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Geometric semimetals and their simulation in synthetic matter
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Topological semimetals, such as the Weyl and Dirac semimetals, represent one of the most active research
fields in modern condensed-matter physics. The peculiar physical properties of these systems mainly originate
from their underlying symmetries, emergent relativistic dispersion, and band topology. In this Letter, we present
a different class of gapless systems in three dimensions, dubbed geometric semimetals. These semimetals are
protected by the generalized chiral and rotation symmetries, but are topologically trivial. Nevertheless, we
show that their band geometry is nontrivial, as evidenced by the nonzero quantum metric trace with possible
quantization. The possible realization in synthetic-matter experiments is also discussed.

DOI: 10.1103/PhysRevB.109.L.201107

Introduction. The search for novel topological semimetals
has been a mainstream of modern condensed-matter physics.
Starting with the Weyl and Dirac semimetals in three di-
mensions (3D) [1-3], which host linear band crossing points
(LBCPs) of nondegenerate and doubly degenerate bands,
respectively, the exploration has embraced various general-
izations of BCs. One important family features the multifold
LBCPs with multiple Fermi velocities [4-21], which are
the higher-spin versions of Weyl and Dirac semimetals.
Other families include the BCPs with higher-order disper-
sions, such as the quadratic BCPs (QBCPs) [22-24], and the
higher-dimensional BCs in the forms of lines [1,20,25-31] or
surfaces [20,28,30,32,33]. Importantly, the BCs in topological
semimetals are associated with suitable topological invari-
ants, which depend mainly on the underlying symmetries
and spatial dimensions. These topological invariants can be
derived from the Abelian and non-Abelian Berry connections
as gauge-invariant quantities. In 3D (5D), the Weyl and chiral
multifold semimetals are the momentum-space Dirac (Yang)
monopoles with first (second) Chern numbers [19,20,34,35].
Similarly, 2D and 4D Dirac-like points can act as vortices
[20] and tensor monopoles [36,37], respectively. Other ex-
amples include the Euler numbers of LBCPs [29,38—42] and
Z, numbers of nodal loops [27,31,43,44] under combined
inversion and time-reversal (PT) symmetry, as well as the
delicate topology of QBCPs [24]. While many topological
semimetals have been discovered in quantum materials, re-
cent experiments have demonstrated successful simulations
in synthetic matter, including superconducting quantum cir-
cuits [45,46], diamond nitrogen-vacancy centers [47,48], and
ultracold atoms [49].

Despite the ubiquitous importance of band topology to
the BCs, there exist topologically trivial semimetals which
do not carry any topological invariant. Particular examples
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include the 3D Kane-fermion model [50-53] and 2D o — T3
model [54-56] under rotation symmetry, where the LBCPs are
attached with middle flat bands. On the other hand, a LBCP
of PT-symmetric nondegenerate bands with 72 = 1 gener-
ally hosts a trivial band topology since the Berry connection
vanishes in the “real” band eigenstates (for doubly or quadru-
ply degenerate bands, the LBCPs could be Euler semimetals
instead). A natural question then occurs: Can topologically
trivial semimetals receive protection from any symmetry
and support nontrivial physical quantities with possible
quantization?

The goal of our Letter is to provide an affirmative answer
to this question. We introduce a general semimetallic model
in 3D, where a topologically trivial BCP occurs between
multiple dispersive and degenerate middle flat bands (Fig. 1).
Importantly, the semimetals in our model are protected by
the generalized chiral and rotation symmetries. Despite trivial
band topology, we show that these semimetals host nontriv-
ial structures related to band geometry. The characterization
of band geometry lies in the quantum metric [19,20,57—
60], which contributes to various observable quantities and
physical phenomena [45,47,48,60-101]. Note that nontriv-
ial band geometry occurs more ubiquitously than nontrivial
band topology: while the latter is strictly related to quantized
topological invariants, the former is broadly manifest under
nonzero quantum metric. We focus on the quantum metric
trace and derive its nontrivial structures with possible quanti-
zation [19,20]. Given nontrivial band geometry under trivial
band topology, we dub our systems geometric semimetals
to distinguish them from the topological ones. We further
show that the variants of our model constitute a broader fam-
ily, which includes the 3D Kane-fermion model [50-53] and
2D o — Tz model [54-56] under rotation symmetry. Finally,
we discuss the possible experimental realization in synthetic
matter.

General model. We begin by introducing the general model
for a class of geometric semimetals in 3D. Our model is a min-
imal model about a reference point in momentum space. It can

©2024 American Physical Society
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FIG. 1. Geometric semimetals. Left to right: The band structures
in the two-spin-sector N = 2 models with spins (s, s,) = (0, 1),
(0,2), and (1,2). The dispersive bands are nondegenerate, while the
flat-band degeneracies are 2, 4, and 6, respectively.

be directly simulated in synthetic-matter experiments [45-49]
or serve as a low-energy k - p theory of suitable lattice models
for quantum materials. Without loss of generality, we set the
reference point at the momentum-space origin. The central
spirit is to couple different spin sectors under the SU(2)
spin-orbit-coupled rotation symmetry. Correspondingly, the
relevant ingredients are the total-angular-momentum states,

s !
W= Y Y NaAm(slmam| jm) Y, (K)|smg), (1)

mg=—s my=—

from the additions of spin states |smy) and orbital spher-
ical harmonics Y}, (k) with Clebsch-Gordan coefficients
(slmgmy|jm;). The respective angular momenta and axial
components are s, [, j, and m,; ;, which are set as integers
in our analysis. Meanwhile, k is the directional unit vector of
momentum k = (ky, kp, k3) = kk with magnitude k. For the
spin sector « with spin s, the j, = O state with [, = s,

|Var) = [ 56 ): )

is the only rotation symmetric state in the spin-orbit-coupled
Hilbert space. This motivates us to consider the j = 0 projec-
tors between different spin sectors « # S,

Tupe = kK [vg vpc [k 3)

which are the rotation symmetric couplings of our interest. We
thus define the model with N spin sectors by the Hamiltonian

0 Tk e Tink
T: 0 . :
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with Tk = T;ak. Note that the diagonal blocks are zero,
implying the sole manifestation of the off-diagonal couplings.

