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We investigate topological superconductivity in the Rashba-Hubbard model, describing heavy-atom superlat-
tice and van der Waals materials with broken inversion. We focus in particular on fillings close to the van Hove
singularities, where a large density of states enhances the superconducting transition temperature. To determine
the topology of the superconducting gaps and to analyze the stability of their surface states in the presence of
disorder and residual interactions, we employ an fRG + MFT approach, which combines the unbiased functional
renormalization group (fRG) with a real-space mean-field theory (MFT). Our approach uncovers a cascade of
topological superconducting states, including A1 and B1 pairings, whose wave functions are of dominant p- and
d-wave character, respectively, as well as a time-reversal breaking A1 + iB1 pairing. While the A1 and B1 states
have first-order topology with helical and flat-band Majorana edge states, respectively, the A1 + iB1 pairing
exhibits second-order topology with Majorana corner modes. We investigate the disorder stability of the bulk
superconducting states, analyze interaction-induced instabilities of the edge states, and discuss implications for
experimental systems.
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Topological superconductors (TSCs) are of high current
interest due to their exceptional properties and potential for
applications in quantum information technologies [1–7]. A
variety of heterostructures [7] and candidate materials [8–11],
where topological superconductivity is expected to occur,
have been investigated. However, despite tremendous efforts,
the ideal topological superconductor suitable for the envi-
sioned applications has yet to be found. Two major obstacles
in this research field are small superconducting gaps and om-
nipresent disorder. Since the topology only protects against
perturbations smaller than the superconducting gap, it is of
paramount importance to find intrinsic topological super-
conductors with larger gaps compared to proximity-induced
superconductors [12,13].

Finding intrinsic topological superconductivity needs su-
perconductivity to be originating from electron-electron
repulsive interactions since electron-phonon interactions com-
monly only give conventional nontopological superconduc-
tivity [14,15]. One possible path to high-Tc topological
superconductivity is to search for platforms using high-Tc

cuprate superconductors, for example, as proposed in twisted
bilayer cuprates [16]. However, the lack of tunability in ma-
terial control of cuprates has made it hard to experimentally
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realize twisted bilayers of cuprates. An alternative strategy
investigated in recent times is to use a large density of states at
the Fermi level [17]. This strategy has been envisaged in mate-
rial candidates where the Fermi level lies close to a van Hove
singularity [18] or near flat bands [19]. However, a major
hindrance towards such possibility of superconductivity is that
a large density of states is also associated with particle-hole
orders, like ferromagnetism, due to the Stoner criterion [20]
or spin/charge density waves due to nesting [21,22]. How-
ever, doping away from a ferromagnetic phase to its critical
point can result in triplet topological superconductivity, due to
ferromagnetic fluctuations [23]. However, the resulting triplet
superconductivity is highly fine-tuned, exists only in a narrow
region of parameter space, and has an exponentially small Tc,
due to the large distance from the singular density of states
[24].

Another ingredient which is often believed to be crucial for
topological superconductivity is spin-orbit coupling (SOC).
SOC is known to split one van Hove singularity into two
and also changes the topological nature of the Fermi surfaces.
Hence, the presence of spin-orbit coupling gives the possibil-
ity of having high density of states in a large parameter space
and additionally gives nontrivial topological band structures,
providing a possible route to intrinsic topological supercon-
ductivity with large Tc. With recent progress in experimental
techniques, it has now become possible to fabricate two-
dimensional (2D) van der Waals materials [25–27] with high
tunability both in doping or filling and spin-orbit coupling
[28–31].

Motivated by this, we theoretically analyze the condi-
tions under which topological superconductivity emerges in
the Rashba-Hubbard model [32–39] in 2D, to capture the
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simultaneous role of electronic correlations driven by Hub-
bard interaction, SOC within Rashba model, and singular
density of states at van Hove singularities in 2D. Theoreti-
cally investigating interactions and singular density of states
is challenging, since methods like mean-field or random-
phase approximation calculations cannot capture the mutual
interference between particle-particle and particle-hole insta-
bilities at singularities [40], and quantum Monte Carlo applied
to the Rashba-Hubbard model is plagued by the sign problem.
We therefore employ the functional renormalization group
(fRG) [41–43], which treats all instability channels on an
equal footing, and augment it with a mean-field theory (MFT)
in order to capture the nature of the superconductivity deep
inside the phase.

