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d-wave Hall effect and linear magnetoconductivity in metallic collinear antiferromagnets
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In this Letter we theoretically predict a distinct class of anomalous Hall effects occurring in metallic collinear
antiferromagnets. The effect is quadratic and d-wave symmetric in an external magnetic field. In addition, the
electric current, transverse to the current voltage drop and the magnetic field in the predicted effect are all in the
same plane. The studied theoretical model consists of two-dimensional fermions interacting with the Néel order
through momentum-dependent exchange interaction having a d-wave symmetry. We also find unusual linear
magnetoconductivity in this model.
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The anomalous Hall effect (AHE) is one of the exper-
imental tools which sheds light on the symmetries of the
crystal structure of the material. The effect primarily requires
time-reversal symmetry breaking. The details of the crystal
structure and magnetic order can vary the AHE. For example,
in ferromagnets with magnetization M (or the Zeeman part of
external magnetic field B) it is expected [1] there will be

jAHE ∝ [M × E], (1)

electric current response, where E is the electric field cor-
responding to the voltage drop. This is the ferromagnetic
analog of the regular Hall effect [2,3]. The main ingredients
of AHE in ferromagnets is the combination of the exchange
(momentum-independent) spin splitting and the spin-orbit
coupling [4–9] of the conducting fermions. For example, a
two-dimensional fermion system with Rashba spin-orbit cou-
pling and Zeeman-like ferromagnetic exchange is one of the
most studied models in relation to the anomalous Hall effect
[10–13]. One of the main mechanisms of the AHE is the
anomalous part of the fermion velocity [1], which, however, is
due to the Berry curvature [14,15] of the conducting fermions.

It is then possible that in systems with C1v and C3v

symmetry the magnetic-field-driven AHE can have in-plane
configuration [16–21], where all three vectors, namely, the
electric current, transverse voltage drop, and external mag-
netic field, are in the same, as in the example below, x-y
plane

jIPHE = σIPHE[[B × ez] × ey] × E, (2)

here the unit vectors ez and ey (in the z and y direc-
tions, respectively) are defined by the spin-orbit coupling
(see Ref. [19] for details), and σIPHE is the in-plane Hall
conductivity. The first two vector products filter out only
the By component multiplied by the ez unit vector. This
effect was experimentally observed in Refs. [22–24]. In
addition, the authors of Refs. [17–19] suggested that, in sys-
tems with C3v symmetry σIPHE ∝ B2

y − 3B2
x vanishing at By =

±√
3Bx overall making the jIPHE current 2π

3 periodic in the

in-plane magnetic field, which was experimentally observed
in Ref. [24].

The situation with AHE in collinear antiferromagnets is
currently under study [25,26]. In simple collinear antiferro-
magnets with two sublattices, there is a symmetry under a
combination of time-reversal and translation operations which
does not allow for spin-splitting of conducting fermions,
therefore, making the anomalous Hall effect vanish. However,
microscopic surroundings of each sublattice [26] may make a
difference. For example, the aforementioned symmetry will
be broken if the surroundings of the spin-up sublattice are
different from the surroundings of the spin-down one. See the
left plot in Fig. 1 for schematics. The remaining symmetry
is a combination of time-reversal and π

2 rotation operations,
which will allow for the spin-splitting of the conducting
fermions shown in the right plot in Fig. 1. In the level of
the Hamiltonian, such spin-splitting can be understood as the
momentum-dependent g-factor which obeys the symmetry of
the lattice. Research of materials with momentum-dependent
g-factor have been studied for decades [27–33]. However, the
existence of such a g-factor in antiferromagnetic materials was
pointed out only recently [26,34–41]. It is understood that
conducting fermions in, for example, RuO2, MnF2, FeSb2,
MnTe Néel-ordered antiferromagnets and many more can be
described by such spin-splitting [26,34,36–38]. Experimen-
tally measured [39] spin-filtered electric transport is one of
the manifestations of such spin-splitting [40]. We note that
there are other proposals [42] on how the asymmetry of the
sublattices in Néel-ordered antiferromagnets may result in a
nonzero AHE.

