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We perform a detailed study on the consequences of the nonsymmorphic symmetries in the Luttinger
phase of the one-dimensional (1D) spin- 1

2 Kitaev-Heisenberg-Gamma model with an antiferromagnetic Kitaev
interaction. Although the low-energy Hamiltonian has an emergent U(1) symmetry, the bosonization formulas
for the spin operators contain ten nonuniversal coefficients which only respect the discrete nonsymmorphic
symmetries and can be determined by our density matrix renormalization group simulations to a high degree of
accuracy. Using the nonsymmorphic bosonization formulas, the response to weak magnetic field is analyzed, and
the zigzag phase in the 2D Kitaev-Heisenberg-Gamma model is recovered by weakly coupling an infinite number
of 1D chains. Furthermore, we find a line of critical points with an emergent SU(2)1 conformal symmetry located
on the boundary of the Luttinger liquid phase. Our work reveals the rich physics related to nonsymmorphic
symmetries in strongly correlated quantum magnetic models, and demonstrates the usefulness of 1D analysis for
understanding the 2D Kitaev physics.

DOI: 10.1103/PhysRevB.109.L180403

Nonsymmorphic symmetries are symmetry operations
involving a combination of rotations or reflections with trans-
lations, where the individual operations do not leave the
system invariant on their own. Recently, there has been a
surge of research interests in studying the roles played by
the nonsymmorphic symmetries in noninteracting and weakly
interacting condensed matter systems [1–12] including hour-
glass fermions, Dirac insulators, and topological semimetals,
though the strongly interacting physics related to nonsymmor-
phic symmetries remain much less investigated [13,14].

The Kitaev materials on the two-dimensional (2D) hon-
eycomb lattice have recently been under intense research
attention in condensed matter physics [15–38], since they can
potentially provide solid state realizations for the 2D Kitaev
spin- 1

2 model known as a platform for topological quantum
computations [39,40]. The zigzag phase is among the ear-
liest experimentally discovered magnetic phases in Kitaev
materials, most of which have ferromagnetic (FM) Kitaev
interactions, though the zigzag order is also predicted to exist
in systems with antiferromagnetic (AFM) Kitaev interactions.
On the other hand, 2D suffers analytical and numerical dif-
ficulties, which hinders a complete theoretical understanding
of Kitaev materials. In view of this, a number of theoretical
studies have been performed on one-dimensional (1D) Kitaev
spin models [41–52], and the hope is that 1D studies can help
understand the 2D physics.

In this Letter, we perform a detailed study on the conse-
quences of the nonsymmorphic symmetry group in the spin- 1

2
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Kitaev-Heisenberg-Gamma (KJ�) chain with an AFM Kitaev
interaction, and their implications to 2D physics. Our starting
point is the observation of an extended Luttinger liquid phase
in the AFM Kitaev region of the spin- 1

2 KJ� chain [45]. In this
Letter, we find that while the nonsymmorphic symmetries are
smeared out in the low-energy Luttinger liquid theory which
has an emergent U(1) symmetry, they manifest themselves as
ten nonuniversal coefficients in the bosonization formulas of
the spin operators, leading to gapless spinon modes at ±π/2
wave vectors in addition to 0 and π . Using density matrix
renormalization group (DMRG) simulations, the bosoniza-
tion coefficients are determined to a high degree of accuracy,
which can be used to analytically calculate any low-energy
property of the system.

As an application of the nonsymmorphic bosonization for-
mulas, the response to weak magnetic fields is analyzed, and
interestingly, regardless of the direction of the applied weak
magnetic field, the system responds only along a particular
fixed direction with the opening of a spin gap. In addition,
an infinite number of weakly coupled KJ� chains on the
honeycomb lattice is studied. The mean-field Hamiltonian is
obtained using the nonsymmorphic bosonization formulas and
then solved in a self-consistent way, which recovers the zigzag
phase in the 2D spin- 1

2 KJ� model. Finally, we reveal a line of
critical points with an emergent SU(2)1 conformal symmetry
located on the boundary of the Luttinger liquid phase.

