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The observation of zero-bias conductance peaks in vortex cores of certain Fe-based superconductors
has sparked renewed interest in vortex-bound Majorana states. These materials are believed to be intrin-
sically topological in their bulk phase, thus avoiding potentially problematic interface physics encountered
in superconductor-semiconductor heterostructures. However, progress towards demonstration of non-Abelian
statistics of vortex Majorana modes is hindered by our inability to measure the topological quantum state of
a nonlocal vortex Majorana state, i.e., the charge of a vortex pair. In this paper, we theoretically propose a
microwave-based charge parity readout of the Majorana vortex pair charge. A microwave resonator above the
vortices can couple to the charge allowing for a dispersive readout of the Majorana parity. Our technique may
also be used in vortices in conventional superconductors and allows one to probe the lifetime of vortex-bound
quasiparticles, which is currently beyond existing scanning tunneling microscopy capabilities.

DOI: 10.1103/PhysRevB.109.L180506

Introduction. Majorana zero modes were originally pro-
posed within the context of vortices in a topological super-
conductor (SC) [1–5] and have since emerged as a captivating
subject of study in the field of superconductivity. The re-
cent discovery of zero-bias conductance peaks [6–14] in the
vortex cores of certain Fe-based superconductors [15–19]
has sparked renewed interest in vortex Majorana zero modes
(MZMs), which are predicted to be bound in these vortices
[5,20–23]. The inherent topological nature of vortices as exci-
tations within the superconducting condensate gives hope that
the bound states hosted by them would be less susceptible to
disorder, unlike Majorana approaches that require engineered
interfaces [24,25]. The key motivation behind studying MZMs
is their predicted non-Abelian braiding statistics and possible
use in a topologically protected quantum computer [3,26–29].

However, the measurement of the topological quantum
state of a nonlocal vortex MZM remains a challenge,
hindering progress toward unambiguous demonstration of
non-Abelian statistics and eventual vortex-based topologi-
cal qubits. While it is, in principle, possible to move the
vortices and associated MZMs [30–33], it will be chal-
lenging to do this adiabatically for a large vortex, and at
the same time fast enough to avoid quasiparticle poisoning,
the timescale of which in vortices is currently unknown.
Alternatively, measurement-based braiding techniques could
potentially circumvent the need for moving the MZMs [34].
Nonlocal conductance [35,36] and interferometric [37,38]
measurements have been suggested as a means to identify and
control Majorana vortex modes. Nevertheless, it is important
to note that a microwave-based technique would be optimal
for achieving fast readout [39,40].

In this paper, we propose a solution to the measurement
problem using microwave (MW) techniques, which have been
established and demonstrated to be an extremely versatile tool
to address electronic systems in various experiments [41–48].
Specifically, we present a microwave-based method for MZM

charge parity readout analogous to what has been proposed
for different platforms [39,49,50–53].

Our approach focuses on studying the coupling between
electrons in an Fe-based superconductor and the microwave
photons from a resonator positioned above it. By analyzing
the frequency-dependent transmission of the resonator, we can
achieve a dispersive readout of the nonlocal vortex Majorana
state. We provide the necessary requirements for the resonator
quality factor Q to enable the parity readout. Importantly, our
technique can also be applied to vortices in conventional su-
perconductors, offering insights into the lifetime and coherent
manipulation of vortex-bound quasiparticles, surpassing the
capabilities of the existing scanning tunneling microscopy.

General theory of MW coupling to a vortex state. The
interaction between the external electromagnetic field and the
charge density of the superconductor results in a MW cou-
pling Hamiltonian:

δH cos ωt =
∫

d3rρe(r)V (r) cos ωt, (1)

where ρe(r) is the charge density operator and V (r) cos ωt is
the scalar potential of the external electromagnetic field. This
electromagnetic field is created by a resonator which is within
less than a wavelength of the SC surface. Thus, the MW field
can be treated in the quasistatic approximation. A sketch of
the measurement setup is shown in Fig. 1(a).

In the static field approximation, screening in the super-
conductor results in decay of the field, characterized by the
screening length λTF. The scalar potential of the external elec-
tromagnetic field can be written as V (r) = V0e− z

λTF , where z
is the distance from the top surface of the superconductor and
V0 is the amplitude of the external potential.