In this paper we show that, in addition to the known
cases of the anomalous Hall effect, given by Eqs. (1) and
(2), metallic antiferromagnets with the spin-split conducting
fermions described above may show very unusual magnetic-
field-driven anomalous Hall effect proportional to the second
power of the magnetic field, given by

jDWHE ∝ BxBy[ez × E], (3)
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FIG. 1. Left: Schematics of two-dimensional square lattice in
the x-y plane with Néel order in the z-direction. Red/blue circles
correspond to two atoms in the unit cell with spin-up/down order.
Local environment composed of black circles is different around
red/blue atoms. There is a symmetry of π

2 rotation together with time
reversal: the π

2 rotation connects the local environment of the two
elements while the time-reversal flips the spin. Right: Fermi surface
of fermions corresponding to Hamiltonian Eq. (5) with λ = 0. Red
corresponds to spin up, while blue to spin down.

where ez is defined by the direction of the Néel vector. We
will refer to it as the d-wave Hall effect, hence the DWHE
abbreviation in Eq. (3). Indeed the BxBy product has the
aforementioned symmetry. It is notable that just like in the
in-plane Hall effect in Eq. (2) all three vectors, namely, the
electric current, transverse voltage drop, and the magnetic
field, are in the same plane. Such a response is not prohibited
by the Onsager relation, as it is overall cubic in time-reversal
symmetry breaking fields since ez → −ez in Eq. (3) under the
time-reversal operation.

In addition to Eq. (3) we find another experimentally rele-
vant response, namely, the linear magnetoconductivity (LMC)

jLMC ∝ Bz(Exey + Eyex ), (4)

which, together with the regular Hall effect, will result in
anisotropic Hall conductivity, i.e., σxy �= σyx. Again, this effect
is allowed by the Onsager relation because the response in
Eq. (4) is actually quadratic in time-reversal symmetry break-
ing fields since Bz is selected by Néel order ez as Bz → (ez · B)
and both change sign under time reversal.

To show the effect, we study a two-dimensional metallic
antiferromagnet system shown in the left plot in Fig. 1. The
Hamiltonian of the conducting fermions interacting with the
Néel vector and consistent with the lattice symmetry are writ-
ten as

Ĥ0 = k2

2m
+ λ(kxσy − kyσx ) + βσzkxky, (5)

where σ are Pauli matrices describing the spin of the con-
ducting fermions. The term with β is the interaction of
the conducting fermions with the antiferromagnetic Néel
vector (coined as the altermagnetism by the authors of
Refs. [26,37,38]). This term breaks the time-reversal sym-
metry. As noted, it is a combination of difference in atomic
configurations around ordered spins and the antiferromagnetic
order which generates this term, not just the antiferromagnetic
order alone. For an example see the left plot in Fig. 1, where
a combination of translation and time-reversal symmetries
is broken due to the local configuration, while a π

2 rotation
together with the time reversal is the symmetry of the lattice

which supports the term β. We include Rashba spin-orbit
coupling denoted by λ. In addition, we apply an external
magnetic field in the x-y plane which acts only on spins of
fermions (Zeeman magnetic field)

ĤZ = hxσx + hyσy, (6)

where h = 1
2 gμBB, g is the g-factor and μB is the Bohr mag-

neton. Both terms will be needed in our analysis of the electric
current responses. In addition, the orbital part of the magnetic
field in the z-direction will be considered. We assume that
finite electron density with chemical potential μ > 0 does not
suppress the antiferromagnetic order, as well as the fact that
the external Zeeman magnetic field does not cant the antifer-
romagnetically ordered spins in any direction. This canting is
plausible if the field is smaller than the magnetic anisotropy
which favors the z-direction for the Néel vector.

