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While the existence of a magnetic field induced quantum spin liquid in Kitaev magnets remains under debate,
its topological properties often extend to proximal phases where they can lead to unusual behaviors of both
fundamental and applied interests. Subjecting a generic nearest-neighbor spin model of Kitaev magnets to a
sufficiently strong in-plane magnetic field, we study the resulting polarized phase and the associated magnon
excitations. In contrast to the case of an out-of-plane magnetic field where the magnon band topology is enforced
by symmetry, we find that it is possible for topologically trivial and nontrivial parameter regimes to coexist
under in-plane magnetic fields. We map out the topological phase diagrams of the magnon bands, revealing a
rich pattern of variation of the Chern number over the parameter space and the field angle. We further compute
the magnon thermal Hall conductivity as a weighted summation of Berry curvatures, and discuss experimental
implications of our results to planar thermal Hall effects in Kitaev magnets.
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Introduction. Recently, there have been tremendous efforts
in the search for Kitaev spin liquid (KSL) [1] in candidate
materials, ranging from iridates [2–4] and ruthenium halides
[5–7] to cobaltates [8,9]. These so-called Kitaev magnets
[10–13] may realize a dominant Kitaev interaction K via the
Jackeli-Khaliullin [14] or related [15–17] mechanisms. Here,
we focus on arguably the most popular among them, α-RuCl3

[18], whose zero-field ground state is a zigzag (ZZ) magnetic
order [19,20], due to the presence of other symmetry-allowed
interactions than K [21]. However, an external magnetic field
is found to promote a disordered phase, where a half-integer
quantized thermal Hall conductivity κ2D

xy /T = (ν/2)(πk2
B/6h̄)

[22] is reported by Refs. [23–27], hinting at chiral Majorana
edge modes with Chern number ν = ±1 in a non-Abelian
KSL [Figs. 1(a) and 1(b)]. It is also suggested that the
field angle dependence of κxy [25] or heat capacity [28,29]
can lend further support for the case of non-Abelian KSL.
Meanwhile, other experiments [30,31] report that κxy in the
field-induced phase behaves rather as a smooth function with-
out any plateau, and decreases rapidly as the temperature
approaches zero, which point to emergent heat carriers of
bosonic nature.

While the existence of KSL at intermediate fields remains
under debate [32–39], Kitaev magnets eventually polarize at
sufficiently high fields, where the collective excitations are
magnons, which can give rise to experimentally measurable
transport signals. Furthermore, if the magnon bands are topo-
logical, the resulting thermal Hall conductivity can reach the
same order of magnitude as the half quantized value [40–43].
Although for magnons κxy at low temperatures is not directly
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proportional to the Chern number ν of the lower band, the
latter is very often a good indicator of the opposite sign of
the former. Therefore, phase diagrams that reveal the magnon
Chern number across generic model parameters of Kitaev
magnets [44] are valuable to identify topological magnons
and to interpret thermal transport measurements at high fields
[Figs. 1(c) and 1(d)]. The main objective of this Letter is
precisely to present such topological phase diagrams for in-
plane magnetic fields, which are relevant to experiments of
the planar thermal Hall effect [25,26,30,31,45].

We note that Kitaev magnets such as α-RuCl3 are polarized
more easily by in-plane fields than out-of-plane fields, likely
due to an anisotropic g tensor [46–49] and a positive � interac-
tion [50], which discounts the out-of-plane field strength and
disfavors an out-of-plane magnetization, respectively [41,51].
The case of polarizing Kitaev magnets with strong out-of-
plane fields has been studied theoretically in Ref. [52] (see
also Ref. [53]). It is found that, within the linear spin-wave
approximation, the JK��′ model can be effectively reduced
to a JK model. The C3 symmetry also plays an important role
in the diagnosis of magnon band topology in Kitaev magnets,
based on topological quantum chemistry or symmetry indica-
tor theory [54–58]. As demonstrated in Ref. [59], the magnon
bands must be topological whenever a gap exists in between.

