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The entanglement of many localized spins (LSs) within solid magnetic materials is a topic of great basic and
applied interest, particularly after becoming amenable to experimental scrutiny where recent neutron scattering
experiments have witnessed macroscopic entanglement in the ground state (GS) of antiferromagnets persisting
even at elevated temperatures. On the other hand, spintronics and magnonics studies assume that LSs of antifer-
romagnets are in unentangled Néel GS, as well as that they evolve, when pushed out of equilibrium by current
or external fields, according to the Landau-Lifshitz-Gilbert (LLG) equation viewing LSs as classical vectors
of fixed length. The prerequisite for applicability of the LLG equation is zero entanglement in the underlying
many-body quantum state of LSs. In this study, we initialize quantum Heisenberg ferro- or antiferromagnetic
chains hosting S = 1/2, S = 1, or S = 5/2 LSs into an unentangled pure state and then evolve them by quantum
master equations (QMEs) of Lindblad or non-Markovian type, derived by coupling LSs weakly to a bosonic
bath (due to phonons in real materials) or by using additional “reaction coordinate” in the latter case. The time
evolution is initiated by applying an external magnetic field, and entanglement of the ensuing mixed quantum
states is monitored by computing its negativity. We find that non-Markovian dynamics never brings entanglement
to zero, in the presence of which the vector of spin expectation value changes its length to render the LLG
equation inapplicable. Conversely, Lindbladian (i.e., Markovian) dynamics ensures that entanglement goes to
0, thereby enabling quantum-to-classical transition in all cases—S = 1/2, S = 1, and S = 5/2 ferromagnets or
S = 5/2 antiferromagnets—except for S = 1/2 and S = 1 antiferromagnets. Finally, we investigate the stability
of an entangled antiferromagnetic GS upon suddenly coupling it to bosonic baths.
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Introduction. The fate of entanglement of many interacting
quantum spins, localized at the sites of crystalline lattices of
magnetic materials [1] or in optical lattices of their quantum
simulators [2], under finite temperature or nonequilibrium
conditions is a topic of great contemporary interest. For
example, recent experiments [3–5] have succeeded in witness-
ing [6–8] multipartite entanglement [3,9] of macroscopically
large numbers of spins hosted by antiferromagnetic insulators
(AFIs) in equilibrium up to surprisingly high temperatures
of T � 200 K [3]. Transient entanglement in nonequilibrium
AFIs could also be witnessed via very recently proposed
schemes [10,11]. Due to finite temperature and/or nonequi-
librium, such systems inevitably generate mixed entangled
states, also in the focus of our study [Eq. (2)]. Such quan-
tum states are far less understood [12–16] than the pure [2]
entangled ones. In computational quantum physics, quantum
spin systems are a standard playground for developing algo-
rithms, such as tensor networks (TNs) [17], that can efficiently
encode ground states (GSs) containing low-entanglement—
however, entanglement growth in nonequilibrium [18] poses
a significant challenge for these algorithms [19] and the role
of dissipative environment in limiting the so-called “entangle-
ment barrier” is intensely explored [20].

It is insightful to invoke a pedagogical example of an
entangled GS, such as that of an AFI chain hosting localized
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spins (LSs) S = 1/2, which has been realized experimentally
[21] and is described by the Heisenberg Hamiltonian [22]

ĤH = J
N−1∑
i=1

Ŝi · Ŝi+1. (1)

The GS is entangled [9] as it cannot be expressed as the direct
product of multiple single-spin states in any basis, as obvious
from its form for N = 4 sites: |GS〉AFI = 1√

12
(2 |↑↓↑↓〉 +

2 |↓↑↓↑〉 − |↑↑↓↓〉 − |↑↓↓↑〉 − |↓↓↑↑〉 − |↓↑↑↓〉 ). Its
energy, AFI〈GS|Ĥ |GS〉AFI = −2J , is lower than the
energy, 〈Néel|Ĥ |Néel〉 = −J , of an unentangled Néel
state, |Néel〉 = |↑↓↑↓〉, which is the precise meaning
behind “quantum spin fluctuations” [23] sintagma. Here
Ŝα

i = Î1 ⊗ · · · ⊗ Sσ̂ α ⊗ · · · ⊗ ÎNAFI acts nontrivially, as the
Pauli matrix σ̂ α , in the Hilbert space of spin at site i; Îi

is the unit operator; and J > 0 is an antiferromagnetic
exchange interaction. The expectation value of spin,
〈Ŝi〉 = 〈GS|Ŝi|GS〉 ≡ 0, vanishes as a direct consequence
[24–26] of the nonzero entanglement entropy of the AFI GS.