The Hamiltonian Eq. (5) has not been derived by us from
microscopics; it is an effective model which corresponds to
the lattice symmetry [26,37,38]. However, one may think
of it as a model of correlated fermions on a square lattice.
Then an antiferromagnetic order develops in the vicinity of
the half-filling, gapping out the fermions. The slight doping
with fermions populates the conduction band with quadratic
spectrum [first term in Eq. (5)]. If, in addition, there is a
different local environment of spins shown in the left figure in
Fig. 1, the spectrum of fermions will acquire a term with β

in Eq. (5). One may also think of a term with β as a d-wave
Pomeranchuk or Stoner-like magnetic instability [30,31].

We are interested in the electric current responses of this
system to external electric field. Let us first understand what
kind of responses can be deduced from the symmetry argu-
ment. The symmetry group corresponding to the unperturbed
system, which is the fermions on a simple square lattice
without anything else, is the D4h group. The other terms are
treated as perturbations, and in this particular symmetry group
[43], field β transforms as the �

(+)
3 element of the group,

magnetic field Bz as �
(+)
2 , and Bx/y as �

(+)
5 , the electric field

as �
(−)
5 , λ as �

(−)
2 , and the electric current transforms as �

(−)
5 .

The elements of the group obey the multiplication rules, for
example, listed in Refs. [43–45]. We must find all products
that are linear in electric field, linear in β, to second order in
the magnetic field, and to whatever order in λ that transform
as �

(−)
5 and hence can be a part of the electric current. In

addition, we require the Onsager relation for the conductivity
σi j (B, β ) = σ ji(−B,−β ) to satisfy. By performing the exer-
cise of multiplying the group elements we get for the electric
current

j = σDE + σH[E × B] + σ2[(E · B)B − B2E]

+ σLMCβBz(Exey + Eyex ) + σDWHEβBxBy[ez × E]. (7)

The first line here is consistent with Refs. [3,46,47]. A term
with σD is the regular Drude conductivity, a term with σH =
1
BωcτσD, where ωc = eB

mc is the cyclotron frequency, is the
regular Hall effect due to the Lorentz force [2], σ2 is due to
the Lorentz force as well (in Weyl semimetals this term can
be due to the chiral anomaly, for an example see Ref. [48],
and in ferromagnets it is called the planar Hall effect if
B is replaced by the magnetization M [49]) and exists in
any three-dimensional electron system [3,46,47], σLMC is the
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LMC expected in the time-reversal symmetry-broken systems
[48,50–55], and finally a term with σDWHE is the DWHE. The
last two terms in Eq. (7) are unique to the system described
by Ĥ0 + ĤZ. Let us demonstrate how they appear (please see
the Supplemental Material [56] for more details). According
to the multiplication table given in Refs. [43–45], Ex/yBzβ

transform as �
(−)
5 × �

(+)
2 × �

(+)
3 = �

(−)
5 while Ex/yBxByβ as

�
(−)
5 × �

(+)
5 × �

(+)
5 × �

(+)
3 = �

(−)
5 . Indeed, the two combina-

tions transform as electric current. In addition to the Lorentz
force contribution to σH there might be a contribution from
the regular anomalous Hall effect given by Eq. (1) if M there
is replaced by Bzez.

If tge mechanism behind each term in the first line of
Eq. (7) is understood [3], the terms in the second line have
not been discussed anywhere before and are the subjects of
the analysis below. We first introduce the notations. The spec-
trum for s = ± branches out corresponding to the Ĥ0 + ĤZ

Hamiltonian reads

ε
(±)
k = k2

2m
±

√

2

k + λ2k̃2, (8)

where λk̃x = λkx + hy and λk̃y = λky − hx and 
k = βkxky

were introduced for brevity. The spinors are �k,+ =
[cos( ξk

2 )eiχk ,− sin( ξk
2 )]T and �k,− = [sin( ξk

2 )eiχk , cos( ξk
2 )]T,

where [. . .]T is the transposition, cos(ξk ) = 
k√

2

k+λ2 k̃2
and

χk = arctan( k̃y

k̃x
) is the phase.