In this Letter, we consider the nearest-neighbor JK��′
model polarized by in-plane magnetic fields, which break the
C3 symmetry, and map out the phase diagrams of topological
magnons. Unlike the aforementioned case, none of the model
parameters can be made redundant. We find that, as long as the
field is not along the armchair direction, there exist parameter
regions that are topological (ν = ±1) as well as trivial (ν = 0)
ones, the latter of which can be understood via an effective
Hamiltonian [52]. We discuss the implications of our results to
thermal Hall conductivities of Kitaev magnets at high fields,
from which we propose a scheme to determine the relevant
candidate parametrizations.
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Model. The most generic nearest-neighbor spin Hamilto-
nian for Kitaev magnets is the JK��′ model [21]. In an
external magnetic field h, it reads

H =
∑

λ=x,y,z

∑
〈i j〉∈λ

[
JSi · S j + KSλ

i Sλ
j + �

(
Sμ

i Sν
j + Sν

i Sμ
j

)

+�′(Sμ
i Sλ

j + Sλ
i Sμ

j + Sν
i Sλ

j + Sλ
i Sν

j

)] −
∑

i

h · Si, (1)

where (λ,μ, ν) is a cyclic permutation of (x, y, z). For con-
venience of analysis, we write the field strength |h| ≡ hS
in terms of the spin magnitude S ≡ |Si| [60]. An in-plane
field can be parametrized as (ha, hb, hc) = h(cos β, sin β, 0),
where β ∈ [0, 2π ) is the azimuthal angle in the honeycomb
plane [see Fig. 2(a)] [61]. We apply linear spin-wave the-
ory [62,63] to the in-plane field polarized state of (1), and
obtain an analytical expression for the magnon spectrum
ω±(k) = S

√
E (k) ± 
(k)/2, where

E (k) = 4(h − c1)2 + |c2 fk + c4gk|2 − |c5 fk − c4gk|2 − 4|c6( fk − 3) + c7gk|2 + 2c3(c2 + c5)Re[ fk], (2a)


2(k) = 16(h − c1)2|c2 fk + c3 + c4gk|2 − 4(c2 + c5)2{Im[ fk(c3 + c4g∗
k )]}2 − 16

(
c2

2 − c2
5

){Im[ fk(3c6 − c7g∗
k )]}2

−32(c2 + c5)Im[ fk(3c6 − c7g∗
k )]Im[c6 fk(c3 + c4g∗

k ) + gk(c3c7 + 3c4c6)], (2b)

c1 = 3J + K − � − 2�′, c2 = 1

6
[12J + 4K + 2� + 4�′ + (K + 2� − 2�′) cos(2β )],

c3 = −cos(2β )

2
(K + 2� − 2�′), c4 = sin(2β )

2
√

3
(K + 2� − 2�′), c5 = � + 2�′ − cos(2β )

6
(K + 2� − 2�′),

c6 = sin β

3
√

2
(K − � + �′), c7 = cos β√

6
(K − � + �′), (2c)

fk = 1 + exp(ik1) + exp(ik2), gk = exp(ik1) − exp(ik2), and
k1, k2 ∈ [0, 2π ) are components of the crystal momentum de-
fined according to a1, a2 in Fig. 2(a). Let 
(k) =

√

2(k) �

0, so that ω−(k) [ω+(k)] corresponds to the lower (upper)
band. For clarity, we refer to the gap between the two bands,
mink[ω+(k) − ω−(k)] � 0, as the band gap, which is not to
be confused with the excitation gap, mink ω−(k) > 0. Chern
number is a topological invariant that can never change as
long as a finite band gap is maintained [64], i.e., a topo-
logical phase transition can only occur when 
(k) = 0 for
some k.

We assume a polarized state in which the excitation gap
grows with h, so that the system becomes more stable as h
increases, rather than undergoing a magnon instability. This
requires h > c1 [65], from which we deduce the following.
For a given set of parameters {J, K, �, �′}, if the band gap
is finite (zero), then it remains finite (zero) as h varies, un-
less h −→ ∞. Therefore, the topological phase diagrams are
independent of the field strength, and, for a given field an-
gle, we can map them out by first solving for the zeros of
(2b) and then choosing a sufficiently high field to compute
the Chern numbers [66–69] at parameters away from these
zeros.

Topological phase diagrams. For finite in-plane fields,
the band gap closes if and only if the set of parameters
{J, K, �, �′} meets any of the criteria listed in Table I. When-
ever the band gap is finite, let the Chern number of the lower
(upper) band be ν (−ν), which transforms according to the
A2g representation of the point group 3̄m [70,71], and flips
sign under time reversal [41], as in the case of the non-
Abelian KSL [28]. More specifically, fixing the couplings,
(i) ν −→ ν if h is rotated by 2π/3 about the out-of-plane
axis, (ii) ν −→ −ν if h is rotated by π about the b axis, and
(iii) ν −→ −ν if h −→ −h, while the phase boundaries are
invariant under these actions [65]. Hence, β ∈ [0, π/6] serves

as an independent unit, to which all other angles can be related
by symmetries [see Fig. 2(b)]. On the other hand, flipping the
signs of all couplings leaves ν invariant [65].