In the case of ferromagnetic insulators (FIs), quantum spin
fluctuations [23] are absent [27] and both classical ↑↑ . . . ↑↑
and its unentangled quantum counterpart |↑↑ . . . ↑↑〉 are
GSs of the respective classical and quantum Hamiltonians.
However, excited states of the FI chain—such as the one-
magnon Fock state [28,29] |1q〉 = 1√

N

∑N−1
n=0 eiqxn |↑ . . .↑︸ ︷︷ ︸

n

↓

↑ . . .↑︸ ︷︷ ︸
N−n−1

〉, where q is the wave vector and xn = na is the x
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FIG. 1. Time dependence of QME-computed 〈Ŝα
1 〉(t ) vs classical-LLG-computed Sα

1 (t ) of LSs (a), (b) S = 1/2 or (c), (d) S = 5/2 on site
i = 1 of the FI chain of N = 4 sites. (e)–(h) Time dependence of entanglement negativity EN (t ) [Eq. (11)] between two halves of the FI chain
in the case of quantum evolution (circles) in panels (a)–(d), respectively. The time evolution of open quantum system of LSs is computed using
either Lindblad (i.e., Markovian) or RC (i.e., non-Markovian) QME with the bosonic bath temperature T = |J|.
coordinate along the chain (with the lattice constant a)—are
macroscopically entangled [30,31]. This is also the case of
multimagnon states [32]. The robustness of entanglement of
such states has been studied for a long time in quantum com-
puting (using analogous multiqubit states known as W states)
[16,33], as well as more recently in “quantum magnonics”
[29] using quantum master equations (QMEs) formulated in
the formalism of second quantization [34,35]. The single and
multi-magnon states of AFIs are also entangled [36].

On the other hand, it is commonly assumed in antiferro-
magnetic spintronics [37–41] that the GS of an AFI is an
unentangled Néel state; as well as that excited states (like
magnons [42,43]) of either an AFI or a FI, as triggered ex-
perimentally by injected current [41,44,45] or electromagnetic
radiation [46–52], are classical and governed [44,46,47,51–
58] by the celebrated Landau-Lifshitz-Gilbert (LLG) equa-
tion [59–61]. It is also widely believed that a large spin value S
[24] and/or room temperature ensure applicability of the LLG
equation. This plausible notion is motivated by the eigenvalue
of the Ŝ2

i operator being S2(1 + 1/S), instead of S2, which
suggests that quantum effects become progressively less im-
portant for S > 1. However, even for a single quantum spin
the required value of S to match quantum and classical LLG
dynamics can be unrealistically large [62,63] in the presence
of magnetic anisotropy (or any quadratic or higher-order terms
in the spin Hamiltonian) [64]. Also, quantum corrections per-
sist for all S < ∞ [62,63], vanishing as (2S)−1 in the classical
limit [65]. Importantly, most of the standard magnetic materi-
als host LSs with rather small S � 5/2 [66].