Having constructed the general model, we proceed to cal-
culate the dispersion energies € and study the band structure
(Fig. 2). To secure the BCP at ¢g = 0, we assume that the spin-
0 sector appears, at most, once. Summing the Hilbert-space
dimensions 2s, + 1 of all spin sectors, the model contains
Zgz 1(2s4 + 1) bands. The first observation is the bundle of
middle flat bands with zero dispersion, el(() = 0. These flat
bands are composed of the states
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FIG. 2. The band structures in the (a)-(c) N =2 models
with (s1,,) = (0, 1), (0,2), (1,2) and (d)—(f) N = 3 models with
(s1,82,83) = (1,1, 1), (0,1,1), (0,1,2). All of the dispersive bands
are nondegenerate, except for the doubly degenerate negative bands
in (d). The flat-band degeneracies are 2, 4, 6, 6, 4, 6 in (a)—(f),
respectively. Due to rotation symmetry, the momentum component
k, can be chosen along any direction.

with n = 0, where the states |v2k) are orthogonal to the j, = 0
state (voltk|v2k) = 0 in the spin sector «. The zero dispersion
follows from the projector condition 7, /gk|1)2k) = 0. Since the

subspace {Ivgk)} is 2s, dimensional in each spin sector, the

total degeneracy of these flat bands is Zg:] 284
There remain N dispersive bands for us to investigate.
These bands are composed of the j, = O states,

N
) =) ok |ul). (6)
a=1

where the amplitudes u,; are generally k dependent. Pro-
jected to the j, =0 basis {|u;k>}a:1,2 ,,,,, ~, the dispersive
Hamiltonian reads

0 ks1 +s52 ks| +sn
B ks2 +51 0 .
Hix = . (7)
. <. k“‘N—l"!‘SN
kSN +s51 JSV +SN-1 0

The diagonalization of this Hamiltonian is complicated in
general. Nevertheless, if all effective couplings have the same
power, s, +sg = p, we can find simple solutions with k-
independent band eigenstates. This condition applies to all
N = 2 models, as well as the N > 2 models with the same
spin, Sy=12...~5 = p/2. The corresponding band eigenstates
are

1 positive band: € = (N — 1)k”,
(N — 1) negative band: ¢, = —k”. ®)

The positive band is always nondegenerate, where the eigen-
state has a constant amplitude u,x = 1/ V/N. Meanwhile, the
negative band is nondegenerate in the N =2 model with

U=tk = (=11 /2.
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Symmetry protection. It is important to understand whether
the semimetals are protected by any symmetry. To confirm
such a protection, we examine whether a mass term

h“ /’l12 “ee th
h h :
W =m 21 22 )
: ’ hav-1n
th e hN(N—l) hNN

with nonzero mass m # 0 and constant representations /iqg =

h;a is symmetry allowed to open a mass gap. Our first target
is the chiral symmetry, which plays a crucial role in many
semimetals. Interestingly, our general model respects a gen-
eralized version of chiral symmetry, 221;01 Uy N’Hk(USJ': =
0 [102,103], where Usy = 692’11 expli2m (o — 1)/N] is the
generalized chiral unitary operator. In particular, the N =
2 models respect the standard chiral symmetry Us’HkU; =
—Hx with Ug = Us, [34]. The generalized chiral symme-
try imposes a strong constraint on the mass term. While
nonzero diagonal representations are forbidden, h,, = 0O, the
off-diagonal ones h,g with o # B are generally allowed. The
protection of the semimetals requires additional symmetry to
fully reject the remaining terms.

Among various other symmetries, the discrete and con-
tinuous rotation symmetries are relevant to some topological
semimetals [104—106]. It turns out that the SU(2) spin-
orbit-coupled rotation symmetry completes the demanded
protection in our model. Under the rotation symmetry, the
constant representations are only allowed in the identity forms
hop =1 with s, = sg. If all of the spin sectors carry differ-
ent spins, s, # sg for o # B, the rotation symmetry forbids
all nonzero off-diagonal constant representations, hqg = 0.
Therefore, the semimetals are protected by the generalized
chiral and rotation symmetries. On the other hand, the mass
term is allowed if there are different spin sectors o # f with
the same spin s, = sg. In this case, the semimetals lose the
protection even if both symmetries are present. Note that
BCPs with continuous rotation symmetries can be realized
in the synthetic-matter experiments [45-49]. In the quantum
materials with lattice structures, the global symmetries are
discrete and the continuous rotation symmetries can be low-
energy approximations around some BCPs. These low-energy
approximate symmetries, known as the quasisymmetries, have
recently been shown to play an important role in gapless
topological materials [107,108].

One may wonder whether the semimetals receive
protection in the tenfold-way classification [34]. Our
model respects the time-reversal symmetry TH T ~' = H_y
with the symmetry operator T = UrK. Here, K is the
complex conjugate operator, and the unitary operator
Ur =aY_, Zfrj’a s, (Z D)t |5 (—my, ) (samy, | meets the
relations of complex conjugate Ylm,(f() = (—l)lel*(L,m)(lA()
and opposite momentum Y, (ﬁ) =(—1) Y;ml(—lA() for
orbital spherical harmonics. Note that the time-reversal
operator satisfies T?=1. For the N >2 models,
the absence of chiral symmetry indicates the Al

class. Despite the Z classification, the mass term

. ot J'a+ +my
with haﬂmmmsﬂ = (—1)5 m S mﬁh;ﬂ(—mw )(_mm) 1S

allowed to gap the semimetal. On the other hand,
the N =2 models obey the particle-hole symme-
try CHyC'=-H_ with C=UK and Uc=

Bocy Lo, s, (F DI 5 () (sqmy, | The
condition C? = 1 assigns the models to the BDI class without
nontrivial classification. Based on these results, we find no
protection of the semimetals in the tenfold-way classification.

Our model also satisfies the reality condition
(which is real in the real basis) of PT symmetry,
(PT)Hyx(PT)™' = Hy, which enforces the vanishing of
Berry fluxes. Here the symmetry operator PT = UprK
with Upr = ®)_; 20, (= 1) |so(—my,)) (samsy, |
meets the complex conjugate relation of orbital spherical
harmonics. Under the PT symmetry, the reality condition

hogm, my, = (— 1)t hep(—m,, )y does not entirely rule

out the mass term. Therefore, the semimetals do not receive
protection from the PT symmetry.

Nontrivial band geometry. We have demonstrated the sym-
metry protection of the semimetals in our model. A natural
question is whether nontrivial band properties related to
this protection exist. For the topological semimetals, the ro-
bustness is usually linked to certain topological invariants.
For example, a chiral semimetal can exhibit Abelian Berry
flux, By = Vi x Ag, with Berry gauge field (or connection)
Ax = (uk|iVk|uxk), leading to a finite Chern number C =
(1/2m) f dSk - B under the surface integral around the BCP
[1]. However, the bands in our model, such as the nondegen-
erate positive band, exhibit zero Berry flux and trivial band
topology under the PT symmetry. This feature can be ob-
served from the spherical harmonics in the band eigenstates,
which are the monopole harmonics with zero Berry monopole
[109,110].