Specifically, we find that while magnetism is suppressed by
SOC, magnetic fluctuations near the van Hove singularities
lead to A1 and B1 superconducting states, with dominant p-
and d-wave-like pairing character, respectively, in a large pa-
rameter regime. Both of these pairing states exhibit nontrivial
first-order topology [3] and host helical and flat-band Majo-
rana edge states, respectively. Remarkably, we also find near
the phase boundary between these two states a time-reversal
breaking A1 + iB1 pairing state with higher-order topology
and Majorana corner modes [44–52]. Furthermore, we extend
the fRG + MFT method to real space, which allows us to
deduce the topological and edge properties of the supercon-
ducting states, as well as the (in-)stabilities of the edge states
against residual interactions, and the stability of these states to
disorder. Our fRG + MFT approach in real space reveals that
while both the helical Majorana and corner edge states are
robust to residual interactions, the flat-band Majorana states
are unstable towards the formation of a one-dimensional phase
crystal [53–55]. We further find that the Majorana corner
modes in the A1 + iB1 pairing state remain robust to disorder,
defying the usual expectation that the sign-changing B1 pair-
ing, responsible for the corner modes, is sensitive to disorder.

Model and methods. We start from the Rashba-Hubbard
Hamiltonian on the square lattice given by H = H0 + HU ,
with

H0 =
∑
j, j′,σ

t j j′c
†
j,σ c j′,σ − μ

∑
j,σ

n j,σ

+ i
∑
j, j′
σ,σ ′

λ j j′ [(r j − r j′ ) × c†
j,σ �τσσ ′c j′,σ ′ ]z + H.c.,

HU =U
∑

j

n j,↑n j,↓, (1)

where c j,σ (c†
j,σ ) is the annihilation (creation) operator of an

electron at site j with spin projection σ , �τ are the Pauli matri-
ces, r j is the lattice coordinate of site j, n j,σ = c†

j,σ c j,σ is the
spin-resolved particle number operator, and μ is the chemical
potential. In the following, we choose the hopping amplitudes
such that t〈 j, j′〉 = −t when j and j′ are nearest neighbors,
t〈〈 j, j′〉〉 = −t ′ when j and j′ are second neighbors, and zero
otherwise. We set t as the energy unit. We also consider the
Rashba SOC to be nonzero only for nearest neighbors λ〈 j, j′〉 =
λt . In the rest of the Letter, we take λ = 0.3. Results for
different values of λ are shown in the Supplemental Material

FIG. 1. Phase diagram of the Rashba-Hubbard model on the
square lattice as a function of chemical potential μ and second-
neighbor hopping t ′ for U = 3t . The dashed lines indicate the values
of the chemical potentials μvH1 (t ′) and μvH2 (t ′) where the van Hove
singularities VHS1 and VHS2 occur. The dashed-dotted lines enclose
the region where Tc exceeds 10−6t .

(SM) [56] (see also Refs. [57–61] therein). We investigate the
superconducting (SC) phases of the model in Eq. (1) by means
of the fRG, combined with mean-field theory (fRG + MFT)
[62–65]. This results in a renormalized superconducting gap
equation of the form

�σσ ′
k =

∑
s,s′

∫
k′

Ṽ σσ ′ss′
kk′

[
T

∑
n

F ss′
(k′, νn)

]
, (2)

where νn are fermionic Matsubara frequencies, T is the tem-
perature, �σσ ′

k is the SC order parameter, and F ss′
(k′, νn) is

the spin-resolved anomalous propagator, describing the prop-
agation of a hole that gets reflected into a particle or vice
versa. The function Ṽ σσ ′ss′

kk′ describes an effective interaction,
computed by means of the fRG (see SM for details [56]). To
determine the symmetry (and not the size) of the SC gap, we
linearize Eq. (2) in �σσ ′

k . The equation becomes, therefore,
an eigenvalue problem, where the eigenvector corresponding
to the largest positive eigenvalue gives the information on the
symmetry of the leading superconducting state.

