates have been proposed [35–43], includ-
ing hydrogenated and halogenated 2D hexagonal group-IV
materials [35,36], Kekulé-ordered graphenes [35,44], 2D
transition-metal dichalcogenides [37,38], and twisted moiré
superlattices [39,40], but the experimental confirmation of
their corner states is still lacking.

Usual approaches employed to achieve HOTI states in-
clude introducing a Zeeman field into a first-order TI
[3,25,27,29] or harnessing the magnetic proximity effect to
induce an exchange field within the TI [4,14,26,45]. However,
in the existing approaches, the manipulation of the topologi-
cal corner states (TCSs) is a big challenge, which impedes
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their potential application such as in quantum information
processing [46–49].

In recent years, a new class of magnetic materials has
emerged, known as altermagnets [50]. These materials exhibit
collinear-compensated magnetic order, which goes beyond
the traditional binary classification of ferromagnets and an-
tiferromagnets. In altermagnets, the opposite spin sublattices
are connected through rotation rather than inversion or
translation, leading to nonrelativistic anisotropic spin split-
ting in the Brillouin zone. Experimentally, altermagnetism
has been found in both metallic materials such as RuO2

[50,51] and Mn5Si3 [52], and insulating materials such as
MnF2 [53,54] and MnTe [55]. The altermagnets have a
unique spin splitting, leading to a wide range of fascinat-
ing phenomena [56–66], such as Andreev reflection [62],
crystal Hall effect [54,63], finite-momentum Cooper pairs in
altermagnet/superconductor heterojunctions [65], and topo-
logical superconductivity [51,64,67]. Given the features of
altermagnets, an interesting question arises: can we utilize the
novel altermagnets to create and manipulate the higher-order
topological states?

In this work, we make a positive response to this ques-
tion. Specifically, we design a heterostructure made of a TI
and an altermagnet to create and manipulate the higher-order
topological states, as illustrated in Fig. 1. By the effective
model and edge theory, we find that when the in-plane Néel
vector is around the [11̄] direction, the original helical edge
states protected by TRS are gapped with in-gap states local-
ized at the two corners along the [11] direction, i.e., TCSs,
as shown in Fig. 1. Furthermore, by changing the orienta-
tion of the Néel vector, we can effectively manipulate these
TCSs. The two TCSs can be moved to the other two corners
with the Néel vector rotated around the [11] direction. Based
on first-principles calculations, we propose an experimental
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FIG. 1. Left panel: A 2D topological insulator with the helical
edge states protected by time-reversal symmetry. Middle panel: A
proximitized altermagnet induces altermagnetism in the 2D topolog-
ical insulator and breaks time-reversal symmetry. We take a d-wave
altermagnet as an example. Right panel: When the Néel vector lies
in the plane, the helical edge states open a gap with two in-gap states
localized at the corners appearing, i.e., the topological corner states
(in orange). The manipulation of these corner states (in red) can be
achieved by adjusting the Néel vector around the [11̄] direction, as
indicated by the red arrow.

setup that involves placing 2D buckled bismuth on the surface
of the altermagnetic material MnF2 [53,54] to realize and
tune such TCSs. The magnetic proximity effect [45] plays
a crucial role in inducing altermagnetism and spin splitting
within the 2D TI. We confirm the existence of corner states in
the MnF2/Bi/MnF2 sandwich structure and demonstrate the
tunability of these TCSs. This intriguing setup provides a new
platform for realizing non-Abelian statistics by using TCSs
[46–49].

Model. We first introduce a first-order TI model defined on
a square lattice with the Hamiltonian expressed in momentum
space as

H0(k) = M(k)σz + Ax sin kxsyσx − Ay sin kysxσx, (1)

where M(k) = (m0 − tx cos kx − ty cos ky), and σi and s j are
Pauli matrices acting on the orbital (a, b) and spin (↑,↓)
degree of freedom, respectively. The 2D TI protected by TRS
T = isyK, where K is the complex conjugate, and has inver-
sion symmetry P = σz. The Z2 topological invariants can be
obtained from the parity eigenvalue on the time-reversal in-
variant momentum points �i [68]. When m2

0 − (tx + ty)2 < 0
is satisfied, the TI with Z2 = 1 has TRS-protected helical edge
states, as shown by the blue dashed line in Fig. 2(a).

