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Electrical activity of topological chiral edge magnons
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Topological magnon insulators support chiral edge excitations, whose lack of electric charge makes them noto-
riously difficult to detect experimentally. We show that relativistic magnetoelectric coupling universally renders
chiral edge magnons electrically active, thereby facilitating electrical probes of magnon topology. Considering
a two-dimensional out-of-plane magnetized topological magnon insulator, we predict a fluctuation-activated
electric polarization perpendicular to the sample edges. Furthermore, the chiral topological electromagnons give
rise to a unique in-gap signal in electrical absorption experiments. These results suggest THz spectroscopy as a
promising probe for topological magnons.
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Introduction. Topology has become a key concept in con-
densed matter physics, with the quantized Hall conductance
being a prominent example [1,2]. Although topological band-
structure theory can be carried over to magnons [3–8], i.e., the
elementary excitations of magnetic order [9], their bosonic
statistics does not give rise to quantized transport [10–17].
Furthermore, magnons lack electric charge, which, although
being an attractive trait for technologies free of Joule heating
[18], renders them “dark” in charge-probing spectroscopies.
In addition, inelastic neutron scattering, which is the conven-
tional probe of magnons, reveals their bulk band gaps, but fails
to detect edge states [19,20]. In short, the state of the art does
not offer an appropriate tool for the detection of topological
magnons, and new ideas are needed [21–28].

Despite their charge neutrality, magnons can be ma-
nipulated by external electric fields, e.g., indirectly by
magnetoelectrically controlling the ground state’s spin tex-
ture [29,30]. Crucially, magnons also respond dynamically to
electric fields. Those electrically active magnons, so-called
electromagnons, have been studied by THz spectroscopy
[31–36], by magnon-photon coupling in cavities [37–39], and
by parametric amplification of topological magnons [22]. The
experimental proof of principle for driving magnons electri-
cally has already been provided [40].

Herein, we investigate the electrical activity of topological
chiral edge magnons in ferromagnets in order to explore their
spectroscopic signatures. Knowing that a flow of magnons
induces electric fields [41,42] by virtue of the vacuum mag-
netoelectric (VME) effect [43–45], we first show that a
flow of chiral edge magnons universally causes an electric
edge polarization. Motivated by this result, we consider the
Katsura-Nagaosa-Balatsky (KNB) mechanism [46] to study
the electric polarization of a two-dimensional topological
magnon insulator (TMI) and to disentangle contributions from
topologically trivial and nontrivial magnons. Second, we in-
vestigate the response of topological magnons to external
alternating electric fields in TMI nanoribbons and flakes, in
which edge magnons cause electric absorption peaks within
the magnon bulk band gap. Our results suggest that chiral

edge magnons are electrically active and that terahertz spec-
troscopy could evidence their existence experimentally.

Edge-only approximation. We start with a simplified but
instructive picture that is complemented in the next section.
Magnons carry a magnetic moment m, giving rise to a rel-
ativistic electric dipole p = v × m/c2 (v magnon velocity,
c speed of light), which is the VME effect resulting from
Lorentz transformation from the magnon’s rest frame to the
laboratory frame [41,43–45]. For chiral edge magnons in two-
dimensional and out-of-plane magnetized TMI, m ‖ ẑ and

FIG. 1. Propagating chiral edge magnon in a disk-shaped topo-
logical magnon insulator. Arrows indicate velocity (yellow), mag-
netic dipole moment (green), and electric dipole moment (red, due
to the vacuum magnetoelectric effect) of the wave packet (trans-
parent sphere). The electric field (light red lines) follows from the
generalized Biot-Savart law. The dark (light) blue arrows represent
localized spins in their ground (excited) state. The red oscillating
curve illustrates an external alternating electric field, which excites
and probes chiral edge magnons.
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FIG. 2. Electric field of a magnetic disk in the xy plane and with
a radius of 100 nm. (a) Field distribution in the xz plane (y = 0).
Arrows and arrow colors indicate directions and magnitude of the
electric field, respectively, while black lines indicate equipoten-
tial lines. The disk is indicated by the black rectangle at z = 0.
(b) Schematic of a voltage measurement setup. (c) Estimated distance
dependence of the voltage due to the vacuum magnetoelectric effect
of topological magnons for the setup of panel (b). Dots represent
numerical data, while straight and dashed lines are linear fits to U (r)
for kBT = 1 meV (11.6 K). For parameters, see the text.

p ‖ v × ẑ points along the local edge normal, as indicated in
Fig. 1. The sign of p depends on the magnetization direction
and on the velocity (hence, on the chirality) of the edge
magnons. Since topological magnons do not exist in the mag-
netic ground state, finite temperatures are required. Although
bulk magnons also exist at nonzero temperatures, they are
neglected for now, since they are delocalized throughout the
bulk and compensate each other’s electric dipole moment. In
contrast, the chiral edge magnons with opposite p are spatially
separated, allowing for nonzero local electric fields.