Despite trivial band topology, our model exhibits nontrivial
structures in the band geometry. This nontriviality is charac-
terized by the nonzero quantum metric of the band eigenstates
[19,20,111],

1
8abk = E(ukHrakv Tpk Huk) - (10)

Here, a, b are the spatial indices, and the position rx = iV —
Ay is a momentum-space covariant derivative under the Berry
gauge field. An important task is to further understand the
nontrivial band geometry. Notably, the quantum metric trace,

Trgx = (ul il |ux), (11)

represents the momentum-space dual kinetic energy under a
position-momentum duality [19,20]. With the rotation sym-
metry, the dual energy is dualized to the free-electron kinetic
energy on a spherical shell. This implies the sole contribution
from the dynamical angular momentum Ak = rx x K,

Trgx = . (12)

The absence of Berry monopole implies the equivalence
between dynamical and orbital angular momenta, Ax = Lk
[19,20,112-114]. Correspondingly, the dual energy exhibits
the quantization |A|> = I,(ly + 1) = s4(sq + 1) in the spin
sector «. Summing over all spin sectors, the quantum metric
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trace represents the total dual energy,

N
1
Trgk = 5 D leasusu + 1. (13)

a=1

Note that this result is positively definite, indicating the gen-
eral presence of nontrivial band geometry in our model. Given
nontrivial band geometry under trivial band topology, we
name these semimetals as geometric semimetals.

In general, nontrivial band geometry is not necessarily
related to quantized invariants. However, it is worth searching
for possible quantization under certain conditions, such as the
rotation symmetry. Motivated by the topological invariants,
such as the Chern number, we consider the surface integral of
quantum metric trace around the BCP [19],

1 o
Gz—ygdsk-kTrgk. (14)
2

This integral generally varies with the choice of surface since
the amplitudes u,x depend on k. Nevertheless, the results
become quantized constants in the N = 2 models,

2
G=Y sulsa+1). (15)

a=1

The quantization with respect to angular momentum reflects
the protection by rotation symmetry (and the standard chiral
symmetry). Therefore, this quantity may serve as a geo-
metric invariant [19] for the geometric semimetals. As the
simplest examples, we obtain the quantized geometric invari-
ants G =2, 6, and 8 for (s1,s2) = (0, 1), (0,2), and (1,2),
respectively.

Note that nontrivial band geometry is also present in the
degenerate flat bands, which involves the non-Abelian quan-
tum metric [60,83]. Since the flat-band eigenstates |u2k) are
not rotation symmetric, the result is generally anisotropic.

In synthetic-matter experiments, the quantum metric can
be extracted directly from the transition rates 'y ~ V2guu
under sudden quench or periodic drive at strength V' along
direction a [46-49,80]. With this accessibility, the nontriv-
iality and possible quantization can be examined for the
quantum metric trace Trgk and geometric invariant G, which
are physical observables by themselves. On the other hand,
the quantum metric trace Trgk is related to the spread of
Wannier functions [61], whose gauge-invariant lower bound
is supported by the integral of geometric invariant €2; ~
S Trex > fOAk dk(2m G), with a momentum cutoff A, around
the nodal point [19]. The corresponding physical observ-
ables, including linear injection conductivity [88,90] and
superfluid stiffness [65], are relevant to the quantum-material
experiments. Through a direct calculation (see Supplemental
Material [115]), we confirm that the linear injection con-
ductivity indeed receives nontrivial contribution from band
geometry in geometric semimetals. Meanwhile, the super-
fluid stiffness acquires a geometric contribution Tngeom 2

2f0Ak dk(|AI>/E)(2rG) [19], where A and E are gap func-
tion and quasiparticle energy in the superconductivity.
Variants of general model. Our analysis has focused
on the models with rotation symmetric j = 0 projectors
T,pk between different spin sectors o # 8. In fact, the

model construction can be generalized to the projectors
with j > 0. For two different spin sectors o # 8 with
spins s, and sg, we choose the total-angular-momentum

a,pla, . . . .
states |v;u:§m,-/:ﬁk> with suitable j, s = j and I, 5. Although
these states break the rotation symmetry, the “identity”
I Lo |qySerlec y 005808 (11 :
Topk = m/:fjk |vjm/k)(vjmjk|k»g can serve as a rotation

symmetric projector for the variant models. Due to the
identity structures of the projectors, the minimal band de-
generacy becomes (2j + 1). Particular examples include the
Kane-fermion model [50-53], where two spin sectors with
(s,1,j)=1(1/2,0,1/2) and (3/2,1, 1/2) are involved. The
geometry of doubly degenerate bands is captured by the
non-Abelian quantum metric, which does not support a quan-
tized geometric invariant G. Another family of variant models
involves the dimension reduction to 2D. This is achieved
by truncating the elements with k3, leaving only the orbital
spherical harmonics Ys(is)(f(). For example, the 3D model
with (s1, s2) = (0, 1) can be reduced to the o — 75 model
in 2D [54-56]. Most of the properties can be determined
analogously to the 3D models. An important difference is the
dual energy in quantum metric trace, which now takes the
axial-angular-momentum form A3, /k* = s2/k* in each spin
sector o [20].

Experimental realization. We briefly discuss a possible
experimental realization of the N = 2 geometric semimetal
with (s1, s2) = (0, 1). After a unitary transformation, the
Hamiltonian reads

—kV2 k k 0

1| ok 0 0 &k
HOHY = | ™ B T
ﬁ k2 0 0 k2

0 ki ke k2

Interestingly, a similar four-band model [116] has recently
been simulated in an experiment [46]. By employing the su-
perconducting quantum circuits, a 4D topological semimetal
was successfully investigated in a parameter space. The ex-
perimental setup involves a square lattice with four transmon
qubits and four couplers, where the coupling between adja-
cent qubits depends on the fre(?uency of the couplers. For
the simulation of our model Hko’l), the couplers will need
two suitable detuning terms and two independent sinusoidal
fast-flux biases with null phases. This setup will support a
straightforward mapping between the experimental param-
eters and the elements of ’H,l((o’l). On the other hand, an
alternative setup to simulate our model lies in the ultracold
atoms. By employing the atoms with suitable spin degrees of
freedom, a four-band model can be simulated, as in a recent
realization of the Yang monopole with rubidium-87 [49].
Conclusion and outlook. We have demonstrated the exis-
tence of geometric semimetals in 3D, which are protected
by the generalized chiral and rotation symmetries. Despite
trivial band topology, their nontrivial structures are uniquely
characterized by the band geometry. These semimetals are
thus different from the known topological ones. In future
works, we will explore other possible protection symmetries,
nonlinear optical responses, interaction effects, and higher-
dimensional generalizations. Given the advanced techniques
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in the quantum-material and synthetic-matter experiments,
our theoretical formalism is practically realizable with
important experimental implications. Our work embraces the
excitements from band geometry, thereby expanding the fam-
ily of nontrivial semimetals beyond the topological realm.
Furthermore, by searching for quantum phases with non-
trivial geometry under trivial topology, our work paves a

different way into the wide uncharted territory of unconven-
tional quantum matter.