Phase diagram. In Fig. 1, we show the superconducting
phase diagram as a function of chemical potential μ � 0 and
second-neighbor hopping t ′ � 0. We also show the different
topologies of the two Fermi surfaces, as well as the lines along
which the van Hove singularities of the two quasiparticle
bands reach the Fermi level. We note that the density of states
and position in k space of the two van Hove singularities are
marked differently: VHS1 (left line) has a larger density of
states than VHS2 (right line) and is also located further away
from the (π, 0) point (see SM [56]). In the orange region of
Fig. 1, labeled as iAF, the fRG flow signals an (incommensu-
rate) antiferromagnetic instability. In the region enclosed by
the dashed-dotted black lines, the superconducting transition
temperature exceeds T = 10−6t , which is the lowest temper-
ature accessible in our fRG computation.
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A large portion of the phase diagram displays a leading
superconducting state living in the B1 representation of the
combined spin-lattice symmetry group of Hamiltonian (1)
[56]. The resulting gap function can, to leading order, be
expressed as

αs(cos kx − cos ky)t0 + αt (sin kyt
1 + sin kxt2),

where tμ = iτμτ 2, and αs and αt are free parameters. Note
that the singlet component of the gap (the one proportional
to t0) is the dx2−y2 -wave SC order parameter one would obtain
in the Hubbard model without introducing SOC. Higher-order
harmonics are considered in our calculations, but the effective
attractions in the higher-order harmonic channels are found
to be very small. At larger absolute values of the chemical
potential, we obtain a phase belonging to the A1 representation
of the discrete symmetry group of the Hamiltonian. The SC
gap in this state is a superposition of an extended s wave in
the singlet component and a helical p wave in the triplet:

αs(cos kx + cos ky)t0 + αt (− sin kyt
1 + sin kxt2).

For larger −μ and small −t ′, we also find a B2 phase,
characterized, however, by rather small values of the leading
eigenvalue, resulting in low transition temperatures. The gap
function in this phase is given by a dominant singlet compo-
nent in the dxy symmetry channel and a subdominant triplet
part. We note that near the boundary between differently col-
ored regions in Fig. 1 there is the possibility of a coexistence
phase that combines the two order parameters (see discussion
below). Hence, in general there will be two transitions as one
goes from, e.g., deep inside the B1 state to the A1 state. Finally,
we note that SOC disfavors ferromagnetic phases expected
near van Hove singularities [24]. Instead, spin fluctuations
drive the formation of the SC phases in a large-parameter
regime even at van Hove fillings (see SM [56]).

Having identified different superconducting phases in
Fig. 1, we then focus on each of them individually by in-
vestigating the characteristic points marked by red crosses in
Fig. 1. Additionally, we extend the fRG + MFT method to
real space to investigate the disorder stability of the phases and
to determine possible interaction-induced edge instabilities
[56]. Furthermore, we scale the interaction strengths by 10
in order to render the investigation of the edge properties on
finite-size systems computationally amenable.

B1 pairing state. In Fig. 2, we investigate the properties
of the B1 phase for the parameters marked by cross I (μ =
−0.5 and t ′ = −0.5) in Fig. 1. In this regime, the gap func-
tions show (quasi-)nodes along the diagonal kx = ±ky (see
SM [56]). This nodal structure suggests that a (11) edge is
pair breaking [66,67] and will form a flat band of topolog-
ical zero-energy states [2,68–70] protected by time-reversal
symmetry and translational symmetry along (11). The large
degeneracy of these zero-energy states makes them thermo-
dynamically unstable and prone to symmetry breaking. To
investigate the edge properties, we consider an open boundary
geometry [see Fig. 2(a)] with one (11) edge. As shown in
Fig. 2(a), at low temperatures, the (11) edge hosts oscilla-
tions in the phase θ of the d-wave superconducting order
parameter, called phase crystals, breaking both time-reversal
symmetry and translational symmetry along the (11) edge
[53–55]. In comparison to earlier literature on phase crystals,

FIG. 2. (a) Phase crystal forming at the (11) edge. The sine of the
phase θ of the d-wave superconducting order parameter is plotted in
real space at T = 0 with the bulk value of sin θ being subtracted. At
the (11) edge there are clear modulations visible in sin θ . (b) Density
of states N (E ) around zero energy for different temperatures T/Tc.
The inset shows the density of states at T/Tc = 0.23 in a wider range.

one remarkable feature of the phase crystals obtained here
is that they are robust to the additional presence of a sub-
dominant triplet superconducting order parameter originating
in the bulk due to SOC. We calculate the spatially aver-
aged density of states N (E ) = 1/N