In Eq. (1), the charge density ρe can be expressed as
ρe = − 1

2 e�†τz�, where � = ((c↑, c↓), (c†
↑, c†

↓))T is the
Nambu field operator and τz = diag(1, 1,−1,−1). In order
to expand the field operator in the exact eigenbasis of the
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FIG. 1. Dispersive readout of vortex MZM parity. (a) Schematic
circuit model. The red square shows the cavity resonator, and the
blue squares show the capacitive coupling to the SC vortex state. The
microwave response of the vortex pair, represented by the charge-
charge correlation function �(ω), depends on the MZM parity as
described in Eq. (6). (b) Transmission vs frequency in the detuning
regime |E1 − ωc| � ωcζ , EM. Here E1 and EM are the energies of the
first bound state and Majorana state, ζ is the dimensionless charge
[see above Eq. (8)], and ωc is the resonant frequency of the cavity.
The parity readout measures 〈iγ1γ2〉, the occupation number parity
of the Majorana state on the top surface. We take here the first bound
state energy E1 ≈ 2ωc, EM = 0, ζ = 0.015, and δζ = 0.02. These
parameters correspond to the critical cavity Q factor Qc ≈ 103, and
in the plot, we take Q = 104 � Qc, so these peaks can clearly be
resolved.

unperturbed Hamiltonian H0 [given by Eq. (10)], we define
�n as the spinor wave function of the eigenstate with energy
En and �n as the second quantized annihilation operators of
these quasiparticles.

The eigenstates of the system exhibit a particle-hole sym-
metry (PHS) that is represented by an antiunitary operator P .
For each eigenstate �n with energy En, also another eigenstate
�−n = P�n with energy −En exists. The corresponding an-
nihilation operator satisfies �−n = �†

n . We consider energies
below the SC gap and include the excited vortex-bound states
(Caroli–de Gennes–Matricon states). The lowest energy state
in the system is the Majorana state �M with energy EM, and its
corresponding operator is given by �M = 1

2 (γ1 − iγ2), where
γ1 and γ2 are two Majorana operators, as shown in Fig. 1. We
aim to read out the occupation number nM = �

†
M�M [or its

parity, (−1)nM = iγ1γ2] of this Majorana zero mode.
Expanding the Nambu spinor � in terms of �n,

� =
∑
En>0

(�n�n + �−n�
†
n ), (2)

the MW coupling (1) can be written as

δH = V0

∑
En>0

qn,n

(
�†

n�n − 1

2

)

+ 1

2
V0

∑
En>0

∑
m �=n

Em>0

[qn,m�†
n�m + qn,−m�†

n�
†
m + H.c.]. (3)

Here we introduced the matrix elements of the (surface)
charge operator q̂ = 2

∫
d3rρee−z/λTF , e.g.,

qn,m = −e
∫

d3r(�∗
nτz�m)e−z/λTF . (4)

Because the charge operator preserves PHS, the matrix el-
ements obey the same symmetry, encoded by the relations
qn,−m = −q∗

−n,m and qn,−n = 0.
Microwave readout of Majorana parity. In circuit quantum

electrodynamics [54], the MW coupling between a resonator
and the superconductor allows us to read out the Majo-
rana parity [52]. The electromagnetic fields induced by the
resonator interact with the superconductor in the manner
described by the Hamiltonian δH , Eq. (3). This interaction
influences the complex transmission coefficient τ (p)(ω) that
relates the output and input photonic fields of the resonator.
Under the limit L1C1 
 LC [see Fig. 1(a)] and frequency
close to the cavity resonance ωc = 1/

√
LCtot, we find

τ (p)(ω) ≈ κ

i(ω − ωc) + κ + iωc�(p) (ω)
2Ctot

, (5)

where κ = 2/(CtotR∗) is the escape rate of the cavity
and p = (−1)nM denotes the Majorana parity. We denote
by �(p)(ω) the parity-dependent charge-charge correla-
tion function. In the time domain, it is given by �(p)(t )
= − i

h̄�(t )〈[q̂(t ), q̂(0)]〉p, where �(t ) is the Heaviside step
function. As shown in Fig. 1(a), Ctot = C + C1, where C and
C1 are the capacitances of the resonator and the superconduc-
tor, respectively. The resonator is coupled with capacitance
Cκ to the input-output transmission line with resistance R0,

and the effective resistance R∗ = 1+ω2
cC2

κ R2
0

ω2
cC2

κ R0
incorporates the

coupling strength Cκ [55].
The interaction between the resonator and the supercon-

ductor induces transitions between the Majorana state and
the vortex-bound states localized near the top surface. The
correlation function �(p) contains information about these
transitions and can be written as a sum (from here we set
h̄ = 1):