Model and symmetries. The 1D spin- 1
2 KJ� model is de-

fined as

H =
∑

〈i j〉=γ

[
KSγ

i Sγ
j + J �Si · �S j + �

(
Sα

i Sβ
j + Sβ

i Sα
j

)]
, (1)
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FIG. 1. (a) Zigzag order of the spin- 1
2 dimerized KJ� model

on the honeycomb lattice; (b) bond pattern after the four-sublattice
rotation for the chain in (a) enclosed by the red dashed line. In (a),
the black and blue lines denote the strong and weak bonds; the solid
and open circles represent the sites which have positive and negative
components along the Sx direction, respectively.

in which γ is the spin direction associated with the bond be-
tween nearest-neighboring sites i and j, alternating between x
and y as shown in Fig. 1(a); α �= β are the two spin directions
among x, y, z other than γ ; and K, J, � are the Kitaev, Heisen-
berg, and Gamma couplings, respectively. The Hamiltonian in
Eq. (1) is obtained by selecting out one row out of the 2D KJ�

model on the honeycomb lattice as shown in Fig. 1(a). We will
consider the parameter region K > 0, J < 0. Since � changes
sign under a global spin rotation around the z axis by π , there
is the equivalence (K, J, �) � (K, J,−�), and we will take
� > 0 for simplicity.

A useful transformation is the four-sublattice rotation U4

[36,45], which leaves the spins on sites 4n (n ∈ Z) unchanged,
and acts as π rotations around the y, z, and x axes on sites
1 + 4n, 2 + 4n, and 3 + 4n, respectively. The transformed
Hamiltonian acquires the following form,

H ′ =
∑
〈i j〉

[
K ′Sγ

i Sγ
j − J �Si · �S j + ε(γ )�

(
Sα

i Sβ
j + Sβ

i Sα
j

)]
, (2)

in which K ′ = K + 2J; the bond pattern for γ ∈ {x, y, x̄, ȳ} is
shown in Fig. 1(b); Sγ̄

j = Sγ
j ; α �= β are the two spin direc-

tions different from γ ; and ε(x)=ε(y)= − ε(x̄)= − ε(ȳ) = 1.
The advantage of U4 is that it reveals a hidden SU(2) sym-
metric AFM point at J = −K/2, � = 0, which provides a
perturbative starting point to analyze the parameter region
nearby [36,45]. Unless otherwise stated, we carry out the
analysis within the four-sublattice rotated frame henceforth.

We first briefly discuss the symmetries of H ′ in Eq. (2)
[45]. The symmetry group G of H ′ is generated by time-
reversal symmetry T , screw operation R(ẑ,−π/2)Ta, and
composite operation R(ŷ, π )I , where a is the lattice constant,
Tna is the translation operator by n lattice sites, I is the spatial
inversion with respect to the bond center between sites 2
and 3, and R(n̂, φ) represents a global spin rotation around
the n̂ direction by an angle φ. The group structure of G is
G/〈T4a〉 ∼= D4d in which 〈· · · 〉 is the group generated by the

FIG. 2. (a) Phase diagram of the spin- 1
2 KJ� chain in the region

K > 0, J < 0, in which the vertical axis is J and the horizontal axis is
ψ where K = cos(ψ ) and � = sin(ψ ); (b) 〈Sz

1Sz
r〉 as a function of r.

In (a), “LL,” “FM,” and “SU(2)1” denote the Luttinger liquid phase,
the FM phase, and the line of points with emergent SU(2)1 conformal
symmetry, respectively. In (b), DMRG numerics are performed for
K ′ = 1, J = −1, � = 0.35 in Eq. (2) on a system of L = 144 sites
with periodic boundary conditions.

elements within the brackets, and D4d
∼= D4 × ZT

2 , where D4

is the dihedral group of order eight and ZT
2 is the Z2 group

generated by T [for more details, see Sec. II in Supplemental
Material (SM) [53]].

The phase diagram in the K > 0, J < 0 region is shown
in Fig. 2(a) [45], in which the horizontal axis ψ is defined
by K = cos(ψ ), � = sin(ψ ). We will mainly focus on the
Luttinger liquid phase [denoted as “LL” in Fig. 2(a)] in this
Letter. When K ′ > 0 and � �= 0, at low energies, the K ′ term
in H ′ contributes to an easy-plane anisotropy whereas the �

term cancels to leading order since the differences between
neighboring sites are smeared out in the long-distance limit,
which provides an intuitive explanation for the origin of the
Luttinger liquid phase.