∑
i,n,σ |un

iσ |2δ(E − En) +
|vn

iσ |2δ(E + En), where N is the total number of lattice sites,
and un

iσ and vn
iσ are the eigenfunctions with eigenvalues E . To

numerically evaluate N (E ), we use a Lorentzian with fixed
width 0.01 to calculate the δ function. As shown in Fig. 2(b),
N (E ) shows a large zero-bias peak for T/Tc > 0.17, showing
the presence of a flat band of zero-energy states, which does
not change with increasing temperature. Due to the formation
of the phase crystal at T/Tc ≈ 0.17, the zero-bias peak gets
suppressed for lower temperatures since the phase crystals
Doppler shift the zero-energy states to finite energies. With
lowering temperature, the shift increases.

A1 pairing state. We now investigate the topological edge
states of the A1 phase for the parameters marked by cross
III (μ = −1.6 and t ′ = −0.5) in Fig. 1. This A1 pairing is
a time-reversal symmetric fully gapped superconductor and
belongs to the DIII class, characterized by a Z2 invariant in
two dimensions [3]. In our case, there is one pocket around the
M point with negative pairing and the system is topologically
nontrivial according to N2D = �s[sgn(�s)]ms , where ms is the
number of time-reversal invariant points enclosed by the sth
Fermi surface [71]. Due to this nontrivial topology, we find
helical edge states with open boundaries, shown in Sec. SVII
of the SM [56].

A1 + iB1 pairing state. The transition from the B1 super-
conducting state to the A1 state with increasing |μ| in Fig. 1
gives the possibility of a coexisting phase where both order
parameters are comparable. To explore this possibility, we fix
the parameters to the values marked by cross II (μ = −1.2
and t ′ = −0.5) in Fig. 1, which is near the phase bound-
ary. Interestingly, we find a time-reversal symmetry-breaking
A1 + iB1 superconducting phase as the lowest-energy state. To
verify that the relative phase of π/2 between the A1 and the B1

order parameters is indeed the global minimum, we compare
the condensation energies of the superconducting states with
different relative phases φ. As shown in the inset of Fig. 3(a),
φ = ±π/2 gives the largest condensation energy and conse-
quently A1 ± iB1 is the lowest in energy. Due to the imaginary
B1-pairing component, time-reversal symmetry and fourfold
rotational symmetry C4 are broken in this pairing state, but
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FIG. 3. (a) Eigenvalues with open boundary conditions along
both x and y, showing four Majorana states. Upper inset: Normal-
ized condensation energy �F as a function of the relative phase φ

between A1 and B1 order parameters. Lower inset: Zoomed view of
the four Majorana states. (b) Spin-projected wave function of the four
Majorana states. (c), (d) Same as panels (a) and (b) but with disorder
V = 1.5. Upper inset of panel (c): Bulk energy gap Eg as a function
of the disorder strength V . Here, T = 0.

their combination is preserved, leading to a gap opening in
the helical Majorana edge states. However, owing to the sign
change of the B1 pairing under C4, the mass terms for adjacent
edges [(10) and (01) edges] have opposite signs. Therefore,
when these two edges meet at the corners, the mass term van-
ishes and Majorana corner modes are generated, realizing a
second-order topological superconductor [44] (see SM [56]).
To demonstrate this nontrivial topology, we study the corner
states in a geometry with open boundary conditions along
both the x and y directions. Similar to the A1 phase, we only
consider non-self-consistent eigenstates with open boundaries
taking the fully self-consistent bulk solutions. Remarkably, we
find four Majorana zero-energy states located in the super-
conducting gap, as shown in Fig. 3(a). The wave functions
corresponding to these Majorana states are localized at the
four corners (not shown). Spin characteristics of these Majo-
rana states can be visualized by looking at the spin-projected
wave functions s(i) = ∑

σn′ sgn(σ )(|un′
iσ |2 + |vn′

iσ |2), where
n′ are the four zero-energy states. In Fig. 3(b), we see that
s(i) is localized at the four corners with alternating signs
for alternating corners. We have also verified the presence
of Majorana corner states in a self-consistent calculation
with edges for smaller system sizes. Therefore, the Majorana
corner states in our numerical calculations confirm that the
A1 + iB1 state is a higher-order topological superconductor.