�(p)(ω) =
∑

l �=±M,El >0

(
1

ω
(p)
l + ω + iδ

+ 1

ω
(p)
l − ω − iδ

)

[|ql,+M|2(nM − nl ) − |ql,−M|2(nM − 1 + nl )], (6)

where ω
(p)
l = El + pEM is the transition frequency and EM,

El , nM, and nl are the energies and occupation numbers of the
Majorana state and the bound state l . The infinitesimal level
width δ > 0 accounts for causality, and ql,±M are the charge
matrix elements between the bound state l and occupied or
unoccupied (+ or −M) Majorana state. At low temperatures,
in the absence of occupied bound states (nl = 0), we obtain
�(+)(ω) ∝ |ql,−M|2 for nM = 0 and �(−)(ω) ∝ |ql,+M|2 for
nM = 1. The unequal charge matrix elements ql,+M and ql,−M

and transition frequencies ω
(p)
l result in different �(±)(ω),

which suggests that the MW coupling can be used to probe
the Majorana occupation number nM.

The critical cavity Q factor. The parity-dependent correla-
tion function �(p) allows for the microwave readout of MZM
parity based on the transmission [Eq. (5)]. For simplicity, let
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us consider only the first vortex-bound state l = 1 on the sur-
face. Our primary interest lies in the strong coupling regime,
where the coupling strength |q1,±M| greatly exceeds the level
width δ. In this regime, the transmission |τ (p)|2 versus ω dis-
plays two parity-dependent peaks at ω > 0. Parity readout is
contingent upon the ability to distinguish peaks with different
parities, which sets limitations on the cavity Q factor Q = ωc

κ
.

Here we define a minimum critical cavity Q factor Qc required
for parity discrimination:

Q−1
c = ��c

�c
, (7)

where ��c = �(+)
c − �(−)

c is the peak separation of two par-
ities in Fig. 1(b), �c = 1

2 (�(+)
c + �(−)

c ) is the average of peak
positions, and �(±)

c are the shifted resonator frequencies of
p = ±1 parity [56], i.e., |τ (p)(�(p)

c )|2 = 1.
Equation (7) determines the approximate requirement Q >

Qc for the sufficient separation of different parity resonances.
There are two variables that affect the critical cavity Q factor
Qc: the parity-dependent charge matrix elements q1,±M and
the parity-dependent transition energies ω

(p)
1 associated with

the Majorana energy splitting EM. We define the dimension-

less variable ζ±M =
√

U±M

ωc
and the capacitive energy U±M =

q2
1,±M

2Ctot
.

In the resonant regime, when the resonator frequency is
close to the energy of the first bound state, characterized
by |ωc − E1| 
 ωcζ , where ζ = 1

2 (ζ+M + ζ−M), the trans-
mission curve of each parity exhibits two peaks of width
κ , separated by 2ωcζ . The parity difference causes a shift
in the position of the peaks by ωcδζ − 1

2δE , where δζ =
ζ+M − ζ−M is the dimensionless transition matrix element dif-
ference and δE is the change in resonance frequency given by
δE = −2EM. It is important to note that these two contribu-
tions have opposite effects, which can affect the behavior of
the transmission curve in this regime. By setting the shift in
peak position equal to the escape rate κ , we obtain

Qc ≈
∣∣∣∣ ωc

ωcδζ + EM

∣∣∣∣, |ωc − E1| 
 ωcζ . (8)

It is worth mentioning that Qc diverges at δζ = −EM/ωc since
the peak position does not shift, and, thus, parity detection
becomes difficult.