The chiral magnon edge current causes an electric field
E = −∇φ, whose scalar potential,

φ(r) = μ0Im

4π

∮
[dr′ × m̂(r′)] · r − r′

|r − r′|3 , (1)

is obtained from a generalized Biot-Savart law [41,42] (μ0 is
the vacuum permeability, Im is the magnetization current, and
m̂ is the direction of the magnetic dipole).

For a magnetic current carried by chiral magnons on a
circular trajectory of radius R, we write r = ρêρ (ϕ) + zêz in
cylindrical coordinates; êz (êρ) is out-of-plane (radial) to the
magnetic current loop. If R � ρ, we approximate

φ(ρ, ϕ, z) ≈ μ0Im

4

R2(ρ2 − 2z2)

(ρ2 + z2)5/2
, (2)

while for ρ = 0 the exact potential reads

φ(0, ϕ, z) = −μ0Im

2

R2

(R2 + z2)3/2
(3)

[see the Supplemental Material (SM) [47]]. Thus, the potential
drops with distance as z−3 in the far-field limit. The sign of
Im, i.e., the chirality of the edge magnons, determines the
direction of the electric field E. As expected, the E field lines
point radially outward from the edge of the disk and resemble
a dipole field close to the edge [see Fig. 2(a)]. The largest
electric field is found in the vicinity of the edges hosting the
chiral edge magnons.

To estimate E, we compute Im = gμBv

2π

∫ π/a
−π/a dkρ(εk ) (g is

the Landé g-factor, μB is the Bohr magneton, a is the lattice
constant, and v is the edge magnon’s group velocity). The
occupation is given by ρ(ε) = [exp (ε/(kBT )) − 1]−1 (kB is
the Boltzmann constant, and T is the temperature). We assume
a = 1 nm and, in order to describe van-der-Waals magnets
[20,48], v = 1000 ms−1, εk = h̄vk + 12 meV (i.e., the topo-
logical band gap is 4 meV). The voltage U (r) = φ(r, 0, 0) −
φ(0, 0, r) between two leads at a distance r from the edge and
the center of the disk is evaluated numerically [Fig. 2(b)]. Its
r-dependence, shown in Fig. 2(c) for selected temperatures,
exhibits two regimes: r � R with an r−1-dependence, and
r � R with an r−3-dependence. The crossover is around R =
100 nm. These results suggest that a nanovolt-sensitive mea-
surement could prove the existence of chiral edge magnons.
We now contrast the edge-only approximation (EOA) with a
microscopic theory that takes into account all magnon modes.

Microscopic theory. We consider a two-dimensional TMI
on a honeycomb lattice, which is an effective model for van-
der-Waals magnets. The Hamiltonian

H = −
3∑

r=1

Jr

2h̄2

∑
〈i j〉r

Si · S j + 1

2h̄2

∑
〈i j〉2

Di j · (Si × S j )

− A

h̄2

∑
i

(
Sz

i

)2
(4)

includes Heisenberg exchange interactions Jr up to third near-
est neighbors, out-of-plane Dzyaloshinskii-Moriya interaction
(DMI) Di j = ±Dz ẑ between second nearest neighbors, and
out-of-plane anisotropy A (h̄ is the reduced Planck constant).
In the following, we choose relative parameters: J1 = 1, J2 =
0.25, J3 = 0, Dz = −0.1, A = 0.1, and S = 1. The ground
state is an out-of-plane collinear ferromagnet.

The model (4) is known to yield topological magnons in
linear spin-wave theory [7,8], which are shown for the arm-
chair nanoribbon geometry in Fig. 3(b). We present the linear
spin wave theory and discuss its validity in the present context
in the SM [47]. The in-gap states have positive (negative)
group velocity and are localized on the left (right) edge. The
relation between velocity and localization depends on the
Chern number, which can be reversed with the magnetization
or the sign of Dz.