The spin splitting of altermagnets exhibits various forms,
including d wave, g wave, and i wave [50]. We take the
proximity-induced d-wave spin splitting as an example which
reads

HAM(k) = 2J0(cos kx − cos ky)s · n̂, (2)

where the vector n̂ = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) repre-
sents the direction of the Néel vector. Here the in-plane Néel
component (θ = π/2) is considered with the out-of-plane
component left in the Supplemental Material (SM) [69]. As
shown in Fig. 2(a), the original gapless helical edge states
develop a gap when the in-plane Néel vector aligns along
the [11̄] direction. We further calculate the energy spectrum
of a finite-size square sample, as displayed in the inset of
Fig. 2(b). One can observe that two in-gap states emerge in
the edge gap. We plot the wave-function distribution of these

FIG. 2. (a) The edge spectrum for a cylinder geometry. The blue
dotted lines represent the gapless helical edge states of the topo-
logical insulator. The red solid lines denote the gapped helical edge
states after the altermagnet is turned on. (b) Inset: Two in-gap states
emerge with the Néel vector along the [11̄] direction. The real spatial
distribution of their wave function is plotted. (c) Same as (b) but
with the Néel vector along the [11] direction. (d) The tangents L(α),
on which we will develop the generic edge theory, mark different
boundaries with the clockwise rotation angle α. (e), (f) The change
of the boundary Dirac mass with the rotation angle α when the Néel
vector is along the [11̄] direction and the [11] direction, respectively.
(g) The topological invariant ν is plotted as a function of the m0. (h)
Schematic diagram: The boundary of the mirror-symmetry operation
connection has opposite Dirac mass, and the TCSs originate from
different mirror subspaces. (i) The mirror-graded winding number
νMxy is plotted as a function of the m0. Common parameters: m0 =
1.0, tx = ty = Ax = Ay = 2.0, J0 = 0.5.

in-gap states and find them to be localized at two corners of
the square sample, as depicted in Fig. 2(b), which means the
two localized in-gap states are possible TCSs. This provides
evidence for the presence of the HOTI state in the system
when altermagnetism is activated, indicating a topological
phase transition from a first-order TI to a HOTI state.

When the Néel vector is directed along the [11] direction,
the system also exhibits the HOTI states with the hallmark
TCSs but on the other corners, as depicted in Fig. 2(c). Notice
that more TCSs can be obtained with Néel vector along other
directions or by altermagnets with higher angular momentum
quantum numbers, such as g-wave and i-wave [69]. Therefore,
by rotating the orientation of the Néel vector, we offer an
effective method to manipulate the TCSs, enabling dynamic
control and repositioning of these states within the system.
In practical experiments, the orientation of the Néel vector
can be controlled by applying an electric field or a spin-orbit
torque [70–72]. Thus, this proposal opens up new possibilities
for realizing non-Abelian statistics of Dirac fermions with
fractional charge [48].
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Symmetry analysis and edge theory. Our proposed model
exhibits C2zT = sxK symmetry and falls within the Stiefel-
Whitney (SW) class with its topology characterized by the
second SW number w2 [73,74]. Applying a unitary transfor-
mation U = exp(iπ/4sx ) to H (k) = H0(k) + HAM(k), a real
form can be obtained [69]. We calculate the SW number w2

by using the Wilson loop method with w2 = 1, signifying a
nontrivial HOTI [69].

The centrosymmetric topological insulator we consider has
particle-hole-symmetric energy bands and thus can be consid-
ered to have chiral symmetry C approximately [26,29]. The
introduction of altermagnetsim into the topological insulator
breaks T , while P and C remain intact. Such higher-order
topological states belong to the Z2 classification [16]. The
topological invariant characterizing the higher-order topology
reads as ν = ∑

�i
n−(�i )/2 mod 2, where n−(�i ) is the

number of occupied states with negative parity eigenvalue
at time-reversal invariant points �i. We calculate the topo-
logical invariant ν, as shown in Fig. 2(g), and ν = 1 with
m0 ∈ (−4, 4) indicates a HOTI.