The search for a rigorous proof that quantum dynamics
of a single spin can transition to classical LLG dynamics,
due to interaction with a dissipative environment like the
bosonic bath and conditions imposed on it, has a long history
dating back to the archetypical spin-boson model [67] and
recent generalizations [68] completing the proof while also
unraveling the nature of quantum corrections to classical LLG
dynamics. However, such proofs [68] do not explain how

quantum dynamics of many spins can transition to classical
dynamics to be describable by a system of coupled LLG
equations [69], often applied without scrutiny to both ferro-
and antiferromagnets in spintronics [44] and magnonics [70].
The key prerequisite for such a transition is the absence of
entanglement [24,25]; i.e., the underlying quantum state of
many LSs must remain unentangled pure |σ1(t )〉 ⊗ |σ2(t )〉 ⊗
· · · ⊗ |σN (t )〉 or unentangled mixed [12–16]

ρ̂(t ) =
∑

n

pnρ̂
(1)
n (t ) ⊗ ρ̂ (2)

n (t ) · · · ρ̂ (N )
n (t ), (2)

at all times t in order for time evolution of quantum-
mechanical expectation values 〈Ŝi〉 to be able to transition to
the solutions [69] Si(t ) of coupled LLG equations:

〈Ŝi〉(t ) 
→ Si(t ). (3)

Otherwise, in the entangled quantum state the length of vec-
tors 〈Ŝi〉(t ) is changing in time [71] which obviously cannot be
mimicked by Si(t ) of fixed length [69] in the LLG equation. In
Eq. (2), ρ̂ (i)

n is the density matrix of spin at site i. We consider
usage of the LLG equation in the context of atomistic spin
dynamics (ASD) [69], where each atom of the lattice hosts
one classical vector Si.

In this Letter, we view AFIs and FIs as open quantum
systems [72–74] by coupling them either (i) weakly to a
bosonic bath, assumed to arise due to bosonic quasiparticles in
solids such as phonons, whose tracing out allows one to derive
[75] the universal Lindblad QME [Eq. (6)], or (ii) strongly
to a single bosonic mode which, in turn, interacts weakly
with the bosonic bath, so that tracing over both allows us to
derive a non-Markovian QME within the so-called “reaction
coordinate” (RC) method [76]. We monitor the presence of
entanglement in the density matrix of all LSs ρ̂(t ) via the
entanglement negativity EN (t ) [12–16], and we concurrently
compare quantum 〈Ŝi〉(t ) vs classical Si(t ) trajectories in
Figs. 1–3.
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FIG. 2. Panels (a)–(h) are counterparts of Figs. 1(a)–1(h), but using an AFI chain composed of N = 4 sites. Additional cases of AFI or FI
chains hosting S = 1 LSs, or including their additional interactions (such as easy-axis anisotropy, long-ranged dipole-dipole interaction, and
Dzyaloshinskii-Moriya interaction), are provided in the SM [87].

Models and methods. We consider FI (J < 0) or AFI (J >

0) chain modeled by the Heisenberg Hamiltonian ĤH [Eq.
(1)], which can include interaction with a homogeneous ex-
ternal magnetic field switching on for t � 0,

Ĥ = ĤH −
∑

i

gμBBext (t � 0) · Ŝi, (4)

where g is electron g-factor and μB is the Bohr magneton.
We set h̄ = 1 and kB = 1. These models of realistic magnetic

FIG. 3. Time dependence of (a), (b) spin expectation values at
sites i = 1 and 2, (c) entanglement negativity EN (t ) [Eq. (11)] be-
tween two halves of the AFI chain, and (d) overlap between the chain
density matrix ρ̂(t ) and pure states in the Néel subspace. The AFI
chain has N = 4 sites, as well as an impurity introducing the z-axis
anisotropy at site i = 1 [Eq. (12)]. The Lindblad equation (6) evolves
ρ̂(t ) upon coupling the AFI chain to the bosonic bath at t = 0, start-
ing from the pure entangled GS but exhibiting Néel “checkerboard”
order 〈Ŝz

i 〉 = −〈Ŝz
i+1〉 �= 0 [26].

materials [3,21] are made open quantum systems by coupling
them with bosonic baths, so that the total Hamiltonian be-
comes

Ĥtot = Ĥ + Ĥbath + V̂ . (5)

