
PHYSICAL REVIEW B 109, L201105 (2024)
Letter

Manipulating topological quantum phase transitions of Kitaev’s quantum
spin liquids with electric fields

Pureum Noh ,1,* Kyusung Hwang ,2,* and Eun-Gook Moon1,†

1Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
2School of Physics, Korea Institute for Advanced Study (KIAS), Seoul 02455, Korea

(Received 8 August 2023; revised 25 December 2023; accepted 1 April 2024; published 6 May 2024)

Highly entangled excitations such as Majorana fermions of Kitaev quantum spin liquids have been proposed to
be utilized for future quantum science and technology, and a deeper understanding of such excitations has been
strongly desired. Here we demonstrate that Majorana fermion’s mass and associated topological quantum phase
transitions in the Kitaev quantum spin liquids may be manipulated by using electric fields in sharp contrast to
the common belief that an insulator is inert under weak electric fields due to charge energy gaps. Using general
symmetry analysis with perturbation and exact diagonalization, we uncover the universal phase diagrams with
electric and magnetic fields. We also provide distinctive experimental signatures to identify Kitaev quantum spin
liquids with electric fields, especially in connection with the candidate materials such as α-RuCl3.
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Introduction. Quantum spin liquids (QSLs) intrinsically
host an enormous amount of quantum entanglement, which
has attracted a great deal of interest in the research of future
science and technology [1–5]. The intrinsic massive entangle-
ment prevents quantum spin liquids from developing a trivial
magnetic ordering, and instead emergent novel excitations
may appear in QSLs. Kitaev quantum spin liquid (KQSL)
is one of QSL that has attracted significant attention [6]. In
KQSLs, the interactions between spin degrees of freedom
are exactly solvable, leading to emergent Majorana fermions
and Abelian or non-Abelian anyons. These exotic properties
make KQSLs promising platforms for topological quantum
computation [7,8].

The search for candidate materials that can exhibit KQSL
has been a major challenge in the field of condensed matter
physics. In recent years, significant progress has been made
in identifying and characterizing KQSL candidate materials,
such as α-RuCl3 [9–18] and Na2Co2TeO6 [19,20], through
various experiments [21–24]. One of the unique features of
KQSLs is their response to external magnetic fields, which
can induce exotic phases such as a chiral spin liquid [6].
Despite the theoretical predictions, the experimental investi-
gation of KQSLs in magnetic fields has remained challenging
due to the need to explore a narrow range of magnetic field
[12,24–37].

In this Letter, we demonstrate striking characteristics of
electric-field-driven topological quantum phase transitions
(TQPTs). First, varying with the amplitude of electric fields
(E ), we find TQPTs between critical states and bulk energy-
gapped states. The former (latter) states host a Fermi surface
of Majorana fermions, also called Majorana-Fermi surface
(MFS) [38], (topological invariants) for E < El

c (E > El
c). We
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remark that the presence of such TQPTs is in drastic contrast
to the conventional wisdom in the literature that the size of
the Fermi surfaces of Majorana fermions is proportional to E .
Second, by rotating an electric field, we find the possibility
of the two types of TQPTs between the phases with opposite
topological invariants. One type is conventional in the sense
that TQPTs appear with quantum critical points, but the other
type permits in-between quantum critical states. Remarkably,
the two types of TQPTs are only possible for the intermediate
amplitude of electric fields because they are washed away for
small enough electric fields and KQSLs become unstable for
strong enough electric fields. By utilizing the characteristics,
we also propose how to detect KQSLs in the candidate mate-
rials such as α-RuCl3.

Model Hamiltonian. Let us consider the isotropic Kitaev
model under electric (E) and magnetic fields (h) to be specific
and discuss its generalization below. The Hamiltonian is

H (h, E) = K
∑
〈i, j〉γ

Sγ
i Sγ

j − h · S − E · P, (1)

where 〈i, j〉γ are for the nearest-neighbor bonds with a com-
ponent γ ∈ {x, y, z}, and Sγ

j is a γ component spin operator at
a site j [6]. The total spin operator is defined as S = ∑

j S j ,
and the interaction parameter (K ) for the bond-dependent
exchange interaction is introduced.