Acknowledgments. The authors thank Benjamin Wieder
for important feedback on this Letter. Y.-P.L. acknowledges
fellowship support from the Gordon and Betty Moore Foun-
dation through the Emergent Phenomena in Quantum Systems
(EPiQS) program.

[1] N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac
semimetals in three-dimensional solids, Rev. Mod. Phys. 90,
015001 (2018).

[2] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov,
Topological semimetal and Fermi-arc surface states in the
electronic structure of pyrochlore iridates, Phys. Rev. B 83,
205101 (2011).

[3] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele,
and A. M. Rappe, Dirac semimetal in three dimensions, Phys.
Rev. Lett. 108, 140405 (2012).

[4] Z. Lan, N. Goldman, A. Bermudez, W. Lu, and P. Ohberg,
Dirac-Weyl fermions with arbitrary spin in two-dimensional
optical superlattices, Phys. Rev. B 84, 165115 (2011).

[5] J. L. Mafies, Existence of bulk chiral fermions and crystal
symmetry, Phys. Rev. B 85, 155118 (2012).

[6] B. J. Wieder, Y. Kim, A. M. Rappe, and C. L. Kane, Double
Dirac semimetals in three dimensions, Phys. Rev. Lett. 116,
186402 (2016).

[7] B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser,
R. J. Cava, and B. A. Bernevig, Beyond Dirac and Weyl
fermions: Unconventional quasiparticles in conventional crys-
tals, Science 353, aaf5037 (2016).

[8] H. Isobe and L. Fu, Quantum critical points of j = % Dirac
electrons in antiperovskite topological crystalline insulators,
Phys. Rev. B 93, 241113(R) (2016).

[9] P. Tang, Q. Zhou, and S.-C. Zhang, Multiple types of topologi-
cal fermions in transition metal silicides, Phys. Rev. Lett. 119,
206402 (2017).

[10] G. Chang, S.-Y. Xu, B. J. Wieder, D. S. Sanchez, S.-M.
Huang, I. Belopolski, T.-R. Chang, S. Zhang, A. Bansil, H.
Lin, and M. Z. Hasan, Unconventional chiral fermions and
large topological Fermi arcs in RhSi, Phys. Rev. Lett. 119,
206401 (2017).

[11] E. Flicker, F. de Juan, B. Bradlyn, T. Morimoto, M. G.
Vergniory, and A. G. Grushin, Chiral optical response of mul-
tifold fermions, Phys. Rev. B 98, 155145 (2018).

[12] Z. Rao, H. Li, T. Zhang, S. Tian, C. Li, B. Fu, C. Tang,
L. Wang, Z. Li, W. Fan, J. Li, Y. Huang, Z. Liu, Y. Long,
C. Fang, H. Weng, Y. Shi, H. Lei, Y. Sun, T. Qian, and H.
Ding, Observation of unconventional chiral fermions with long
Fermi arcs in CoSi, Nature (London) 567, 496 (2019).

[13] D. S. Sanchez, 1. Belopolski, T. A. Cochran, X. Xu, J.-X.
Yin, G. Chang, W. Xie, K. Manna, V. Sii}, C.-Y. Huang, N.
Alidoust, D. Multer, S. S. Zhang, N. Shumiya, X. Wang, G.-Q.
Wang, T.-R. Chang, C. Felser, S.-Y. Xu, S. Jia, H. Lin, and
M. Zahid Hasan, Topological chiral crystals with helicoid-arc
quantum states, Nature (London) 567, 500 (2019).

[14] N. B. M. Schréter, D. Pei, M. G. Vergniory, Y. Sun, K. Manna,
FE. de Juan, J. A. Krieger, V. Siiss, M. Schmidt, P. Dudin, B.

Bradlyn, T. K. Kim, T. Schmitt, C. Cacho, C. Felser, V. N.
Strocov, and Y. Chen, Chiral topological semimetal with mul-
tifold band crossings and long Fermi arcs, Nat. Phys. 15, 759
(2019).

[15] D. Takane, Z. Wang, S. Souma, K. Nakayama, T. Nakamura,
H. Oinuma, Y. Nakata, H. Iwasawa, C. Cacho, T. Kim, K.
Horiba, H. Kumigashira, T. Takahashi, Y. Ando, and T. Sato,
Observation of chiral fermions with a large topological charge
and associated Fermi-arc surface states in CoSi, Phys. Rev.
Lett. 122, 076402 (2019).

[16] B. Q. Lv, Z.-L. Feng, J.-Z. Zhao, N. F. Q. Yuan, A. Zong, K. F.
Luo, R. Yu, Y.-B. Huang, V. N. Strocov, A. Chikina, A. A.
Soluyanov, N. Gedik, Y.-G. Shi, T. Qian, and H. Ding, Ob-
servation of multiple types of topological fermions in PdBiSe,
Phys. Rev. B 99, 241104(R) (2019).

[17] 1. Boettcher, Interplay of topology and electron-electron inter-
actions in Rarita-Schwinger-Weyl semimetals, Phys. Rev. Lett.
124, 127602 (2020).

[18] N. B. M. Schréter, S. Stolz, K. Manna, F. de Juan, M. G.
Vergniory, J. A. Krieger, D. Pei, T. Schmitt, P. Dudin, T. K.
Kim, C. Cacho, B. Bradlyn, H. Borrmann, M. Schmidt, R.
Widmer, V. N. Strocov, and C. Felser, Observation and control
of maximal Chern numbers in a chiral topological semimetal,
Science 369, 179 (2020).

[19] Y.-P. Lin and W.-H. Hsiao, Dual Haldane sphere and quantized
band geometry in chiral multifold fermions, Phys. Rev. B 103,
L081103 (2021).

[20] Y.-P. Lin and W.-H. Hsiao, Band geometry from position-
momentum duality at topological band crossings, Phys. Rev.
B 105, 075127 (2022).

[21] A. Graf and F. Piéchon, Massless multifold Hopf semimetals,
Phys. Rev. B 108, 115105 (2023).

[22] E.-G. Moon, C. Xu, Y. B. Kim, and L. Balents, Non-Fermi-
liquid and topological states with strong spin-orbit coupling,
Phys. Rev. Lett. 111, 206401 (2013).