Here Ĥbath models a set of independent baths, one per
each spin [75,77], as harmonic oscillators [67], Ĥbath =∑

ik wik â†
ik âik , using an operator âik (â†

ik ) which annihilates
(creates) a boson in mode k. The boson interacts with the spin
operator at site i [72] via V̂ = ∑

k gk
∑

i Ŝi(âik + â†
ik ), where

gk are the coupling constants. By assuming small gk , a QME
of the Lindblad type [78,79] can be derived by tracing out
the bosonic bath and by expanding the resulting equation to
second order. Rather than relying on traditional approaches
for the derivation of the Lindblad QME—such as using Born,
Markov, and secular approximations [76,78,80]—we follow
the procedure of Ref. [75] for the universal Lindblad QME
which evades difficulties of the secular approximation [81].
For example, for systems with (nearly) degenerate eigenener-
gies, as is the case of the FI and AFI models we consider,
secular approximation leads to an improperly derived [80]
Lindblad QME for LSs because of assuming that energy split-
ting is much bigger than fluctuations due to the bath. The same
problem has been addressed in a number of recent studies
[82,83], besides the resolution offered in Ref. [75].

The universal Lindblad QME [75] considers a single Lind-
blad operator L̂i for each spin, so that only N such operators
are needed to obtain

d ρ̂/dt = −i[Ĥ, ρ̂] +
N∑
i

L̂iρ̂L̂†
i − 1

2 {L̂†
i L̂i, ρ̂}, (6)

where we also ignore typically negligible Lamb-shift cor-
rections [76] to the Hamiltonian. The Lindblad QME is
time-local due to the assumption that bath-induced changes
to the system dynamics are slow relative to the typical corre-
lation time of the bath. We compute L̂i operators as a power
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series (where we use the cutoff NL � 20),

L̂i =
NL∑

n=0

cn(adĤ )n[Ŝi], cn = (−i)n

n!

∫ ∞

−∞
dtg(t )t n, (7)

thereby evading the need for exact diagonalization [75] of FI
or AFI Hamiltonians. Here adĤ [X ] = [Ĥ, X ] and the jump
correlator function is defined via the Fourier transform of
the spectral function of the bath, J (ω) = 2π

∑
δ(ω − ωk ), as

g(t ) = 1√
2π

∫ ∞
−∞ dω

√
J (ω)e−iωt . For numerical calculations,

we considered an Ohmic [68] spectral function with a rigid
ultraviolet cutoff,

J (ω) = �ω

ωm
nBE(ω)	(ωm − ω), (8)

where � is the reorganization energy representing the mag-
nitude of fluctuations and dissipation, ωm characterizes how
quickly the bath relaxes towards equilibrium, nBE(ω) is
the Bose-Einstein distribution, and 	 is the Heaviside step
function.

The Lindblad QME [Eq. (6)] is only valid for a weak
system-bath coupling, as it assumes a second-order truncation

in gk . Since this is not always the case, several approaches
[72,74] exist to treat strong system-bath coupling, such as
polaron, star-to-chain, and thermofield transformations [84],
as well as the RC method [81]. The RC method we employ
is based on the Bogoliubov transformation, and it allows one
to construct a new bosonic mode b̂ called the RC. This mode
is coupled strongly to the system, but weakly to a residual
bosonic bath, while conserving the bosonic commutation re-
lations. The new Hamiltonian of the system then becomes

Ĥtot = Ĥ + λ
∑

i

Ŝi(b̂ + b̂†) + �b̂†b̂ + ĤRC-B + Ĥbath, (9)

where λ is the strength of the coupling between the RC and the
system, � is the frequency of the RC, ĤRC-B = ∑

k>1 g̃k (b̂ +
b̂†)(ĉk + ĉ†

k ) is the RC-bath coupling Hamiltonian, and Ĥbath is
the bosonic bath Hamiltonian considered to be identical to the
case used in the derivation of Eq. (6), but with one less bosonic
mode and with properly transformed coupling coefficients.
Thus, the parameters λ and � are expressed [85] in terms of

the parameters in Eq. (8), λ2 = 1
6π

√
5
3�ωm and � =

√
5
3ωm,

while the spectral function of the residual bath,

J ′(ω) = 2
√

5/3πωω2
mnBE(ω)