The explicit form of the electric polarization operator
(P) may be obtained by microscopic analysis [39–41], and
for our purposes, it is enough to utilize the symmetry ap-
proach, following the previous works [38,41]. Since P is
even under the time-reversal transformation and odd under
the space-inversion transformation, the polarization operator
becomes Pμ ≡ ∑

〈i, j〉γ pμ
γ · (Si × S j ), where pμ

γ is a vector
with 27 components. For the isotropic Kitaev model, only five
(c1 ∼ c5) of 27 parameters are independent [39–41],

pα
α = c1α̂ + c2(β̂ + γ̂ ), pα

β = c3α̂ + c4β̂ + c5γ̂ ,
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FIG. 1. The universal topological phase transition by electric
fields. (a) Diagram of the direction of electric (E) and magnetic fields
(h). The magnetic field is in the direction of b̂, and the electric field
lies in the b̂ − ĉ plane. (b) The universal phase diagram at angles
of the electric field (ψE ) and the strength of the electric field (E )
ranging from 0 to |h|. The Chern number (ν) is not defined due to
the Majorana-Fermi surface (MFS) in the gray area, and the lower
critical strength El

c has the order of |h|2
� f

. Dashed blue and dotted black

lines indicate topological phase transitions.

where c1 ∼ c5 are phenomenological coefficients, and
(α, β, γ ) is a permutation of (x, y, z).

Let us first consider the symmetries of the Hamiltonian. For
an ideal monolayer system, the Hamiltonian H (0, 0) enjoys
D3, where D3 is for the dihedral group of order six, in addition
to the spacial inversion (P) and the time reversal (T ). Turning
on a magnetic field, the time reversal and D3 symmetries are
completely broken except in certain directions of the magnetic
fields. For example, the Hamiltonian H (h ‖ b̂, 0) only enjoys
the twofold rotational symmetry along b̂ and P . See Fig. 1(a)
for the notation of the directions of fields.

Physical quantities are characterized by representations of
symmetry groups. For example, the thermal Hall conductivity
(κab) is odd under T and C2(b̂), and it is even under P (Ta-
ble I). It has been well understood that the twofold rotational
symmetry [C2(b̂)] protects the gapless condition of Majorana
fermions in Kitaev quantum spin liquids.

TABLE I. Symmetry properties of physical observables under
the time-reversal (T ), inversion (P) and the twofold rotation [C2(b̂)].
The thermal Hall coefficient (κab), topological invariant (ν), and
the mass function m(h, E) are in the same representation while the
chemical potential function [μ(h, E)] is in a different representation.
We also present the functions of electric and magnetic fields in the
two representations. All the quantities are invariant under threefold
rotations. See the SM for more detailed information.

Physical quantities T P C2(b̂) PC2(b̂)

κab(h, E) odd even odd odd
ν odd even odd odd
m(h, E) odd even odd odd
hx + hy + hz odd even odd odd
hxhyhz odd even odd odd
Ec(Eaha + Ebhb) odd even odd odd
ha

(
E 2

a − E 2
b

) − 2hbEaEb odd even odd odd
μ(h, E) odd odd odd even
haEb − hbEa odd odd odd even
Echb

(
h2

b − 3h2
a

)
odd odd odd even

Turning on an electric field, all the symmetries are com-
pletely broken except in two cases:

• E ‖ b̂, Gb ≡ {C2(b̂), (C2(b̂))
2},

• E ‖ ĉ, Gc ≡ {PC2(b̂), (PC2(b̂))
2},

where Gb,c are the symmetry groups for each case. We
note that the case of E ‖ ĉ is not invariant under C2(b̂) and
P symmetries but invariant under the combination, PC2(b̂).
Below, we show that both Gb and Gc protect the gapless Majo-
rana fermions in KQSLs though their effects have significant
differences in terms of TQPTs.