The anomalous Hall effect [10] as well as LMC [48,50,51]
are defined by the nontrivial Berry phase of conducting
fermions. The intrinsic mechanism [10] of the anomalous Hall
effect is given by

jDWHE = e2

[∫
dk

(2π )2

∑
n=±

�
(n)
k F (εk,n)

]
× E, (9)

where F (ε) is the Fermi-Dirac distribution function. Follow-
ing the lines of Ref. [19] the Berry curvature

�
(±)
z;k = 2Im(∂kx �

†
k,±)(∂ky�k,±)

= ∓ λ2

2
(

2

k + λ2k̃2
)3/2 (
k − k̃x∂x
k − k̃y∂y
k ) (10)

in our model is derived to be

�
(±)
z;k = ∓λ2
k − λβ(kxhx − kyhy)

2
(

2

k + λ2k̃2
)3/2 . (11)

It is clear that if hx = hy = 0 the integral of the Berry curva-
ture over the angles vanishes because of the d-wave symmetry.
Thus, the anomalous Hall effect is absent in this case. We
define σDWHE as in Eq. (7), i.e., as jDWHE = σDWHEβBxBy[ez ×
E]. When hx �= 0 and hy �= 0 the DWHE is nonzero and we
plot it in Fig. 2. In addition, we give approximate analytical
expressions for various limits of the physical parameters. In
the limit of hx/y � λkF we have

σDWHE ≈ σ0|λ|kF

(
βk2

F

)4 + 11
(
βk2

F

)2
(λkF)2 + 16(λkF)4[(

βk2
F

)2 + (2λkF)2
]5/2 ,

(12)

FIG. 2. Plot of the d-wave Hall conductivity σDWHE given by
Eqs. (12) and (13). Values of the parameters used in the numeri-
cal calculation are hx

λkF
= 0.25, hy

λkF
= 0.15, and T = 0. We define

σ0 = ( 1
2 gμB)2 e2νF

(λkF )2 for brevity.

where νF = m
π

is the density of states, kF = √
2mμ is the

Fermi momentum, and where we define σ0 = ( 1
2 gμB)2 e2νF

(λkF )2

for brevity. This dependence is shown in red in Fig. 2. In the
same limit hx/y � λkF, but for βk2

F < λkF we approximate

σDWHE ≈ σ0

[
(λkF )2

(λkF )2 − h2
+ 1

16

(λkF )2 − 8h2

(λkF )4

(
βk2

F

)2

− 1

64

6(λkF )2 + h2

(λkF )6

(
βk2

F

)4
]
. (13)

This dependence is shown in blue in Fig. 2. When both hx 	
βk2

F and hy 	 βk2
F we approximate

σDWHE ≈ σ0
(λkF)4

h4
, (14)

where h2 = h2
x + h2

y . Thus the magnitude of the corresponding
part of the electric current decays with the magnetic field as
an inverse square of the field. Let us now briefly mention
the insulating case. We set k2

2m → 0 by assuming m → ∞ and

μ = 0, then the spectrum (8) becomes ε
(±)
k = ±

√

2

k + λ2k̃2.
By setting μ = 0 the system becomes insulating with a gap
equal to 2

√
h2

x + h2
y at kx = ky = 0 and to 2β

hxhy

λ2 at k̃x = k̃y =
0. In Fig. 3 we plot σDWHEβBxBy, the proportionality coeffi-
cient in the right-hand side of Eq. (9) between the current and
the electric field. Only the valence band contributes at T = 0
to the current. The conductivity is quantized as e2

2 as expected
[10,15], vanishes when either hx or hy is zero, and changes
sign in accordance with d-wave symmetry.

FIG. 3. Quantized DWHE in insulating system. Insulator is
achieved by setting k2

2m → 0 and μ = 0. Plot of the anomalous Hall
conductivity σDWHE as a function of the angle φ of the in-plane Zee-
man magnetic field. Here hx = h cos(φ) and hy = h sin(φ). Values of
the parameters used in the numerical calculation are h = 0.5, μ = 0,
λ = 0.5, and β = 1.5.
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We note that the predicted DWHE in the three-dimensional
system will be experimentally measured together with the ∝
(E · B)B = (ExBx + EyBy)(Bxex + Byey) term in the electric
current. In this term it will appear that the BxBy(Exey + Eyex )
part is looking like the predicted DWHE, however, the latter is
∝ βBxBy(Exey − Eyex ), and one will have to filter it out from
the former.