Nonsymmorphic bosonization formulas. In the Luttinger
liquid phase, the low-energy physics is described by the Lut-
tinger liquid Hamiltonian [54,55] HLL = v

2

∫
dx[κ−1(∇ϕ)2 +

κ (∇θ )2], in which v is the velocity, κ is the Luttinger
parameter, and the θ, ϕ fields satisfy the commutation rela-
tion [ϕ(x), θ (x′)] = i

2 sgn(x′ − x). We derive the bosonization
formulas which are consistent with the nonsymmorphic sym-
metry group of the system. In general, the spin operators can
be related to the low-energy fields as

Sα
j+4n = D( j)

αβJβ (x) + (−) jC( j)
αβ Nβ (x), (3)

in which α, β = x, y, z; 1 � j � 4; x = ( j + 4n)a; D( j),C( j)

are 3 × 3 matrices; the smeared spin densities Jα, Nα

(α = x, y, z) are given by J± = 2
a cos(

√
4πϕ)e±i

√
πθ , Jz =

−√
2π∇ϕ, N± =

√
2

a e±i
√

πθ , Nz =
√

2
a sin(

√
4πϕ), where

J± = Jx ± iJy and N± = Nx ± iNy [56]. The invariance un-
der the symmetries R(ẑ,−π/2)Ta and R(ŷ, π )I requires

( j+1) = Rz
( j)(Rz )−1, (5− j) = Ry

( j)(Ry)−1, (4)

in which  = C, D; j = 5 is understood as 1 (modulo 4); and
Rz and Ry are the 3 × 3 rotation matrices corresponding to
R(ẑ,−π/2) and R(ŷ, π ), respectively. The solution of Eq. (4)
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FIG. 3. (a) |Szz(r)| as a function of rL = L/π sin(πr/L) on a
log-log scale where Szz(r) = 〈Sz

1Sz
1+r〉; (b) fits of −Szz

0 (r) (blue) and
Szz

π (r) (orange) as functions of rL on a log-log scale using linear
relations; (c) fits of −Sxx

0 (r) (blue) and Sxx
π (r) (orange); (d) fits of Szz

π/2

(blue) and Sxx−yy
π/2 (orange). In (c) and (d), the functional forms used

for the fits are shown. DMRG numerics are performed for K ′ = 1,
J = −1, � = 0.35 in the four-sublattice rotated frame.

for 1 ( = C, D) is

C(1) =
⎛
⎝

aC bC cC

bC aC −cC

hC −hC iC

⎞
⎠,

D(1) =
⎛
⎝

aD bD cD

bD aD −cD

hD −hD iD

⎞
⎠, (5)

and the remaining matrices C( j), D( j) ( j = 2, 3, 4) can be ob-
tained from the relations in Eq. (4). We note that in contrast
to the U(1) symmetric case, the bosonization formulas in
Eq. (3) have low-energy spinon modes at ±π/2 wave vec-
tors in addition to zero and π wave vectors, and Sλ

j contains
cross-directional components Jμ, Nμ where μ �= λ, not just
diagonal ones.

Next, we discuss the numerical results for the spin cor-
relation functions and fit the data with the nonsymmorphic
bosonization formulas in Eq. (3) to determine the ten coef-
ficients and the Luttinger parameter. DMRG simulations are
performed in the four-sublattice rotated frame at a representa-
tive point in the Luttinger liquid phase with the parameters
K ′ = 1, J = −1, � = 0.35, on a system of L = 144 sites
using periodic boundary conditions [57].

Figure 2(b) displays 〈Sz
1Sz

r〉 as a function of r, which is
dominated by the π -wave-vector oscillation; however, as can
be seen from the data points guided by the red and orange
lines, there exists a delicate subdominant structure having a
four-site periodicity. Figure 3(a) shows |〈Sz

1Sz
1+r〉| as a func-

tion of rL on a log-log scale, where rL = L/π sin(πr/L) in
accordance with conformal field theory in finite-size systems
[55]. It can be clearly seen that Fig. 3(a) contains rugged
oscillations in the data points, indicating an entangling of

TABLE I. Extracted values of |w| (w = a, i, c, h, b;  = C, D)
for the representative point K ′ = 1, J = −1, � = 0.35, in which |bD|
is too small and a reliable value cannot be extracted.

|a| |i| |c| |h| |b|
 = C 0.129 0.363 0.0244 0.0138 0.00103
 = D 0.161 0.182 0.0359 0.0266 ?

different Fourier components, which hinders a high-precision
determination of the critical exponent.