Weak electric and magnetic fields. Following the original
approach of Kitaev [6], we utilize perturbative calculations
with the Majorana representation of quantum spins (Sγ

j =
ic jb

γ

j ) with four Majorana fermions (bγ

j , c j) at a site j
for weak electric and magnetic fields (|h|, |E| � K). The
low-energy effective Hamiltonian below the flux gap (� f )
becomes

Heff (h, E) = 1

2

∑
k

	
†
k

⎛
⎝ ∑

a=0,1,2,3

εa(k, h, E)τ a

⎞
⎠	k,

with a two component spinor, 	k = (ck,A, ck,B)T , and
cr,A(B) =

√
2
N

∑
k eik·rck,A(B). The identity and Pauli matrices

in the sublattice spinor space (τ 0,1,2,3) are introduced with
the energy functions, ε0,1,2,3(k, h, E). The eigenenergy of the
Hamiltonian is

E±(k, h, E) = ε0(k, h, E) ±
√ ∑

a=1,2,3

εa(k, h, E)2.

Without electric and magnetic fields, the energy functions
vanish at the corners of the first Brillouin zone (k = ±KM),
and the linear dispersion is determined by ε1(k, 0, 0) and
ε2(k, 0, 0). As we turn on electric and magnetic fields, the
Kitaev interaction (K) is renormalized by perturbation terms
invariant under spatial inversion and time reversal, including
E2 terms as in previous papers [42–44] in the flux-free sector
(see the Supplemental Material (SM) [45], also references
[46–51] therein). We note that such symmetric terms can
change our results quantitatively but not qualitatively because
of symmetry properties of the topological invariant (ν). Thus,
in the regime of weak electric and magnetic fields, the pres-
ence of energy gap or Fermi-surfaces of Majorana fermions
is mainly determined by the chemical potential function
[μ(h, E) ≡ ε0(KM, h, E)] and the mass function [m(h, E) ≡
ε3(KM, h, E)]. If |μ(h, E)| < |m(h, E)|, there is an energy
gap, and the topological invariant (ν) is given by the sign
of m(h, E). As for the case of |μ(h, E)| > |m(h, E)|, the
topological invariant is not defined because of the presence
of MFS.

One can understand the symmetry properties of the energy
functions by extending the original discussion of the projec-
tive representation by Kitaev [6] (see also the SM). Note that
m(h, E) is in the same representation of κab, while μ(h, E) is
in a different representation since it is odd under the inversion
symmetry.

Our strategy is to utilize the symmetry properties of
m(E, h) and μ(E, h), which can be applied beyond the pure
Kitaev model. For simplicity, we consider a magnetic field
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along a bond direction and an electric field on the bc plane
with an angle ψE ,

h = hb̂, E = E (cos ψE b̂ + sin ψE ĉ).

We find that

m(h, E) = cm
hE2

�2
f

sin(2ψE ), μ(h, E) = cμ

h3E

�3
f

sin(ψE )

up to the fourth order of electric and magnetic fields with
two dimensionless constants (cm, cμ). Note that the forms of
m(h, E) and μ(h, E) for generic field directions are presented
in the SM.

A few remarks are as follows. First, the symmetry prop-
erties of the mass function [m(E, h)] enforce the zero
conditions,

m(h, E) = 0, E ‖ b̂ or E ‖ ĉ, (2)

with magnetic fields along the bond directions, h ‖ b̂. The
zero conditions guarantee the existence of the gapless Ma-
jorana excitations. Second, the symmetry properties of the
chemical potential function give the zero condition,

μ(h, E) = 0, E ‖ b̂, (3)

with magnetic fields along the bond directions, h ‖ b̂. On the
other hand, μ(h, E) is not generically zero for E ‖ ĉ, which
indicates that the Majorana Fermi surfaces may appear near
E ‖ ĉ because |μ(h, E)| is generically bigger than |m(h, E)|.