Assuming a topologically trivial electronic band gap, the
charge dynamics of the electrons on the energy scale of the
magnetic interactions far below the electronic gap of a Mott
insulator is governed by the magnetoelectric coupling [49].
The relativistic electric dipole between two spins at sites
i and j reads pi j = qi j ei j × (Si × S j )/h̄2 according to the
spin-current [or Katsura-Nagaosa-Balatsky (KNB)] mecha-
nism [46,50] (qi j is the effective charge, ei j is the bond vector
from site i to site j, and Si and S j are spin operators). As
shown in the SM [47], the VME and the KNB effects are
equivalent for magnons in Heisenberg ferromagnets, but the
KNB effect can be larger by five to six orders of magnitude.
In the following, we study the implications of the KNB effect
for topological magnons.

We expand pi j = p(0)
i j + p(1)

i j + p(2)
i j + · · · by means of the

Holstein-Primakoff transformation [51], where the superscript
denotes the number of bosons (explicit expressions for the
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FIG. 3. Electric polarization and magnons of a nanoribbon in armchair nanoribbon geometry with 32 layers. (a) Layer-resolved electric
polarization due to the Katsura-Nagaosa-Balatsky effect for various temperatures (as indicated) projected onto the outward-facing in-plane
normal vector n̂ of the left edge. Inset: section of the nanoribbon including layer labels and the normal vector n̂. The system is finite (infinite)
along the horizontal (vertical) direction. (b) Magnon spectrum. Probability amplitudes of the left (red) and right (blue) edge [defined as the
four outermost layers at each edge side; cf. the inset in panel (a)] are encoded by color. Inset: hidden band covered by the lowest band.
(c) Energy-resolved contributions of the magnons to the electric polarization at the left edge [highlighted in panel (a) by a gray background]
for two selected temperatures (as indicated). Each bar comprises contributions accumulated in an energy interval of J1S/2. The blue bars are
multiplied by 3 for better visibility. Parameters read J1 = 1, J2 = 0.25, J3 = 0, Dz = −0.1, A = 0.1, and S = 1. Results for other terminations
can be found in the SM [47].

operators are provided in the SM [47]). p(0)
i j is the classical

ground-state polarization, which is zero in our case. The ex-
pectation value of p(1)

i j vanishes in equilibrium, but encodes
the dynamic electric dipole moment associated with spin dy-
namics, and the bilinear p(2)

i j tells about the expectation value

per magnon. In equilibrium, the fluctuation-induced p(2)
i j is the

dominant contribution to the macroscopic polarization.
Below, we consider the layer-resolved polarization,

Pn = q

h̄2L

∑
〈i j〉
i∈Ln

ei j × (Si × S j ), (5)

for all layers n in the nanoribbon, which is a sum over all
intersite electric dipole moments pi j in that layer (Ln is the
set of all sites in layer n, and L is the circumference of the
nanoribbon). The thermal equilibrium expectation value of
Pn (originating from p(2)

i j ) projected onto the in-plane normal
vector n̂ of the left edge, shown in Fig. 3(a), features nonzero
values at the edges of the nanoribbon, while it vanishes in
the bulk. Inversion symmetry dictates that the polarizations
at opposite edges are antiparallelly oriented. However, in the
EOA based on the VME effect and the chirality of the edge
magnons [cf. Fig. 3(b)], one would expect a negative projected
polarization at the left edge, which is opposite to the numerical
results.

This discrepancy is understood by analyzing the energy-
resolved contributions to the left-edge polarization

∑3
n=0 Pn

[see Fig. 3(c); layers 0–3 are highlighted in Fig. 3(a)]. There
exist not only contributions from within the topological band
gap, but also much larger ones from energies below the gap.
The latter arise from trivial subgap edge modes [see Fig. 3(b)],
whose thermal occupation is larger than that of the nontrivial
in-gap states. The existence of trivial subgap edge modes is
unavoidable: these arise from the weaker effective internal
magnetic field for spins at the edges (missing neighbor sites).
The subgap states highlighted in the inset of Fig. 3(b) (these
are hidden below the lowest band) have a velocity opposite

to that of the nontrivial mode localized at the same edge, and
therefore an opposite electric dipole moment. The contribu-
tions of trivial subgap modes to

∑3
n=0 Pn dominate over those

of the nontrivial in-gap modes at all temperatures. Further-
more, the trivial contributions proved robust against disorder
and manipulations of the edges (see the SM [47]).

In short, the equilibrium properties of the topological
magnons are overshadowed by those of trivial magnons, and
our microscopic theory deems the EOA incomplete. Fur-
thermore, the edge polarization may include a ground-state
contribution that results from spin canting induced by stray
fields.