In the detuning regime, where the resonator frequency
is significantly detuned from the first bound state’s energy
(|E1 − ωc| � ωcζ , EM), the full expression for Qc is more
complex compared to the resonant regime (for a detailed
derivation, see Ref. [56]). Nevertheless, Qc can be approxi-
mated as

Qc ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣∣ E2
1 −ω2

c

4ωcE1ζ δζ

∣∣∣, δζ

ζ
� EM

(
E2

1 +ω2
c

)(
E2

1 −ω2
c

)
E1

,(
E2

1 −ω2
c

)2

4ωc

(
E2

1 +ω2
c

)
EMζ 2

,
δζ

ζ

 EM

(
E2

1 +ω2
c

)(
E2

1 −ω2
c

)
E1

,

(9a)

(9b)

where |E1 − ωc| � ωcζ , EM. The two different forms high-
light the parity readout based on the parity dependence of
the charge matrix element δζ or the transition energy EM.
The first form [Eq. (9a)] depends only on the change in the
dimensionless charge matrix element difference δζ as the

parity-dependent factor, while the second form [Eq. (9b)]
depends only on the change in transition energy 2EM as the
parity-dependent factor.

Model for Fe-based superconductor. In order to estimate the
feasibility of the parity readout discussed above, we will use
a microscopic Hamiltonian to evaluate the transition matrix
element between the Majorana state and the vortex-bound
states.

We will analyze a two-band effective Bogoliubov–
de Gennes (BdG) model for an Fe-based superconductor
[20,57–61]. The Hamiltonian in the Nambu basis �(k) =
(c1↑, c1↓, c2↑, c2↓, c†

1↑, c†
1↓, c†

2↑, c†
2↓)T can be represented as

HSC = 1
2

∫
dk�†HSC�, where the BdG Hamiltonian HSC is

given by

HSC =
(

H0(k) − μ i�0σy

−i�∗
0σy μ − H∗

0 (−k)

)
, (10)

where μ = 5meV represents the chemical potential and
�0 = 1.8meV is the bulk pairing gap. In our lattice model,
H0(k) = νηx(σx sin kxa + σy sin kya + σz sin kza) + m(k)ηz,
with m(k) = m0 − m1(cos kxa + cos kya) − m2 cos kza,
where ηi and σi represent the Pauli matrices that account
for the orbital and spin degrees of freedom, respectively
[57]. In this basis, P = τxK , where τx represents the Pauli
matrix that accounts for the particle-hole degrees of freedom
and K denotes complex conjugation. In our numerical
simulation, we set ν = 10meV, a = 5 nm (the lattice
constant), m0 = −4ν, m1 = −2ν, and m2 = ν, so that the
system is in the topological phase [57,60], which can have
vortex Majorana zero modes.

In the context of our model, we consider the s-wave super-
conducting pairing potential in the presence of vortices that
extend along the z axis. For a single vortex centered at the
origin, the pairing term can be expressed as [62]

�1−v(w) = �0
w√

|w|2 + ξ 2
, (11)

where ξ = 5 nm represents the characteristic radius of the
vortex and w = x + iy.

In our specific model [shown in Fig. 1(a)], we consider the
presence of two vortices, each hosting a pair of MBSs within
the Fe-based superconductor. Assuming the vortices are far
apart, we can approximate the pairing term as follows:

�2−v(w) = �0
w − w1√

|w − w1|2 + ξ 2

w − w2√
|w − w2|2 + ξ 2

, (12)

where w1 and w2 correspond to the respective locations of the
two vortices (expressed as complex numbers).

The two-vortex pairing term and the BdG Hamiltonian ex-
hibit a Z2 symmetry represented by RZ2 = R(z, π )τzσz. This
operator is characterized by a π rotation around the z axis
with respect to the midpoint of the two vortices, taken here
as the origin. Its action on a function f (x, y, z) is given by
R(z, π ) f (x, y, z) = f (−x,−y, z). The symmetry operator has
eigenvalues ±1. The manifestation of this symmetry results
in the observation of double degeneracy in the system’s spec-
trum, which is evident in the inset of Fig. 2. The operator
RZ2 commutes with the Hamiltonian (1), establishing a se-
lection rule that governs the allowed MW transitions within
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FIG. 2. Eigenvalues vs distances with 50 realizations in the dis-
ordered system. The mean values and standard deviations are shown
for each energy. The inset shows the spectrum in a clean system,
illustrating the degeneracy of excited state pairs at large distances.
This degeneracy arises from the symmetry RZ2 discussed below
Eq. (12).

the system. According to the selection rule, transitions within
the system can occur only between states that have the same
eigenvalues of RZ2 . Since the PHS operator P = τxK changes
the eigenvalue of RZ2 , at least one of the transition matrix
elements qn,+M, qn,−M vanishes.