[23] T. Kondo, M. Nakayama, R. Chen, J. J. Ishikawa, E.-G. Moon,
T. Yamamoto, Y. Ota, W. Malaeb, H. Kanai, Y. Nakashima, Y.
Ishida, R. Yoshida, H. Yamamoto, M. Matsunami, S. Kimura,
N. Inami, K. Ono, H. Kumigashira, S. Nakatsuji, L. Balents,
and S. Shin, Quadratic Fermi node in a 3D strongly correlated
semimetal, Nat. Commun. 6, 10042 (2015).

[24] P. Zhu and R.-X. Zhang, Delicate topology of Luttinger
semimetal, arXiv:2308.05793.

[25] J.-M. Carter, V. V. Shankar, M. A. Zeb, and H.-Y. Kee,
Semimetal and topological insulator in perovskite iridates,
Phys. Rev. B 85, 115105 (2012).

[26] H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai,
Weyl semimetal phase in noncentrosymmetric transition-metal
monophosphides, Phys. Rev. X §, 011029 (2015).

L201107-5


https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevLett.108.140405
https://doi.org/10.1103/PhysRevB.84.165115
https://doi.org/10.1103/PhysRevB.85.155118
https://doi.org/10.1103/PhysRevLett.116.186402
https://doi.org/10.1126/science.aaf5037
https://doi.org/10.1103/PhysRevB.93.241113
https://doi.org/10.1103/PhysRevLett.119.206402
https://doi.org/10.1103/PhysRevLett.119.206401
https://doi.org/10.1103/PhysRevB.98.155145
https://doi.org/10.1038/s41586-019-1031-8
https://doi.org/10.1038/s41586-019-1037-2
https://doi.org/10.1038/s41567-019-0511-y
https://doi.org/10.1103/PhysRevLett.122.076402
https://doi.org/10.1103/PhysRevB.99.241104
https://doi.org/10.1103/PhysRevLett.124.127602
https://doi.org/10.1126/science.aaz3480
https://doi.org/10.1103/PhysRevB.103.L081103
https://doi.org/10.1103/PhysRevB.105.075127
https://doi.org/10.1103/PhysRevB.108.115105
https://doi.org/10.1103/PhysRevLett.111.206401
https://doi.org/10.1038/ncomms10042
https://arxiv.org/abs/2308.05793
https://doi.org/10.1103/PhysRevB.85.115105
https://doi.org/10.1103/PhysRevX.5.011029

YU-PING LIN AND GIANDOMENICO PALUMBO

PHYSICAL REVIEW B 109, L201107 (2024)

[27] C. Fang, Y. Chen, H.-Y. Kee, and L. Fu, Topological nodal line
semimetals with and without spin-orbital coupling, Phys. Rev.
B 92, 081201(R) (2015).

[28] Q.-FE. Liang, J. Zhou, R. Yu, Z. Wang, and H. Weng, Node-
surface and node-line fermions from nonsymmorphic lattice
symmetries, Phys. Rev. B 93, 085427 (2016).

[29] Y. X. Zhao and Y. Lu, PT-symmetric real Dirac fermions and
semimetals, Phys. Rev. Lett. 118, 056401 (2017).

[30] T. Bzdusek and M. Sigrist, Robust doubly charged nodal lines
and nodal surfaces in centrosymmetric systems, Phys. Rev. B
96, 155105 (2017).

[31] J. Ahn, D. Kim, Y. Kim, and B.-J. Yang, Band topology and
linking structure of nodal line semimetals with Z, monopole
charges, Phys. Rev. Lett. 121, 106403 (2018).

[32] O. Tiirker and S. Moroz, Weyl nodal surfaces, Phys. Rev. B
97, 075120 (2018).

[33] W. Wu, Y. Liu, S. Li, C. Zhong, Z.-M. Yu, X.-L. Sheng, Y. X.
Zhao, and S. A. Yang, Nodal surface semimetals: Theory and
material realization, Phys. Rev. B 97, 115125 (2018).

[34] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classi-
fication of topological quantum matter with symmetries, Rev.
Mod. Phys. 88, 035005 (2016).

[35] K. Alpin, M. M. Hirschmann, N. Heinsdorf, A. Leonhardt,
W. Y. Yau, X. Wu, and A. P. Schnyder, Fundamental laws
of chiral band crossings: Local constraints, global constraints,
and topological phase diagrams, Phys. Rev. Res. 5, 043165
(2023).

[36] G. Palumbo and N. Goldman, Revealing tensor monopoles
through quantum-metric measurements, Phys. Rev. Lett. 121,
170401 (2018).

[37] G. Palumbo, Non-Abelian tensor Berry connections in multi-
band topological systems, Phys. Rev. Lett. 126, 246801
(2021).

[38] A. Bouhon, Q. Wu, R.-J. Slager, H. Weng, O. V. Yazyev, and
T. Bzdusek, Non-Abelian reciprocal braiding of Weyl points
and its manifestation in ZrTe, Nat. Phys. 16, 1137 (2020).

[39] E N. Unal, A. Bouhon, and R.-J. Slager, Topological Euler
class as a dynamical observable in optical lattices, Phys. Rev.
Lett. 125, 053601 (2020).

[40] A. Bouhon and R.-J. Slager, Multi-gap topological conversion
of Euler class via band-node braiding: Minimal models, PT -
linked nodal rings, and chiral heirs, arXiv:2203.16741.

[41] W. J. Jankowski, M. Noormandipour, A. Bouhon, and R.-J.
Slager, Disorder-induced topological quantum phase transi-
tions in Euler semimetals, arXiv:2306.13084.

[42] A. Bouhon, Y.-Q. Zhu, R.-J. Slager, and G. Palumbo, Sec-
ond Euler number in four dimensional synthetic matter,
arXiv:2301.08827.

[43] Z. Wang, B. J. Wieder, J. Li, B. Yan, and B. A. Bernevig,
Higher-order topology, monopole nodal lines, and the origin
of large Fermi arcs in transition metal dichalcogenides X Te,
(X = Mo, W), Phys. Rev. Lett. 123, 186401 (2019).

[44] G. Salerno, N. Goldman, and G. Palumbo, Floquet-
engineering of nodal rings and nodal spheres and their
characterization using the quantum metric, Phys. Rev. Res. 2,
013224 (2020).

[45] X. Tan, D.-W. Zhang, Z. Yang, J. Chu, Y.-Q. Zhu, D. Li, X.
Yang, S. Song, Z. Han, Z. Li, Y. Dong, H.-F. Yu, H. Yan, S.-L.
Zhu, and Y. Yu, Experimental measurement of the quantum

metric tensor and related topological phase transition with a
superconducting qubit, Phys. Rev. Lett. 122, 210401 (2019).