Absorption of alternating electric fields. The above discus-
sion demonstrates the need to go beyond thermal equilibrium,
in which subgap states are favored over in-gap states. As we
show in the SM [47], the in-gap states do not respond to alter-
nating magnetic fields. Therefore, we study the possibility to
address resonantly the magnons with alternating electric fields
E(t ) by including a perturbation

H ′ = −V P · E(t ) = q

h̄2

∑
〈i j〉

(ei j × E(t )) · (Si × S j ) (6)

to the Hamiltonian (4) (P is the total electric polarization).
This form suggests that the external electric field induces a
time-varying DMI, the corresponding DMI vector of which is
out-of-plane (in-plane) for in-plane (out-of-plane) fields.

The linear response of P to the perturbation, Δ〈Pμ(ω)〉 =
χμν (ω) Eν (ω), is quantified by the electric susceptibility
χμν (ω) (μ, ν = x, y, z; implicit summation over ν). In Kubo’s
formalism [52,53], χμν (ω) = −VCR

PμPν
(ω) is obtained from

the retarded polarization autocorrelation function CR
PμPν

(ω),
which is evaluated in the SM [47]. There are various types
of contributions χ (i)

μν to χμν , among them one- (i = 1; lead-

ing order derived from p(1)
i j ) and two-magnon processes (i =

2; leading order derived from p(2)
i j ). While the one-magnon

processes are governed by the (out-of-plane or transversal)
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FIG. 4. Electric susceptibility of a 120-layers-wide nanoribbon
with armchair terminations. (a) Imaginary part of the one-magnon
susceptibility vs energy. (b) Magnon spectrum with localization at
the left (red) and right (blue) edge encoded by color. ab is the bulk
lattice constant of the underlying honeycomb lattice, while a = √

3ab

is the lattice constant of the nanoribbon. The width of the Lorentzians
is η = 0.01J1S. Parameters as for Fig. 3. Results for other termina-
tions can be found in the SM [47].

fluctuations of the magnons’ electric dipole moments about
their mean value, the two-magnon processes are governed
by the bilinear part of the total dipole moment that is
also responsible for the finite mean value in equilibrium
(longitudinal fluctuations). Therefore, one-magnon processes
appear for out-of-plane electric fields, while two-magnon pro-
cesses appear for in-plane electric fields. Since according
to Eq. (6) only the former induces in-plane DMI, which
breaks magnon-number conservation, only one-magnon pro-
cesses may change the magnon number, while two-magnon
processes can only cause interband transitions of thermally
excited magnons. Thus, contrary to χ (1)

μν , χ (2)
μν can be frozen

out. We therefore focus on one-magnon processes in the rest
of the paper, while delegating further details, mathematical
expressions, derivations, and results for two-magnon pro-
cesses to the SM [47].

The imaginary part

Imχ (1)
μμ(ω) = πV

N∑
n=1

∣∣(P(1)
μ

)
n

∣∣2
δ(h̄ω − εn,k=0) (7)

of the diagonal electric one-magnon susceptibility (ω > 0, N
is the number of bands) contains the linear electric dipole
element (P(1)

μ )n for component μ and band n, whose gen-
eral expression is derived in the SM [47]. The δ-distribution,
which we replace by a Lorentzian of width η for numerical
calculations, ensures energy conservation, such that resonance
frequencies appear at the eigenfrequencies of the system,
while only magnons at k = 0 can be probed due to momentum
conservation.

Returning to the honeycomb model, absorption appears
only for μ = z: it shows a pronounced in-gap peak just below
ε/(J1S) = 6, which is attributed to topological magnons (see
Fig. 4). In the SM [47], we show that the absorption only takes
place at the edges, therefore, only modes with nonzero proba-
bility amplitude at the edges may contribute. Bulk modes have
nonzero probability amplitudes at the edges as well, but cause
peaks above and below the gap.

FIG. 5. Electric susceptibility of a flake of 1152 spins cut into
four (nine) smaller equally sized tiles [see the legend in panel (a)].
(a) Energy-resolved imaginary part of the electric one-magnon sus-
ceptibility. For the nine-tile spectrum (green line), selected in-gap
resonances (1)–(4) are marked with arrows. The gray background
indicates the topological bulk band gap. (b) Real-space probability
distributions of the four electrically active magnon modes (1)–(4)
marked in panel (a), one tile for each mode (as indicated). Nine of
these tiles make up the green absorption spectrum in panel (a). The
width of the Lorentzians is η = 0.01J1S. Parameters as for Fig. 3.