The origin of these TCSs and their tunability in real space
as the Néel vector changes can be understood through the edge
theory. We use the Hamiltonian H (k) = H0(k) + HAM(k) to
describe the HOTI. Expanding H (k) at � = (0, 0) to the sec-
ond order yields

H eff (k) =
(

m + tx
2

k2
x + ty

2
k2

y

)
σz + Axkxσxsy

− Aykyσxsx − J0
(
k2

x − k2
y

)
s · n̂, (3)

where m = m0 − tx − ty. We consider an arbitrary bound-
ary L(α), which is the tangent with the clockwise rotation
angle α, as shown in Fig. 2(d). The coordinate axes need
to be rotated to obtain the new momentum k‖ and k⊥. In
the new coordinates, when the strength of the altermagnets
is smaller than the bulk gap, the Hamiltonian can be de-
composed as H eff (k) = H0(k) + Hp(k) (see details in the
SM [69]). Consider the semi-infinite plane x⊥ ∈ (−∞, 0],
where a boundary exists at x⊥ = 0. The momentum k⊥ is re-
placed by −i∂⊥ and the eigenequation H0ψα (x⊥) = Eαψ (x⊥)
is solved with the boundary condition ψ (0) = ψ (−∞) =
0. Two solutions for Eα = 0 are obtained with ψα (x⊥) =
N⊥ sin(κ1x⊥)eκ2x⊥eik‖x‖χα , where the normalization constant
is given by |N⊥|2 = 4|κ2(κ2

1 + κ2
2 )/κ2

1 | and the eigenvector
χα satisfies (sin αsy + cos αsx )σyξ = ξ . We choose χi as χ1 =
1/

√
2(−ie−iα, 0, 0, 1)T and χ2 = 1/

√
2(0, ie−iα, 1, 0)T and

project perturbation Hp onto the bases (ψ1, ψ2), and obtain the
boundary Hamiltonian for any boundary L(α) and any Néel
vector with polar θ and azimuthal ϕ angles

Heff (x⊥, k‖) = Ak‖ηz + M(α, θ, ϕ)ηy, (4)

where ηi are Pauli matrices acting on ψi.
The Dirac mass term that arises from altermagnets is

given by

M(α, θ, ϕ) ∼ J0 sin θ cos(2α) cos (ϕ − α). (5)

Our research primarily concentrates on the in-plane compo-
nent of the Néel vector with θ = π/2, while the out-of-plane
component of the Néel vector does not influence the edge
states (see details in the SM [69]). For the scenario that the

Néel vector is along the [1̄1] direction (ϕ = 3π/4), we cal-
culate and plot the Dirac mass at any edge L(α), as depicted
in Fig. 2(e). One can observe that at the clockwise rotation
angles of α = 3π/4 and 7π/4, there exist domains in the
Dirac mass that host zero-energy bound states resembling
Jackiw-Rebbi zero modes [75], which is consistent with the
numerical results of a square sample shown in Fig. 2(b). Al-
though the Dirac mass M(α) vanishes at α = π/4 and 5π/4,
the lack of a mass domain prevents the formation of the TCSs.
When the Néel vector is aligned with the [11] direction, two
mass domains are formed at α = π/4 and 5π/4, respectively,
as plotted in Fig. 2(f). The two TCSs can be moved by rotating
the Néel vector. Consequently, we cannot only create TCSs
but also manipulate them by an altermagnet.

It is worth noting that when the Néel vector is along the
[11] direction, the system has extra mirror symmetry Mxy =
i
√

2/2(sx + sy) along a line defined by kx = −ky. Along
the mirror-invariant line, the Hamiltonian H (k) = H0(k) +
HAM(k) can be decomposed into distinct mirror subspaces
labeled by the ±i. In each subspace, the Hamiltonian ex-
pressed as H±i = q±i(k) · σ, which are two 1D SSH models
with opposite winding number ν+i = −ν−i [69]. Intuitively,
the nontrivial SSH model will result in two end states at an
endpoint. However, when the Néel vector deviates from [11],
mirror symmetry Mxy is broken, and the gap of the system is
maintained. This indicates that regardless of the presence or
absence of Mxy, the system is in the same topological phase
and has the Z2 classification [7,16], only one end state stable
at one corner. As a result, the system will only exhibit two
corner states instead of four. Furthermore, the chiral symmetry
C = szσx which satisfies {Mxy, C} = 0 implies that the two
corner zero modes originate from different mirror subspaces,
as shown in Fig. 2(h). In the presence of mirror symmetry,
the nontrivial second-order topology can currently be charac-
terized by a mirror-graded winding number, which is defined
as νMxy = (ν+i − ν−i )/2. A nonzero νMxy indicates that the
system has a nontrivial second-order topology [76]. The cal-
culated νMxy is shown in Fig. 2(i), which is consistent with
Fig. 2(g), confirming the nontrivial topology of the system.
The investigation of the Néel vector along [11̄] is similar [69].