For visualizations, we set J = 0 and calculate ν over
the spherical parameter space defined by K2 + �2 +
�′2 = 1, at the field angles β = 0, π/24, π/12, π/8, π/6 [see
Figs. 3(a)–3(f)] [72]. We make two observations, with the
understanding that all angles mentioned below are defined
modulo π/3. First, for β �= π/6, there exist both parameter
regions with topological magnons and those without. For
β = π/6, topological magnons are altogether forbidden due
to a C2 symmetry [40,73]. Second, the total area A of the
parameter regions with ν = ±1 is maximal at β = 0, which
implies that, for a Kitaev magnet dominated by nearest-
neighbor anisotropic interactions, topological magnons are
most likely found when the in-plane field is along the a axis
[74].

To understand why magnons are topologically trivial in
certain parameter regions, we analyze the linear spin-wave
theory at high fields by systematically integrating out the
pairing terms [52]. This is achieved via a Schrieffer-Wolff

TABLE I. For field angles 0 � β < π/6, the band gap closes if
and only if the parameters of the JK��′ model satisfy any of the
following equations. For β = π/6, the band gap is zero whenever (I)
or (4) is satisfied.

I K + 2� − 2�′ = 0
II 6J + 2K + � + 2�′ = 0
III 6J + 2K + � + 2�′ + 2(K + 2� − 2�′) cos(2β ) = 0
IV 6J + 2K + � + 2�′ − 2(K + 2� − 2�′) cos(2β + π/3) = 0
V 6J + 2K + � + 2�′ − 2(K + 2� − 2�′) cos(2β − π/3) = 0
VI 3J + K + 2� + 4�′ = 0 if (4) holds
VII K − � + �′ = 0 if (4) holds
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FIG. 1. (a) Majorana spectrum of Kitaev honeycomb model in
a perturbative magnetic field. (b) For the non-Abelian KSL, the
Chern number of the lower Majorana band depends on the field
direction through ν = sgn(hxhyhz ). Red (blue) areas indicate ν =
+1 (−1), while black curves indicate the vanishing of the band
gap. (c) Magnon spectrum of the polarized state in a realistic spin
model (1) of Kitaev magnets under a magnetic field. (d) For the
in-plane field polarized state, we find a nontrivial variation of the
magnon Chern number over the parameter space and the field angle
[see Figs. 3(a)–3(f)].

transformation [75], from which we obtain an effective hop-
ping model of the form Heff (k) = d0(k)12×2 + d(k) · σ. The
band gap vanishes if and only if d(k) = 0. When d(k) �= 0,
the Chern number of the lower band is given by the winding
number of the map d̂(k) ≡ d(k)/|d(k)| from the Brillouin

FIG. 2. (a) The three bond types x, y, and z in Kitaev magnets,
the in-plane crystallographic axes a and b, and the primitive lattice
vectors a1 and a2. An external magnetic field h is applied in-plane at
the azimuthal angle β. (b) The 3̄m point group of the JK��′ model.
If h transforms under a symmetry element that maps a solid circle
to an open circle or vice versa, then the Chern number ν flips sign.
If one circle is mapped to another of the same type, then ν remains
invariant.

FIG. 3. Topological phase diagrams of the in-plane field polar-
ized states at β equal to (a) 0, (b) 0, (c) π/24, (d) π/12, (e) π/8, and
(f) π/6, over the space of couplings parametrized by (J, K, �, �′) =
(0, cos θ, sin θ cos φ, sin θ sin φ). Red, white, and blue areas indicate
the Chern number of the lower magnon band ν = +1, 0, and −1,
respectively, while black curves or areas indicate the vanishing of the
band gap. Roman numerals label the phase boundaries as in Table I.
Gray dashed circles indicate constant latitudes θ . In each diagram,
the center is the K = ±1 (θ = 0 or π ) limit, while the left/right and
top/bottom ends on the equator (θ = π/2) are the � = ±1 (φ = 0 or
π ) and �′ = ±1 (φ = π/2 or 3π/2) limits, respectively.

zone to a sphere [66],

ν = 1

4π

∫
FBZ

d2k

[
d̂(k) · ∂d̂(k)

∂kx
× ∂d̂(k)

∂ky

]
. (3)

One finds that the third component of d(k) vanishes through-
out the Brillouin zone when K − � + �′ = 0 [65], which
defines the phase boundary (VII) within the parameter region

||c2 + c4| − |c2 − c4|| � |c2 + c3| � |c2 + c4| + |c2 − c4|.
(4)
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FIG. 4. (a) Candidate parametrizations p [82], n [83], and z
[84] of α-RuCl3, with K set to −1 and other interactions scaled
accordingly, and topological phase diagrams in their neighborhoods
under a magnetic field h ‖ a. (b) Thermal Hall conductivities of p,
n, and z due to magnons in the polarized state, at field strengths h
starting from 0.18, 0.10, and 0.89, respectively, and increasing to
0.32, 0.24, and 1.03 in steps of 0.02. Lighter colors indicate higher
fields. S = 1/2 is used.