Together with inelastic neutron scattering, which can lo-
cate gaps in the bulk magnon spectrum, in-gap peaks of
Imχ (1)

zz (ω) could enable the detection of topological magnons
in principle. Momentum conservation tells that only topolog-
ical magnons with k = 0 contribute to the signal; however,
it is not guaranteed that topological magnons exist at this
particular k (see the SM for a counterexample [47]). Thus,
in-gap peaks are not a necessary consequence of topological
edge modes. Furthermore, absorption at a sample’s edge could
be overshadowed by other sources and hence might be hard to
resolve in experiment.

The above suggests that momentum conservation has to
be lifted. We therefore consider the electric absorption of
flakes instead of nanoribbons. While a large flake is roughly
similar to a nanoribbon, increasing deviations are expected
upon shrinking the flake. We have computed the electric one-
magnon absorption of a flake encompassing 1152 spins [blue
line in Fig. 5(a)] that is “cut” into four (orange line) and nine
equally sized smaller tiles (green line). This cutting increases
the signal magnitude of infinite-wavelength peaks due to the
introduction of internal edges and leads to additional peaks
from in-gap states with smaller wavelengths.

To prove the topological origin of the in-gap peaks for the
green line, we have selected four peaks [labeled (1)–(4) in
Fig. 5(a)], for which the real-space probability distribution of
the corresponding magnon states is shown in Fig. 5(b). Each
flake depicts one of the nine tiles responsible for the green
absorption spectrum in Fig. 5(a). The darker the color, the
stronger the localization of the corresponding magnon mode
at that site. In the cases (1), (2), and (3), the electrically active
modes have vanishing weights in the bulk. In contrast, mode
(4) is delocalized throughout the bulk. The topological bulk
gap, indicated by a horizontal gray stripe in the background
of Fig. 5(a), includes modes (1)–(3), while (4) falls outside
this energy window, demonstrating the topological origin of
the in-gap absorption peaks.

Quantitative estimate. The effective charge is estimated
as q ≈ 10−4|e| to 10−3|e| for GaV4S8 [54], CrBr3 [55], and
YIG [56] (cf. the SM [47]; |e| is the elementary charge).

L180412-4



ELECTRICAL ACTIVITY OF TOPOLOGICAL CHIRAL … PHYSICAL REVIEW B 109, L180412 (2024)

Here, we present calculations based on Heisenberg-DMI and
Heisenberg-Kitaev models for the experimental parameters
of CrI3 [57] (cf. the SM [47]), a putative TMI. The three-
dimensional electric edge polarization, which depends on the
weight of the edges in the probed volume, is estimated to
about 10 µC/ m2 within the first four layers. For the imag-
inary part of the three-dimensional electric susceptibility,
which is inversely proportional to the linewidth η, we obtain
6×10−3ε0 for η = 0.1 meV (ε0 is the vacuum permittivity).
This value decreases with increasing size of the nanoribbon,
as is expected for edge effects. We expect that our pre-
diction qualitatively applies as well to other ferromagnetic
TMI, such as Lu2V2O7 [12], Cu(1,3-benzenedicarboxylate)
[14,19], CrSiTe3 and CrGeTe3 [20], and VI3 [58], all of
which have electronic band gaps much larger than the magnon
bandwidth [19,20,48,59–66].

Discussion. We have investigated the electric properties of
topological chiral edge magnons in equilibrium and nonequi-
librium. In the edge-only approximation, topological magnons
give rise to an electric edge polarization by thermal fluctua-
tions even in centrosymmetric systems. However, the model
calculations based on the KNB effect identified further con-
tributions by trivial edge modes, which dominate the overall
signal. Nonetheless, by addressing the topological magnons
directly with alternating electric fields of corresponding
frequencies, we demonstrated that these modes may be

electrically active, as is indicated by peaks in the one-magnon
electric susceptibility. These topological electromagnons have
infinite wavelengths and, depending on their specific disper-
sion relation, might not be present in every nanoribbon. The
electric absorption by topological edge magnons in flakes can
be tuned by the edge-to-area ratio so that additional peaks
from magnons with a finite wavelength appear, and the signal
of magnons with infinite wavelength is increased. Hence, we
believe that THz spectroscopy can be regarded a probe for
topological magnons.

Future research in “topological electromagnonics” could
be directed at a local THz probe of chiral edge states, as
provided by scattering-type scanning near-field optical mi-
croscopy [67–70], at a topological electromagnon-polariton
formation in THz cavities [38], and at the existence of
topological electromagnons beyond the relativistic KNB
mechanism [50]. We hope that our results provide an ad-
ditional impetus to search for candidate materials with
nontrivial magnon band structures and strong magnetoelectric
coupling, and to explore the relation of electromagnons to
magnon orbitronics [71,72].
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