The TCSs still robustly exist when the Néel vector
deviates from the [11] or [11̄] direction. As long as
the condition M(α, π/2, ϕ)M(α + π/2, π/2, ϕ) < 0
or M(α, π/2, ϕ)M(α − π/2, π/2, ϕ) < 0 is met, the
system will have TCSs. Since M(α + π/2, π/2, ϕ) =
−M(α − π/2, π/2, ϕ), the condition is equivalent
to M(α, π/2, ϕ)M(α + π/2, π/2, ϕ) 
= 0, i.e., ϕ /∈
{3π/2 − α, π − α, π/2 − α, α}. In principle, TCSs will
exist as long as the condition holds. However, along these two
directions ϕ = π/4 − α and ϕ = 3π/4 − α, corresponding
to [11] or [11̄] directions with α = 0, the edge gap is large,
which is convenient for experimental observation of TCSs.

We also derive the general boundary Hamiltonian for
the other anisotropic spin splittings with nonzero angular-
momentum quantum numbers, such as g wave and i wave,
and the isotropic spin splitting of s wave with zero angular
momentum. The previous proposals to induce TCSs by using
the Zeeman field can be considered as the special isotropic
s-wave case in our proposal [69].
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FIG. 3. (a) Side view of the optimized crystal structure of the MnF2/Bi/MnF2 configuration. (b) The 2D Brillouin zone with high-
symmetric points and lines. (c) The spin-polarized energy bands of the MnF2/Bi/MnF2 sandwich structure, where the blue-solid/red-dashed
lines represent the spin-up/spin-down. (d) The d-wave spin-polarized band splitting induced in bismuthene from our DFT calculation. (e)
Helical edge states are calculated via DFT in the absence of altermangetism. (f) Gapped edge states obtained by the DFT calculation with
the Néel vector aligned along the [11̄] direction. (g) and (h) Néel vector along the [11̄] and [11] directions, respectively. Inset: Two in-gap
topological corner states emerge. The small arrows depict the direction of the Néel vector. The real spatial distribution of their wave function
is plotted.

Material realization. Based on first-principles calcula-
tions, as a demonstration, we propose that a MnF2/Bi/MnF2

sandwich with optimized structure depicted in Fig. 3(a) can
achieve such tunable TCSs (see details in the SM [69]). Pre-
vious studies have shown the potential of two-dimensional
bismuthene, with its honeycomb lattice structure, to be used
as a material for TIs [77–81]. And bismuthene has been suc-
cessfully synthesized on SiC substrates [81]. To ensure lattice
alignment between bismuthene and MnF2, we utilize bis-
muthene with a buckled square lattice structure. This specific
configuration of bismuthene, as a first-order TI, has an energy
gap of approximately 0.69 eV [82], making it suitable for
observing the TCSs. Through the magnetic proximity effect
[45], magnetism can be induced in the buckled bismuthene.
We employ a sandwich structure with [C2][S4] symmetry
where S4 connects the sublattices with opposite spin in real
space and C2 inverse the spins in spin space [50], ensuring
that the magnetic moment produced through the proximity
effect satisfies the restriction of altermagnetism, as illustrated
in Fig. 3(a). Based on first-principles density-functional the-
ory (DFT) calculations, we present the spin-polarized energy
bands in Fig. 3(c) (see details in the SM [69]). Notably,
along a horizontal line (S1X1S2) in the Brillouin zone, as
shown in Fig. 3(b), the energy band exhibits the unique
spin splitting with spin-up/down in blue-solid/red-dashed
lines, demonstrating the characteristic behavior of d-wave
spin splitting, as shown in Fig. 3(d). This spin splitting,
approximately 30 meV, confirms the effective induction of al-
termagnetism in bismuthene through the magnetic-proximity
effect.