Two types of TQPTs. In KQSLs, we uncover the two types
of TQPTs. The first one is conventional in the sense that topo-
logical phases with ν = ±1 are generically connected through
a quantum critical point, named type-I TQPT. In other words,
gapless Majorana fermions appear only at quantum critical
points. Not only the zero conditions [m(h, E) = μ(h, E) = 0]
but also the exclusion of Majorana Fermi surfaces are nec-
essary to find such quantum critical points. The former is
satisfied by E ‖ b̂ and the latter is fulfilled by |m(h, E)| >

|μ(h, E)| near E ‖ b̂. Then, we obtain the condition of the
type-I TQPTs,

E ‖ b̂, |E| > El
c, (type I), (4)

where the lower critical electric field (El
c) is to exclude Ma-

jorana Fermi surfaces. Its value is determined by microscopic
information. For example, the pure Kitaev model gives El

c =
(cμh2)/(2cm� f ), and the critical points are illustrated in the
dashed blue line in in Fig. 1(b). The second one is uncon-
ventional in the sense that topological phases with ν = ±1
are generically connected through quantum critical states with
Majorana Fermi surfaces, named type-II TQPT. The transition
lines are determined by the condition,

|m(h, E)| = |μ(h, E)| > 0, (type II), (5)

as illustrated in the dotted black line in Fig. 1(b). We note
that the type-II TQPT completely disappear with the fine-
tuned condition, cμ = 0, for the pure Kitaev model. In other
words, the presence of μ(h, E) is essential to the presence of
type-II TQPTs, and both the electric and magnetic fields are
necessary, as pointed out previously [38].

Exact diagonalization. We diagnose the proposed quan-
tum phase transitions by numerical computations for the spin

FIG. 2. Results of the exact diagonalization. (a) The expectation
value of the chirality operator, χ . (b) The expectation value of the
flux operator, W . The coupling constants are fixed by K = −1, h =
0.01b̂, E = E (cos ψE b̂ + sin ψE ĉ).

model in Eq. (1). For simplicity, we consider the model
Hamiltonian,

H (h, E) = K
∑
〈i, j〉γ

Sγ
i Sγ

j − h ·
∑

j

S j − E ·
∑
〈i, j〉γ

Si × S j,

which is obtained by setting c1 = c3 and c2,4,5 = 0 in the
polarization operator P. We solve the Hamiltonian on a 24-site
cluster with the periodic boundary condition by using exact
diagonalization (ED).

Figure 2 displays the ED results for the same setup of
Fig. 1. We identify a series of quantum phase transitions in
our ED calculations, although the size limitation (24 sites) of
our ED calculations prevents us from finding signatures of the
Majorana fermi surface state. The identification is done by
utilizing the symmetry properties of the chirality operator χ̂p

following the previous work [32]: χ̂p = Sx
2Sz

1Sy
6 + Sx

5Sz
4Sy

3 +
C3 rotated terms. Note that the chirality operator has the same
symmetry representation as the one of thermal conductivity,
providing information on the topological invariant of Kitaev
quantum spin liquids. Indeed, the sign of the expectation value
χ = 1

N

∑
p〈χ̂p〉 [Fig. 2(a)] appears in the same pattern as the

Chern number of Fig. 1. We also note that the expectation
value of the flux operator W is close to one (W ≈ 1) in the
range of the electric field (|E| � 0.03), which indicates the
stability of the Kitaev quantum spin liquids [Fig. 2(b)]. Thus,
we conclude that our ED calculations qualitatively capture the
topological phase transitions of Fig. 1 despite the intrinsic size
limitation of our ED calculations.

It is straightforward to perform ED calculations for more
generic Hamiltonians. For example, we find that the upper
critical electric field is Eu

c ≈ 0.27 without a magnetic field
when K = −1 and h, E ‖ ĉ, while the critical magnetic field is
hc ≈ 0.03 without an electric field. Additional phase diagrams
with magnetically ordered phases near KQSL are illustrated in
the SM.