3
{
π2ω2 + 4ωarctanh(ω/ωm)[ωarctanh(ω/ωm) − 2ωm] + 4ω2

m

} , (10)

is independent of the original coupling strength �. This allows
us to derive a QME which has the same form as Eq. (6), but it
uses Ĥ 
→ Ĥ + λ

∑
i Ŝi(b̂ + b̂†) + �b̂†b̂. Since λ ∝ √

�, the
coupling of the system to the RC can be arbitrarily strong
without affecting coupling to the residual bath. Despite be-
ing time-local, this Lindblad QME including RC captures
non-Markovian effects [86]. They, otherwise, require inte-
grodifferential QMEs with a time-retarded kernel [72–74]. In
order to reduce the computational complexity for many LSs,
an effective Hamiltonian was built by considering [86] only
the lowest energy states of the RC; i.e., the matrix representa-
tion of b̂ is truncated to finite size 15 × 15.

Results and discussion. We solve Eq. (6) for Lindbladian
dynamics, as well as for non-Markovian dynamics when the
RC is included in the Hamiltonian, for FI and AFI chains
composed of N = 4 sites with periodic boundary condi-
tions hosting spins S = 1/2 or S = 5/2, as well as S = 1 in
the Supplemental Material (SM) [87]. The two QMEs are
solved using the fourth-order Runge-Kutta method, where
|J| = 1 sets the unit of energy. For Lindbladian dynamics
we use � = 0.01|J|, while for non-Markovian dynamics we
use stronger coupling � = 0.1|J|, and the cutoff frequency
is chosen as ωm = 3|J|. Note that choosing a too large ωm

brings the entanglement of LSs to 0 on a very short timescale.
The initial condition for the FI is the unentangled pure
state ρ̂(0) = |�〉〈�|, where |�〉 = |→→→→〉 with all spins
pointing along the x axis. The magnetic field applied for t � 0,
gμBBz = 0.8|J|, is along the z axis. The initial condition for
the AFI is the unentangled pure state ρ̂(0) = |�〉〈�|, where
|�〉 = |σ1σ2σ1σ2〉 with 〈σ1(2)|Ŝ1(2)|σ1(2)〉 pointing along θ1 =
1/8 or θ2 = π − 1/8 and φ1(2) = 0 in spherical coordinates.

In the course of time evolution, ρ̂(t ) can become entangled,
which is quantified by computing the entanglement negativity
[12–16] between the left half (LH) and the right half (RH) of
the chain

EN [ρ̂(t )] = ln ||ρ̂TRH ||1 = ln
∑

n

|λn|, (11)

where ||Â||1 = Tr
√

Â†Â is the trace norm of the operator Â,
λn are the eigenvalues of ρ̂TRH , and the matrix elements of the
partial transpose with respect to the RH of the chain are given
by (ρ̂TRH )iα; jβ = (ρ̂ ) jα;iβ . While the standard von Neumann
entanglement entropy SLH of half of the chain [7,18] can
be nonzero even for the unentangled mixed state in Eq. (2),
nonzero EN necessarily implies entanglement and genuine
quantum correlations between the two parts [12–16].

Initially, both the FI and the AFI exhibit dynamical buildup
of entanglement signified by EN > 0 in Figs. 1 and 2, respec-
tively. However, Lindbladian dynamics quickly brings EN →
0 in the FI hosting S = 1/2 [Fig. 1(e)], S = 1 (Fig. S1(g) in
the SM [87]), and S = 5/2 [Fig. 1(g)] spins, as well as in the
AFI hosting S = 5/2 [Fig. 2(e)] spins. Establishing EN → 0
also makes it possible for LLG classical trajectories Si(t ) to
track 〈Ŝi〉(t ) in Figs. 1, 2, and S1 in the SM [87]. Details of
how the LLG equation is solved to obtain Si(t ), while tuning
the Gilbert damping parameter in order to enable comparison
of Si(t ) and 〈Ŝi〉(t ), are given in the SM [87]. In the AFI
case with S = 1/2 [Fig. 2(e)] or S = 1 (Fig. S1(c) in the SM
[87]), entanglement never vanishes, EN (t ) > 0, even in the
long-time limit, thereby maintaining 〈Ŝi〉(t ) �= Si(t ). Thus, we
conclude that usage [43,44,46–48,51–58] of the LLG equa-
tion in spintronics with AFI layers hosting spins S = 1/2