Finally, we note that there are other mechanisms con-
tributing to the anomalous Hall effect [10,12,13]. They are
the skew-scattering and side-jump scattering processes due
to the impurities, which are expected to alter the amplitude
of the predicted-here DWHE but not its symmetry. Their con-
sideration is left for future research.

Let us now discuss linear magnetoconductivity. Although,
as we show above, the integral of the Berry curvature over
the angles vanishes when hx = hy = 0, the Berry curvature
can still contribute to the electric current through, for ex-
ample, modification of the density of states [15]. To study
the electric current, we employ the method of the kinetic
equation

∂n(s)
k

∂t
+ k̇(s) ∂n(s)

k

∂k
+ ṙ(s) ∂n(s)

k

∂r
= Icoll

[
n(s)

k

]
, (15)

with equations of motion updated in the presence of the

Berry curvature [15], ṙ(s) = ∂ε
(s)
k

∂k + k̇(s) × �
(s)
k , and k̇(s) =

eE + e
c ṙ(s) × B. The current is given by j = e

∑
s=±

∫
k[1 +

e
c (B · �

(s)
k )]ṙ(s)

k n(s)
k . We approximate the kinetic equation only

by intraband scattering, Icoll[n
(±)
k ] = (n̄(±) − n(±)

k )τ−1, where
n̄(s) = (4π )−1

∫
sin(θ )dθdφ[1 + e

c (B · �
(s)
k )]n(s)

k is the distri-
bution function averaged over the angles and τ is the fermion’s
lifetime due to the elastic scattering on impurities. Interband
scatterings are also allowed, but only by virtue of the spin-
orbit coupling λ since, without it, the bands are spin polarized
and there is no scattering between them. Then these processes
will contribute in higher order in spin-orbit coupling than what
we will derive. Besides, there is no chiral anomaly in the
system and, therefore, interband scattering processes are not
important.

The kinetic equation is approximated as usual; we follow
the lines of Refs. [48,51] to obtain for the LMC defined as

jLMC = σLMCβBz(Exey + Eyex ), the following expression:

σLMC = −2e2νF
eτ

mc

|λ|kF√
(2λkF)2 + (

βk2
F

)2
. (16)

We note that it is the correction to the density of states
[15] due to the e

c (B · �
(s)
k ) nonzero product that contributes

to this current. In Ref. [51] it was shown that linear mag-
netoconductivity in ferromagnets can be δj = α1(E · B)M +
α2(E · M)B + α3(M · B)E, where the Onsager relation re-
quires α1 = α2 (see also the comment in Ref. [52]) whose
parts were recently experimentally observed in Refs. [53–55].
Here we find a distinct structure of the LMC. There is strong
evidence that the predicted-here jLMC was already observed
in Ref. [41] (the red arrows in the central figure in Fig. 2
in Ref. [41]). There, a sign of the voltage drop transverse to
the passed current has a d-wave symmetry with respect to the
direction of the current. In the AHE given in Eqs. (1), (2), and
(3), the sign does not depend on the direction of the passed
current, while Eq. (4) does and it has the observed d-wave
symmetry. Indeed, according to Eq. (4), the transverse to the
current voltage drop vanishes when the current is passed at
π
4 + π

2 n angles.
We see that the results decay as a power law in the high

density limit. On the other hand, antiferromagnetism does not
survive extensive doping of the system with conducting elec-
trons. Therefore, our results are expected to be experimentally
observed in the low-doping regime of antiferromagnets. We
speculate that our predicted DWHE might be relevant to the
polar Kerr effect observed in the pseudogap phase of cuprates
[57]. Indeed, either the polar Kerr effect or Faraday rotation
is due to the off-diagonal elements of the dielectric tensor,
which are defined by the Hall effect in the medium. Then
the question becomes which of the anomalous Hall effects,
Eqs. (1), (2), or (3), contributes.
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