[46] Y. Zhang, Y.-Q. Zhu, J. Xu, W. Zheng, D. Lan, G. Palumbo, N.
Goldman, S.-L. Zhu, X. Tan, Z. D. Wang, and Y. Yu, Explor-
ing parity magnetic effects through quantum simulation with
superconducting qubits, Phys. Rev. Appl. 21, 034052 (2024).

[47] M. Yu, P. Yang, M. Gong, Q. Cao, Q. Lu, H. Liu, S. Zhang,
M. B. Plenio, F. Jelezko, T. Ozawa, N. Goldman, and J. Cai,
Experimental measurement of the quantum geometric tensor
using coupled qubits in diamond, Nat. Sci. Rev. 7, 254 (2020).

[48] M. Chen, C. Li, G. Palumbo, Y.-Q. Zhu, N. Goldman, and
P. Cappellaro, A synthetic monopole source of Kalb-Ramond
field in diamond, Science 375, 1017 (2022).

[49] S. Sugawa, F. Salces-Carcoba, A. R. Perry, Y. Yue, and 1. B.
Spielman, Second Chern number of a quantum-simulated non-
Abelian Yang monopole, Science 360, 1429 (2018).

[50] M. Orlita, D. M. Basko, M. S. Zholudev, F. Teppe, W.
Knap, V. I. Gavrilenko, N. N. Mikhailov, S. A. Dvoretskii, P.
Neugebauer, C. Faugeras, A.-L. Barra, G. Martinez, and M.
Potemski, Observation of three-dimensional massless Kane
fermions in a zinc-blende crystal, Nat. Phys. 10, 233 (2014).

[51] J. D. Malcolm and E. J. Nicol, Magneto-optics of massless
Kane fermions: Role of the flat band and unusual Berry phase,
Phys. Rev. B 92, 035118 (2015).

[52] K. Gadge, S. Tewari, and G. Sharma, Anomalous Hall and
Nernst effects in Kane fermions, Phys. Rev. B 105, 235420
(2022).

[53] S. S. Krishtopenko and F. Teppe, Relativistic collapse of Lan-
dau levels of Kane fermions in crossed electric and magnetic
fields, Phys. Rev. B 105, 125203 (2022).

[54] D. Bercioux, N. Goldman, and D. E. Urban, Topology-induced
phase transitions in quantum spin Hall lattices, Phys. Rev. A
83, 023609 (2011).

[55] A. Raoux, M. Morigi, J.-N. Fuchs, F. Piéchon, and G.
Montambaux, From dia- to paramagnetic orbital susceptibility
of massless fermions, Phys. Rev. Lett. 112, 026402 (2014).

[56] T. Louvet, P. Delplace, A. A. Fedorenko, and D. Carpentier,
On the origin of minimal conductivity at a band crossing, Phys.
Rev. B 92, 155116 (2015).

[57] J. P. Provost and G. Vallee, Riemannian structure on manifolds
of quantum states, Commun. Math. Phys. 76, 289 (1980).

[58] D. N. Page, Geometrical description of Berry’s phase, Phys.
Rev. A 36, 3479(R) (1987).

[59] J. Anandan and Y. Aharonov, Geometry of quantum evolution,
Phys. Rev. Lett. 65, 1697 (1990).

[60] Y.-Q. Ma, S. Chen, H. Fan, and W.-M. Liu, Abelian and non-
Abelian quantum geometric tensor, Phys. Rev. B 81, 245129
(2010).

[61] N. Marzari and D. Vanderbilt, Maximally localized general-
ized Wannier functions for composite energy bands, Phys.
Rev. B 56, 12847 (1997).

[62] T. Neupert, C. Chamon, and C. Mudry, Measuring the quan-
tum geometry of Bloch bands with current noise, Phys. Rev. B
87, 245103 (2013).

[63] M. Kolodrubetz, V. Gritsev, and A. Polkovnikov, Classifying
and measuring geometry of a quantum ground state manifold,
Phys. Rev. B 88, 064304 (2013).

[64] R. Roy, Band geometry of fractional topological insulators,
Phys. Rev. B 90, 165139 (2014).

L201107-6


https://doi.org/10.1103/PhysRevB.92.081201
https://doi.org/10.1103/PhysRevB.93.085427
https://doi.org/10.1103/PhysRevLett.118.056401
https://doi.org/10.1103/PhysRevB.96.155105
https://doi.org/10.1103/PhysRevLett.121.106403
https://doi.org/10.1103/PhysRevB.97.075120
https://doi.org/10.1103/PhysRevB.97.115125
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/PhysRevResearch.5.043165
https://doi.org/10.1103/PhysRevLett.121.170401
https://doi.org/10.1103/PhysRevLett.126.246801
https://doi.org/10.1038/s41567-020-0967-9
https://doi.org/10.1103/PhysRevLett.125.053601
https://arxiv.org/abs/2203.16741
https://arxiv.org/abs/2306.13084
https://arxiv.org/abs/2301.08827
https://doi.org/10.1103/PhysRevLett.123.186401
https://doi.org/10.1103/PhysRevResearch.2.013224
https://doi.org/10.1103/PhysRevLett.122.210401
https://doi.org/10.1103/PhysRevApplied.21.034052
https://doi.org/10.1093/nsr/nwz193
https://doi.org/10.1126/science.abe6437
https://doi.org/10.1126/science.aam9031
https://doi.org/10.1038/nphys2857
https://doi.org/10.1103/PhysRevB.92.035118
https://doi.org/10.1103/PhysRevB.105.235420
https://doi.org/10.1103/PhysRevB.105.125203
https://doi.org/10.1103/PhysRevA.83.023609
https://doi.org/10.1103/PhysRevLett.112.026402
https://doi.org/10.1103/PhysRevB.92.155116
https://doi.org/10.1007/BF02193559
https://doi.org/10.1103/PhysRevA.36.3479
https://doi.org/10.1103/PhysRevLett.65.1697
https://doi.org/10.1103/PhysRevB.81.245129
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.87.245103
https://doi.org/10.1103/PhysRevB.88.064304
https://doi.org/10.1103/PhysRevB.90.165139

GEOMETRIC SEMIMETALS AND THEIR SIMULATION IN ...

PHYSICAL REVIEW B 109, L201107 (2024)

[65] S. Peotta and P. Tormi, Superfluidity in topologically nontriv-
ial flat bands, Nat. Commun. 6, 8944 (2015).

[66] Y. Gao, S. A. Yang, and Q. Niu, Geometrical effects in
orbital magnetic susceptibility, Phys. Rev. B 91, 214405
(2015).

[67] F. Piéchon, A. Raoux, J.-N. Fuchs, and G. Montambaux, Ge-
ometric orbital susceptibility: Quantum metric without Berry
curvature, Phys. Rev. B 94, 134423 (2016).