To analyze the stability of the A1 + iB1 state to pertur-
bations, we study the disorder effects on this phase. We
introduce nonmagnetic chemical potential disorder by adding
a term HV = ∑

i Vini to the Hamiltonian, with Vi being a
nonmagnetic impurity potential drawn from a random distri-
bution, such that Vi ∈ [−V/2,V/2] uniformly (i.e., Anderson
disorder), and perform a fully self-consistent calculation. As
shown in the inset of Fig. 3(c), the bulk gap Eg reduces with
increasing disorder strength V , but remains finite for realistic

disorder strengths of V � 2.0. Notably, the average order
parameters, shown in Fig. S4(c) of the SM [56], show more
robust behavior. The disorder-robust behavior of A1 + iB1 is
remarkable since the broken time-reversal symmetry makes
Anderson’s theorem [72] not applicable and might be related
to the presence of interactions [73–76]. We also look at the
corner states. Figures 3(c) and 3(d) show the eigenvalues and
the spin-projected wave function of the lowest-energy states
for V = 1.5. The Majorana corner states persist even in the
presence of disorder, showing the stability of the higher-order
topological superconductor. This finding is also striking from
the following point of view. It is known that the topological
nature of first-order topological phases makes Majoranas sur-
vive moderately strong disorder [77–79]. However, the corner
modes in the higher-order A1 + iB1 arise due to the sign
change of B1 pairing at adjacent edges. Now, it is commonly
believed that B1 pairing is sensitive even to nonmagnetic dis-
order [80]. Hence, the persistence of Majorana corner modes
in the presence of disorder is highly nonintuitive and opens a
new way of understanding sensitivity of higher-order topolog-
ical superconductors. It will also be interesting to investigate
in the future the effects of other models of disorder.

Discussion. We have shown that the combined effects of
van Hove singularities, Rashba SOC, and repulsive Hubbard
interactions give rise to a cascade of topological supercon-
ducting states, including a nodal B1 state (d-wave-like) with
flat-band Majorana edge modes, a fully gapped A1 state
(p-wave-like) with helical Majorana edge modes, and a time-
reversal breaking A1 + iB1 state with Majorana corner modes,
which is also disorder-robust.

It is remarkable that we find interaction-driven topological
superconducting phases in the vicinity of van Hove singu-
larities due to the presence of SOC. We emphasize that the
topological superconducting phases emerge robustly in the
Rashba-Hubbard model, independent of the size of the Rashba
SOC and survive the inclusion of further neighbor hoppings.
The size of the Rashba SOC, however, decides the doping
window where topological superconductivity is obtained. Al-
though we have presented here only results for the square
lattice, we expect these topological superconductors to arise
also in other 2D lattices, e.g., the triangular or the honeycomb
lattice, although with modified irreps, due to the different
spin-lattice symmetry groups. While we have only consid-
ered effects of a Hubbard on-site interaction, longer-ranged
interactions can bring in additional interesting aspects, which
will be investigated in a future work. For example, on kagome
lattice systems, nearest-neighbor interactions play a crucial
role due to the sublattice interference effects [81,82].

Our results provide a guide to understand and design topo-
logical superconductivity in heavy-atom superlattices [83] and
van der Waals materials [25–27]. The high variability of these
materials may allow one to tune the Fermi level to the van
Hove fillings, such that an intrinsic topological superconduc-
tor with large Tc can be realized. For example, in LAO/STO
[84] or EuO/KTO [85] it is possible to tune the carrier density,
and therefore the Fermi surface, by electric gating. With the
recent progress in experimental techniques, the strength of
the SOC can also be highly tuned. It can be tuned either by
applying an electric field [28–31] or by changing the geometry
of a superlattice. For example, SOC in the CeCoIn5/YbCoIn5
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superlattices can be adjusted by the width of the YbCoIn5

blocks [28,86]. In CeCoIn5/YbCoIn5 superlattices [28,86],
there are already prospective signatures of topological su-
perconductivity below Tc 
 2 K, a high value compared to
the topological superconductivity proposed in semiconductor-
superconductor nanowire devices [12,13]. Other promising
candidates are van der Waals heavy-atom materials [87–89].
All these experimental developments and our findings taken
together may open up a route to intrinsic topological
superconductors being used for the design of quantum
information devices. Moreover, the A1 + iB1 superconduc-
tor may show interesting diode [90,91] and piezoelectric

effects [92], since it breaks both inversion and time-reversal
symmetry.
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