To better investigate the electronic structure and topologi-
cal properties, we construct an ab initio tight-binding model
based on DFT and Wannier function [83,84]. The model can
take into account the effect of altermagnetism in MnF2. Ad-
ditionally, we build a minimal tight-binding model based on
symmetry to capture the physics of the DFT results [69]. In
the absence of altermagnetism, we observe gapless edge states
within the bulk gap of the buckled bismuthene, as shown in
Fig. 3(e). However, by activating the altermagnetism of MnF2

with the in-plane Néel vector along the diagonal direction, the
helical edge states acquire a gap of approximately 30 meV,
as shown in Fig. 3(f). A similar phenomenon is observed
when the Néel vector is along the off-diagonal direction [69].
These indicate the breakdown of the first-order topology of
the system and possibly the higher-order topology induced
by the altermagnet. We calculate the energy spectrum of a
finite-size square sample of the MnF2/Bi/MnF2 sandwich
structure, as shown in Figs. 3(g) and 3(h). When the Néel
vector has an in-plane component, it can be observed that
two in-gap states emerge in red and the corresponding dis-
tribution of wave function is localized at two corners of the
sample. Consequently, despite the altermagnetism causing the
first-order topology of the system to be trivial, the system
exhibits a nontrivial second-order topology. Moreover, the
position of the corner states can be manipulated by rotating
the Néel vector. This observation is consistent with our the-
oretical model results. Additionally, upon enabling spin-orbit
coupling, the sandwich structure exhibits C2zT symmetry with
its nontrivial second SW number w2 confirmed via the Wilson
loop method [69]. Therefore, by employing DFT calculations,
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we demonstrate the capability to achieve and modulate the
TCSs through manipulation of the Néel vector direction and
provide a candidate material setup.

Discussion. Motivated by the unique spin-polarized band
splitting in altermagnetic materials, we propose a route to
create and manipulate TCSs by altermagnets. Our DFT cal-
culations have confirmed that the magnetic proximity effect
induces a spin-polarized band splitting in TIs and suggest a
MnF2/Bi/MnF2 sandwich structure as a candidate material
setup for realizing our proposal. The braiding of TCSs can
be facilitated by constructing a cross-shaped or T -shaped
geometry [85]. A gate electrode is positioned at the inter-
section point, allowing the generation and fusion of TCSs to
be achieved by controlling the channel’s opening and clos-
ing through gate voltage control [49]. Our proposal expands
the possibility of TCS manipulation by controlling the Néel
vector, which can employ gate-voltage control to enable more
intricate braiding operations and pave the way for topologi-
cal quantum computing. In the experiment, the direction of
the Néel vector in altermagnets, like other antiferromagnetic
materials, can be manipulated and detected using techniques
such as current, voltage [71,86], strain [87,88], and spin-orbit
torques [89]. Moreover, altermagnetic materials exhibit ro-
bustness to external magnetic-field perturbations, and their
ultrafast response due to the absence of a coercivity field [90].
These fascinating properties open up the exciting possibility
of achieving non-Abelian braiding of Dirac fermions [47–49],
providing new avenues for future research and technological
applications.

The existence of charged TCSs can be detected us-
ing scanning-tunneling microscopy (STM) [91]. Additional

evidence for the presence of TCSs can be provided by exploit-
ing the ability of the Néel vector to modulate the topological
states. In the case where the Néel vectors are oriented along
the z axis (θ = 0), the system has gapless edge states. When
the energy of the STM probe approaches that of the edge
states, a broadening peak can be observed along the boundary.
By adjusting the Néel vector to open a gap in the edge state,
sharp peaks can be observed at the corners of the sample using
STM. Consequently, the observation of changing energy-
spectrum peaks with STM can serve as strong evidence for
the existence of corner states. Furthermore, by manipulat-
ing the Néel vector, it is possible to control the movement
of the corner states along the boundary and achieve a quantum
charge pump independently of the bulk state [92]. This ef-
fect can be precisely measured through transport experiments,
further supporting the understanding of the influence of the
Néel vector on the topological properties of the system. The
ability to control the movement of corner states and achieve
a quantum charge pump holds potential implications for ap-
plications in quantum information processing and topological
devices.

Note added. Recently, there appeared a related preprint [93]
that focuses on the altermagnets and higher-order topology.
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