[68] C. H. Lee, M. Claassen, and R. Thomale, Band structure
engineering of ideal fractional Chern insulators, Phys. Rev. B
96, 165150 (2017).

[69] G. Palumbo, Momentum-space cigar geometry in topological
phases, Eur. Phys. J. Plus 133, 23 (2018).

[70] O. Bleu, G. Malpuech, Y. Gao, and D. D. Solnyshkov, Ef-
fective theory of nonadiabatic quantum evolution based on
the quantum geometric tensor, Phys. Rev. Lett. 121, 020401
(2018).

[71] L. Asteria, D. T. Tran, T. Ozawa, M. Tarnowski, B. S. Rem,
N. Flischner, K. Sengstock, N. Goldman, and C. Weitenberg,
Measuring quantized circular dichroism in ultracold topologi-
cal matter, Nat. Phys. 15, 449 (2019).

[72] A. Marrazzo and R. Resta, Local theory of the insulating state,
Phys. Rev. Lett. 122, 166602 (2019).

[73] Y.-Q. Zhu, W. Zheng, S.-L. Zhu, and G. Palumbo, Band
topology of pseudo-Hermitian phases through tensor Berry
connections and quantum metric, Phys. Rev. B 104, 205103
(2021).

[74] H. Weisbrich, G. Rastelli, and W. Belzig, Geometrical Rabi
oscillations and Landau-Zener transitions in non-Abelian sys-
tems, Phys. Rev. Res. 3, 033122 (2021).

[75] O. Pozo and F. de Juan, Computing observables without eigen-
states: Applications to Bloch Hamiltonians, Phys. Rev. B 102,
115138 (2020).

[76] K.-E. Huhtinen, J. Herzog-Arbeitman, A. Chew, B. A.
Bernevig, and P. Tormé, Revisiting flat band superconduc-
tivity: Dependence on minimal quantum metric and band
touchings, Phys. Rev. B 106, 014518 (2022).

[77] J. Herzog-Arbeitman, V. Peri, F. Schindler, S. D. Huber, and
B. A. Bernevig, Superfluid weight bounds from symmetry and
quantum geometry in flat bands, Phys. Rev. Lett. 128, 087002
(2022).

[78] C. Northe, G. Palumbo, J. Sturm, C. Tutschku, and E. M.
Hankiewicz, Interplay of band geometry and topology in ideal
Chern insulators in the presence of external electromagnetic
fields, Phys. Rev. B 105, 155410 (2022).

[79] A. Graf and F. Piéchon, Berry curvature and quantum metric
in n-band systems: An eigenprojector approach, Phys. Rev. B
104, 085114 (2021).

[80] T. Ozawa and N. Goldman, Extracting the quantum metric
tensor through periodic driving, Phys. Rev. B 97, 201117(R)
(2018).

[81] T. Ozawa and B. Mera, Relations between topology and
the quantum metric for Chern insulators, Phys. Rev. B 104,
045103 (2021).

[82] B. Mera and T. Ozawa, Kéhler geometry and Chern insulators:
Relations between topology and the quantum metric, Phys.
Rev. B 104, 045104 (2021).

[83] B. Mera and J. Mitscherling, Nontrivial quantum geome-
try of degenerate flat bands, Phys. Rev. B 106, 165133
(2022).

[84] J. Wang, J. Cano, A. J. Millis, Z. Liu, and B. Yang, Exact
Landau level description of geometry and interaction in a flat
band, Phys. Rev. Lett. 127, 246403 (2021).

[85] J. Wang, S. Klevtsov, and Z. Liu, Origin of model frac-
tional Chern insulators in all topological ideal flat bands:
Explicit color-entangled wave function and exact density
algebra, Phys. Rev. Res. 5, 023167 (2023).

[86] V. Kozii, A. Avdoshkin, S. Zhong, and J. E. Moore, Intrinsic
anomalous Hall conductivity in a nonuniform electric field,
Phys. Rev. Lett. 126, 156602 (2021).

[87] A. Avdoshkin and F. K. Popov, Extrinsic geometry of quantum
states, Phys. Rev. B 107, 245136 (2023).

[88] J. Ahn, G.-Y. Guo, and N. Nagaosa, Low-frequency di-
vergence and quantum geometry of the bulk photovoltaic
effect in topological semimetals, Phys. Rev. X 10, 041041
(2020).

[89] J. Ahn, G.-Y. Guo, N. Nagaosa, and A. Vishwanath, Rieman-
nian geometry of resonant optical responses, Nat. Phys. 18,
290 (2022).

[90] H.-C. Hsu, J.-S. You, J. Ahn, and G.-Y. Guo, Nonlinear pho-
toconductivities and quantum geometry of chiral multifold
fermions, Phys. Rev. B 107, 155434 (2023).

[91] G. von Gersdorff and W. Chen, Measurement of topological
order based on metric-curvature correspondence, Phys. Rev. B
104, 195133 (2021).

[92] A. Abouelkomsan, K. Yang, and E. J. Bergholtz, Quantum
metric induced phases in Moiré materials, Phys. Rev. Res. 5,
L012015 (2023).

[93] M. S. M. de Sousa, A. L. Cruz, and W. Chen, Mapping quan-
tum geometry and quantum phase transitions to real space by
a fidelity marker, Phys. Rev. B 107, 205133 (2023).

[94] T. Holder, D. Kaplan, and B. Yan, Consequences of time-
reversal-symmetry breaking in the light-matter interaction:
Berry curvature, quantum metric, and diabatic motion, Phys.
Rev. Res. 2, 033100 (2020).

[95] X. Hu, T. Hyart, D. 1. Pikulin, and E. Rossi, Quantum-
metric-enabled exciton condensate in double twisted bilayer
graphene, Phys. Rev. B 105, L140506 (2022).

[96] S. Panahiyan, W. Chen, and S. Fritzsche, Fidelity susceptibil-
ity near topological phase transitions in quantum walks, Phys.
Rev. B 102, 134111 (2020).

[97] A. Gianfrate, O. Bleu, L. Dominici, V. Ardizzone, M. De
Giorgi, D. Ballarini, G. Lerario, K. W. West, L. N. Pfeiffer,
D. D. Solnyshkov, D. Sanvitto, and G. Malpuech, Measure-
ment of the quantum geometric tensor and of the anomalous
Hall drift, Nature (London) 578, 381 (2020).

[98] M. Thumin and G. Bouzerar, Flat-band superconductivity in a
system with a tunable quantum metric: The stub lattice, Phys.
Rev. B 107, 214508 (2023).