L180408-4



FATE OF ENTANGLEMENT IN MAGNETISM UNDER … PHYSICAL REVIEW B 109, L180408 (2024)

or S = 1 cannot be justified microscopically. In the case of
non-Markovian dynamics, EN (t ) remains nonzero (Figs. 1, 2,
and S1 in the SM [87]) in the FI and the AFI at all times and
for S = 1/2, S = 1, and S = 5/2, so that quantum-to-classical
transition 〈Ŝi〉(t ) 
→ Si(t ) is never achieved. This then pro-
vides an example of how pronounced memory effects can lead
to the revival of genuine quantum properties such as quantum
coherence, correlations, and entanglement [73].

Finally, we examine the fate of the entangled GS of the AFI
upon suddenly coupling it to a bosonic bath and evolving it by
the Lindblad equation (6). Let us recall that a common trick
employed in TN calculations on spin systems to select the
unentangled Néel state as the GS is to introduce an external
staggered magnetic field which alternates in sign on atomic
length scales [88]. However, its microscopic justification is
missing. Attempts to introduce more realistic decoherence
mechanisms, such as repeated local measurements [89–91]
that would disrupt superposition in the GS and replace the
need for the contrived staggered field, are also difficult to
justify in the context of spintronic and magnonic devices. A
handful of recent studies have examined the time evolution
of the entangled GS of AFIs [77,92] upon suddenly coupling
their spins to a dissipative environment, but with conflict-
ing conclusions about the fate of entanglement. Since the
“checkerboard” pattern of expectation values of 〈Ŝi〉 in the
Néel order is often reported experimentally [41], we induce
it as the initial condition at t = 0 by using a GS of the slightly
modified Heisenberg Hamiltonian

Ĥimp = ĤH − 0.2|J|Ŝz
1, (12)

with an additional impurity at site i = 1. The impurity breaks
the rotational invariance of ĤH to generate the Néel order,

〈Ŝz
i 〉 = −〈Ŝz

i+1〉 �= 0, but not the Néel GS |↑↓↑↓〉 because
the entanglement entropy of the true GS remains nonzero
[26] leading to 〈Ŝz

i 〉/S < 1. The Lindbladian time evolution
(Fig. 3) maintains the entanglement EN (t ) > 0 at low tem-
perature T1 = 0.01|J| and, therefore, nonclassical dynamics
of 〈Ŝi〉(t ), while at high temperatures EN → 0 is reached on
short timescales. The overlap Tr [ρ̂(t )P̂Néel] with states in the
Néel subspace, whose projector is P̂Néel = |↑↓↑↓〉 〈↑↓↑↓| +
|↓↑↓↑〉 〈↓↑↓↑|, never reaches 1 in the low-temperature
regime [black curve in Fig. 3(d)]. In the high-temperature
limit, the overlap becomes negligible [red curve in Fig. 3(d)]
as the system goes [92] into static ferrimagnetic ordering [blue
and orange flat lines in Figs. 3(a) and 3(b)].

In conclusion, we solve nearly a century old [59]
problem—“unreasonable effectiveness” of the classical LLG
equation in describing dynamics of many (for solution of the
same problem for a single spin, see Ref. [68]) localized spins
within a magnetic material—by showing that it is justified
microscopically only if Lindblad open quantum system dy-
namics is generated by the environment in the case of any
ferromagnet, as well as for antiferromagnets with sufficiently
large value of their spin S > 1. Thus, our findings exclude
antiferromagnets with S = 1/2 or S = 1 spins from the pos-
sibility to model them via classical micromagnetics or ASD
[69,70]. Our analysis via rigorously constructed Markovian
and non-Markovian QMEs for many LSs exhibiting nearly
degenerate many-body eigenenergies and interacting with a
bosonic bath could also be applied to other related problems,
such as the fate of entanglement in quantum spin liquids [93].
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