However, the presence of random disorder in realistic con-
ditions disrupts the symmetry, resulting in the elimination of
the double degeneracy in the spectrum (Fig. 2). Consequently,
this compromises the strict adherence to the selection rule.
None of the transition matrix elements qn,+M and qn,−M are
generally zero (Fig. 3). Thus, in realistic experimental set-
tings, the selection rule is not rigorously maintained.

Numerical studies of two-vortex systems. We employ a
numerical approach to investigate a two-vortex system. To
perform the numerical analysis, we discretize the Hamilto-
nian given by Eq. (10) and utilize the KWANT package [63]
in PYTHON to implement and solve the corresponding tight-
binding model. The system under consideration is a cuboid
with dimensions 500 × 250 × 25 nm3 [refer to Fig. 1(a) for
an illustration], discretized with a lattice constant a = 5 nm.

We utilize the results obtained in Ref. [56] to calculate
the screened electric potential of two vortices [62], which is
then included in the real-space version of the Hamiltonian
in Eq. (10), similar to the way the chemical potential μ is
incorporated. We take the screening length λTF as one lat-
tice constant. Our investigation encompasses both clean and
disordered systems. To model the disorder, we introduce a
position-dependent random potential into the Hamiltonian.
The disorder potential follows a normal distribution, with the
standard deviation of this distribution matching the gap �0.

FIG. 3. The ratio of parity-dependent charge difference |δqn| =
|qn,+M | − |qn,−M | to the total charge qn = |qn,+M | + |qn,−M | vs dis-
tance for 50 disorder realizations. The charges between MZMs and
the two lowest excited states are shown with their mean values and
standard deviations. The ratio in the clean system is always 1 due to
the selection rule discussed below Eq. (12).

The spectrums and charge matrix elements acquired through
numerical computations are depicted in Figs. 2 and 3.

Discussion. We showed that a microwave coupling enables
the parity readout of a nonlocal Majorana zero mode hosted
in a vortex pair. We quantified the sensitivity of the readout by
defining a critical cavity Q factor Qc [Eqs. (8)–(9b)], required
by the resonant cavity coupled to the vortices. To estimate
a typical value of Qc, let us consider a resonant frequency
of 5 GHz (much below a typical superconducting gap �0)
and effective capacitance of 1 × 10−12 F of a typical coplanar
waveguide resonator [55]. In our simulation, we find that the
MZM energy EM for a system with a large vortex separa-
tion d = 36ξ can be neglected while the first excited state is
approximately at E1 ≈ 0.58�0 � ωc (see Fig. 2), implying
the system is in the detuning regime. The relevant charge
matrix elements are numerically estimated to be q1 ≈ 0.009e
and δq1 ≈ 0.002e, the ratio of which is shown in Fig. 3. In
this case, Eq. (9a) gives the required critical cavity Q factor
Qc ∼ 108, which is close to state-of-the-art experimental con-
ditions [64]. Below distance d ≈ 20ξ , the system is still in the
detuning regime of Eq. (9a). There, Qc ∼ 106, well within the
reach of the experiments.

Our method offers a compelling approach to measur-
ing the non-Abelian nature of Majorana zero modes. By
employing two resonators to measure quantities sz = iγ1γ2

and sx = iγ2γ3, we can effectively measure two noncom-
muting parities of MZMs. By monitoring these observables
[65,66], we can estimate quasiparticle poisoning time and
MZM hybridization EM. Additionally, incorporating a third
resonator to measure sy = iγ1γ3 and an ancillary pair of
MZMs would enable measurement-based braiding [34,35,67]
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within timescales shorter than the quasiparticle poison-
ing time when the total parity is conserved (this may be
achieved with mesoscopic Coulomb islands [29,67], a likely
requirement for universal quantum computation [68]). Alter-
natively, braiding can be achieved through time-dependent
control of MZM hybridization in a nontopologically protected
manner [69]. Thus, the resonator-based approach not only
allows one to measure the essential quasiparticle poisoning
time but also enables one to demonstrate the non-Abelian
characteristics of vortex-based MZMs, thus holding signif-
icant promise for advancing topological quantum comput-

ing and related technologies. Furthermore, the non-Abelian
characteristics prove valuable in discerning between Ma-
joranas and non-Majorana low-energy states induced by
pronounced disorder [70].
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