On the other hand, there exist parameters outside (4) that
satisfy K − � + �′ = 0 and possess a finite band gap simul-
taneously [76]. At these parameters, the triple product in (3)
is identically zero, and consequently ν = 0. Any other param-
eter that can be continuously connected to these parameters
without a gap closing must be topologically trivial as well.

Thermal Hall effect. We discuss how the topological phase
diagrams relate to experimentally measurable quantities by
connecting the Chern number to the thermal Hall conductivity
[77], which is given by [78–80]

κxy = −k2
BT

h̄V

N∑
n=1

∑
k∈FBZ

c2

[
g

(
h̄ωnk

kBT

)]
�nk (5)

for magnons, where n is the band index ranging from 1 to
N = 2, c2(x) = ∫ x

0 dt ln2[(1 + t )/t], g(x) = 1/(ex − 1), and
�nk is the momentum space Berry curvature [65]. While the
Chern number νn is given by the summation of �nk over k, κxy

is given by a weighted summation of �nk with nonpositive
weights. Also, high-energy magnons contribute less to κxy

than low-energy ones. Therefore, though κxy is not directly
proportional to ν, one can very often use the latter to infer the
sign of the former at low temperatures. More precisely, ν > 0
(ν < 0) means that there is an excess of positive (negative)
Berry curvatures in the lower band, and by (5) the sign of κxy

is expected to be opposite to ν [81]. On the other hand, ν = 0
means that the net Berry curvature is zero, so κxy is generically
small though not necessarily zero, and its sign is arbitrary.

We illustrate these ideas with three proposed
parametrizations of α-RuCl3 in the literature, (J, K, �, �′) =
(−1,−8, 4,−1) [82], (−1.5,−40, 5.3,−0.9) [83], and

(0,−6.8, 9.5, 0) [84], where energies are given in units of
meV. For h ‖ a, these parametrizations are located in the
ν = +1, −1, and 0 regimes, respectively, so we label them
by p, n, and z [see Fig. 4(a)]. For each of them, we calculate
κxy as a function of T at several values of h [see Fig. 4(b)].
We find that κxy is negative (positive) for p (n) as expected,
while κxy for z is several times smaller. If we assume that
the measured κxy > 0 in the field-induced phase under
h ‖ −a in α-RuCl3 [25] is indeed determined by a dominant
magnon contribution, then p appears to be a more promising
candidate parametrization. We also list three criteria that are
conducive for a large magnon thermal Hall effect, which
help us to understand the difference in κxy between the three
parametrizations, as follows. (i) The bands are topological.
(ii) The excitation gap is not too large, so that the lower band
is thermally populated at low temperatures. (iii) The band
gap is not too small, so that the population of the upper band
remains negligible over an extended temperature range. For
instance, at the respective lowest fields, the excitation gaps of
p, n, and z are 0.16, 0.19, and 0.24, while the band gaps are
0.07, 0.25, and 0.78, in units of |K|S. n and p fulfill (i) and
are comparable in (ii), but n does better than p in (iii), so n
yields a larger κxy. On the other hand, z is comparable to p
and n in (ii) and does better in (iii), but z fails (i), so its κxy is
small. As h increases, the excitation gap becomes larger and
κxy decreases.

Discussion. In summary, we have mapped out topological
phase diagrams of Kitaev magnets polarized by in-plane mag-
netic fields, which reveal the magnon Chern number over a
large parameter space. Since topological magnons are gener-
ally expected to yield a sizable thermal Hall conductivity with
sign opposite to the Chern number at low temperatures, our
results will be helpful in determining the relevant parametriza-
tions of Kitaev magnets including α-RuCl3. We briefly
address the effects of the third-nearest-neighbor Heisenberg
exchange [85,86] and the magnon interactions [87–94] in
the Supplemental Material [65]. While the window of a
field-induced KSL might be shut in many of the candidate
materials, the door to topological magnons is most likely open
and accessible via high fields. We appreciate that alternative
sources of heat carriers in Kitaev magnets, such as spinons
[95–97], triplons [98], phonons [99], and visons [100], as well
as some effects arising from spin-lattice coupling [101–106],
have been proposed. One particularly interesting future di-
rection is to investigate the interplay between different types
of topological excitations, whether they cooperate with one
another and lead to a large thermal Hall conductivity [107] or
other unusual properties.
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