[99] T. B. Smith, L. Pullasseri, and A. Srivastava, Momentum-
space gravity from the quantum geometry and entropy of
Bloch electrons, Phys. Rev. Res. 4, 013217 (2022).

[100] P.J. Ledwith, A. Vishwanath, and D. E. Parker, Vortexability:
A unifying criterion for ideal fractional Chern insulators, Phys.
Rev. B 108, 205144 (2023).

[101] B. Hetényi and P. Lévay, Fluctuations, uncertainty relations,
and the geometry of quantum state manifolds, Phys. Rev. A
108, 032218 (2023).

[102] X. Ni, M. Weiner, A. Alua, and A. B. Khanikaev,
Observation of higher-order topological acoustic states

L201107-7


https://doi.org/10.1038/ncomms9944
https://doi.org/10.1103/PhysRevB.91.214405
https://doi.org/10.1103/PhysRevB.94.134423
https://doi.org/10.1103/PhysRevB.96.165150
https://doi.org/10.1140/epjp/i2018-11856-8
https://doi.org/10.1103/PhysRevLett.121.020401
https://doi.org/10.1038/s41567-019-0417-8
https://doi.org/10.1103/PhysRevLett.122.166602
https://doi.org/10.1103/PhysRevB.104.205103
https://doi.org/10.1103/PhysRevResearch.3.033122
https://doi.org/10.1103/PhysRevB.102.115138
https://doi.org/10.1103/PhysRevB.106.014518
https://doi.org/10.1103/PhysRevLett.128.087002
https://doi.org/10.1103/PhysRevB.105.155410
https://doi.org/10.1103/PhysRevB.104.085114
https://doi.org/10.1103/PhysRevB.97.201117
https://doi.org/10.1103/PhysRevB.104.045103
https://doi.org/10.1103/PhysRevB.104.045104
https://doi.org/10.1103/PhysRevB.106.165133
https://doi.org/10.1103/PhysRevLett.127.246403
https://doi.org/10.1103/PhysRevResearch.5.023167
https://doi.org/10.1103/PhysRevLett.126.156602
https://doi.org/10.1103/PhysRevB.107.245136
https://doi.org/10.1103/PhysRevX.10.041041
https://doi.org/10.1038/s41567-021-01465-z
https://doi.org/10.1103/PhysRevB.107.155434
https://doi.org/10.1103/PhysRevB.104.195133
https://doi.org/10.1103/PhysRevResearch.5.L012015
https://doi.org/10.1103/PhysRevB.107.205133
https://doi.org/10.1103/PhysRevResearch.2.033100
https://doi.org/10.1103/PhysRevB.105.L140506
https://doi.org/10.1103/PhysRevB.102.134111
https://doi.org/10.1038/s41586-020-1989-2
https://doi.org/10.1103/PhysRevB.107.214508
https://doi.org/10.1103/PhysRevResearch.4.013217
https://doi.org/10.1103/PhysRevB.108.205144
https://doi.org/10.1103/PhysRevA.108.032218

YU-PING LIN AND GIANDOMENICO PALUMBO

PHYSICAL REVIEW B 109, L201107 (2024)

protected by generalized chiral symmetry, Nat. Mater. 18, 113
(2019).

[103] S. N. Kempkes, M. R. Slot, J. J. van den Broeke, P. Capiod,
W. A. Benalcazar, D. Vanmaekelbergh, D. Bercioux, I. Swart,
and C. Morais Smith, Robust zero-energy modes in an elec-
tronic higher-order topological insulator, Nat. Mater. 18, 1292
(2019).

[104] T. Morimoto and A. Furusaki, Weyl and Dirac semimetals with
Z, topological charge, Phys. Rev. B 89, 235127 (2014).

[105] B.-J. Yang, T. Morimoto, and A. Furusaki, Topological charges
of three-dimensional Dirac semimetals with rotation symme-
try, Phys. Rev. B 92, 165120 (2015).

[106] S.-J. Huang, J. Yu, and R.-X. Zhang, Classification of interact-
ing Dirac semimetals, arXiv:2211.03802.

[107] C. Guo, L. Hu, C. Putzke, J. Diaz, X. Huang, K. Manna, F.-R.
Fan, C. Shekhar, Y. Sun, C. Felser, C. Liu, B. A. Bernevig, and
P. J. W. Moll, Quasi-symmetry-protected topology in a semi-
metal, Nat. Phys. 18, 813 (2022).

[108] L.-H. Hu, C. Guo, Y. Sun, C. Felser, L. Elcoro, P. J. W. Moll,
C.-X. Liu, and B. A. Bernevig, Hierarchy of quasisymmetries
and degeneracies in the CoSi family of chiral crystal materials,
Phys. Rev. B 107, 125145 (2023).

[109] T. T. Wu and C. N. Yang, Dirac monopole without strings:
Monopole harmonics, Nucl. Phys. B 107, 365 (1976).

[110] T. T. Wu and C. N. Yang, Some properties of monopole har-
monics, Phys. Rev. D 16, 1018 (1977).

[111] R. Shankar, Quantum geometry and topology, in Topology and
Condensed Matter Physics, edited by S. M. Bhattacharjee, M.
Mj, and A. Bandyopadhyay (Springer Singapore, Singapore,
2017), pp. 253-279.

[112] F. D. M. Haldane, Fractional quantization of the Hall effect: A
hierarchy of incompressible quantum fluid states, Phys. Rev.
Lett. 51, 605 (1983).

[113] J. K. Jain, Composite Fermions (Cambridge University Press,
Cambridge, 2007).

[114] W.-H. Hsiao, Landau quantization of multilayer graphene on a
Haldane sphere, Phys. Rev. B 101, 155310 (2020).

[115] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.109.L.201107 for the linear injection con-
ductivity in geometric semimetals.

[116] Y.-Q. Zhu, N. Goldman, and G. Palumbo, Four-dimensional
semimetals with tensor monopoles: From surface states
to topological responses, Phys. Rev. B 102, 081109(R)
(2020).

L201107-8


https://doi.org/10.1038/s41563-018-0252-9
https://doi.org/10.1038/s41563-019-0483-4
https://doi.org/10.1103/PhysRevB.89.235127
https://doi.org/10.1103/PhysRevB.92.165120
https://arxiv.org/abs/2211.03802
https://doi.org/10.1038/s41567-022-01604-0
https://doi.org/10.1103/PhysRevB.107.125145
https://doi.org/10.1016/0550-3213(76)90143-7
https://doi.org/10.1103/PhysRevD.16.1018
https://doi.org/10.1103/PhysRevLett.51.605
https://doi.org/10.1103/PhysRevB.101.155310
http://link.aps.org/supplemental/10.1103/PhysRevB.109.L201107
https://doi.org/10.1103/PhysRevB.102.081109