Based on the results of exact diagonalization, we conclude
that the stability of the KQSLs under electric and magnetic
fields is guaranteed, though their critical field values depend
on details of the microscopic Hamiltonian. Then, the symme-
try properties of Majorana fermions become very useful for
stable KQSLs. Namely, the two zero conditions, Eqs. (2) and
(3), are solely determined by the symmetry properties of Gb,c,
indicating that the zero conditions even work beyond the pure
Kitaev model. It is straightforward to show that non-Kitaev
interaction terms induce effective interaction between gapless
Majorana fermions which are known to be irrelevant in the
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FIG. 3. Schematic low temperature specific heat (Cv) with mag-
netic fields and electric fields. (a) Temperature (T ) dependence of Cv

T
with fixed electric and magnetic fields. (b) Angle dependence (ψE )
of specific heat for E > El

c with a fixed temperature.

sense of renormalization group analysis, in addition to trivial
renormalization of velocity.

Discussion and conclusion. We propose that electric-field-
driven TQPTs may be utilized to identify KQSLs. Varying
with the amplitude of electric fields, TQPTs between criti-
cal states and bulk energy-gapped states generically appear.
With h ‖ b̂, a small electric field (E < El

c) cannot introduce
an energy gap of Majorana fermions while a large elec-
tric field (El

c < E < Eu
c ) induces a topological phase with

a well-defined bulk energy gap. Such phase transitions may
be readily observable in specific heat experiments, which
carry low-energy excitations, as illustrated in Fig. 3(a). Fur-
thermore, the rotation of an electric field is a natural way
to observe the two types of TQPTs for El

c < E < Eu
c . We

note that the type-II TQPTs around E ‖ ĉ are natural out-
comes of the zero conditions, Eqs. (2) and (3), which give
a nonzero value of specific heat over temperature (Cv/T )
in the zero temperature limit. Thus, the field angle de-
pendence specific heat naturally has the twofold symmetric
behavior as illustrated in Fig. 3(b). Such characteristics are
in drastic contrast to other paramagnetic phases including
partially polarized phases whose ground states are adiabat-
ically connected to a simple product state without quantum
entanglement [52].

To apply our proposal to experiments, it is important to ob-
tain numerical values of El

c . For an easily accessible magnetic
field (1T ), we estimate h ∼ 0.12 meV and then, for the typical

Kitaev exchange |K| ∼ 25 meV [53], the corresponding lower
critical strength of the electric field (El

c) and the energy scale
are

El
c ∼ 1.4 × 106 V/m, c3El

c ∼ 0.0049 meV = 0.0002K,

where we utilize the previous estimation for c1 ∼ c5 from the
microscopic analysis [41] (see also the SM). Note that the
critical electric field is indeed within the range of applicable
electric fields, although our rough estimation needs to be
scrutinized further to be applicable to the candidate materials
of Kitaev quantum spin liquids such as α-RuCl3.

We also note that the electric field smaller than El
c may

give a nonzero value of Cv/T in the zero temperature limit as
demonstrated in Fig. 3 except the direction E ‖ b̂ where Cv/T
vanishes in the zero temperature limit. Then, away from the
direction E ‖ b̂, the nonzero value and its angular dependence
from the size of an MFS state will become more evidence of
KQSLs.

In conclusion, we investigate the electric-field-driven
TQPTs in KQSLs. In sharp contrast to the common belief
that an insulator is inert under weak electric fields due to
charge energy gaps, KQSLs may host significant effects with
small electric fields because of nontrivial symmetry properties
of Majorana fermions of KQSLs. We find TQPTs between
critical states and bulk energy-gapped states varying with the
amplitude of electric fields. Also, by rotating an electric field,
we find the possibility of the two types of TQPTs between the
phases with opposite topological invariants. Such TQPTs are
associated with characteristic structures of gapless excitations,
and thus we propose intriguing specific heat signatures in
candidate materials of KQSLs such as α-RuCl3.
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