To study the spin correlation functions in more detail,
we apply the nonsymmorphic bosonization formulas
such that different Fourier components and decay
powers can be disentangled. Notice that Eq. (3) predicts
〈Sz

1Sz
1+r〉 = Szz

0 (r) + (−)r−1Szz
π (r) − 2 cos[π

2 (r + 1
2 )]Szz

π/2(r),
where Szz

0 (r) = −i2
Dr−2, Szz

π (r) = i2
Cr−2κ , and Szz

π/2(r) =
c2

Cr−1/(2κ ) − c2
Dr−[2κ+1/(2κ )]. The blue and orange lines in

Fig. 3(b) show the fits of −Szz
0 and Szz

π as a function of rL on
a log-log scale, respectively, using linear relations, where r
is replaced by rL = L/π sin(πr/L). The slope of the blue
line is −1.995, very close to the predicted value of −2;
the slope of the orange line yields a Luttinger parameter
κ1 = 0.683. The fit of Szz

π/2(r) using a functional form

a2r−1/(2κ2 )
L + b2r−[2κ2+1/(2κ2 )]

L is shown as the blue line in
Fig. 3(d) which gives κ2 = 0.685. The extracted values of |i|
and |c| ( = C, D) from Figs. 3(b) and 3(d) are included in
Table I.

For the transverse correlations, Eq. (3) predicts the
zero- and π -wave-vector oscillating components of 〈Sx

1Sx
1+r〉

to be Sxx
0 (r) = −a2

Dr−2κ−1/(2κ ) + b2
C/r−1/(2κ ) and Sxx

π (r) =
−b2

Dr−2κ−1/(2κ ) + a2
Cr1/(2κ ), respectively. The blue and orange

lines in Fig. 3(c) show the fits of −Sxx
0 and Sxx

π , which give
κ3 = 0.681 from Sxx

0 , and κ4 = 0.681 from Sxx
π . In addition,

Eq. (3) predicts the ±π/2 component of 〈Sx
1Sx

1+r〉 − 〈Sy
1Sy

1+r〉
to be − cos[π

2 (r + 1
2 )]Sxx−yy

π/2 where Sxx−yy
π/2 = h2

Dr−2 + h2
Cr−2κ .

The fit for Sxx−yy
π/2 is shown as the orange line in Fig. 3(d),

giving κ5 = 0.682. The extracted values of |a|, |b|, |h|
( = C, D) from Figs. 3(c) and 3(d) are included in Table I,
where the only exception is |bD|. We note that the bD term
decays much faster than the aC term, since the exponents
are 2κ + 1/(2κ ) for the former and 1/(2κ ) for the latter. In
addition, |bD| itself is much smaller than |aC |. These two
effects make it very difficult to extract a reliable value of |bD|
since the bD and aC terms are mixed in Sxx

π (r).
From the above discussions, we see that with the help

of the proposed nonsymmorphic bosonization formulas, the
fitting curves are rendered smooth without any ruggedness,
and nearly all the bosonization coefficients are numerically
determined which can be used to calculate any low-energy
property of the system. In particular, different Fourier com-
ponents of the correlation functions give five independently
extracted values of Luttinger parameters, denoted as κi (1 �
i � 5) above, which match with each other within an accuracy
of 0.6%, indicating a consistency of the theory and a high
precision of the numerics. We note that the systematic method
of nonsymmorphic bosonization discussed in this section can
be directly generalized to other 1D nonsymmorphic systems
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FIG. 4. Spin expectation values of Sα
r (α = x, y, z) under uniform

magnetic fields (a) hz = 10−4 along the z direction, (b) hx = 10−3,
as functions of site r (1 � r � 144). The data of Sx and Sy nearly
overlap, making the points of Sx hardly identifiable. DMRG simula-
tions are performed for K = 2.1, J = −1, � = 0.8, on a system of
L = 144 sites, using periodic boundary conditions.

including Kitaev ladders and doped Kitaev models, which is
helpful for understanding more delicate structures previously
ignored in those cases.

Response to magnetic field. With the ten extracted co-
efficients, Eq. (3) can be used to analytically calculate any
desired low-energy property of the system. As an application
of Eq. (3), we consider the response of the 1D KJ� model
to weak magnetic fields. By applying (U4)−1 to Eq. (3), it
can be shown that at low energies, the coupling to a uni-
form weak magnetic field is given by

∑
j
�h · �S j = 4[hC (hx +

hy) + iChz]
∫

dxNz. Since Nz is a relevant perturbation, a
spin gap opens for an arbitrarily small uniform field, and
the spin magnetization can be determined from Eq. (3) as
〈�S j〉 = 〈Nz〉(hC, hC, iC ) in the unrotated frame. Interestingly,
in this weak-field limit, the direction of the spin magne-
tization is fixed by hc and ic up to an overall sign and
does not depend on the direction of the applied magnetic
field. To verify this prediction, we study the response to
magnetic fields using DMRG at a representative point K =
2.1, J = −1, � = 0.8. Figures 4(a) and 4(b) show 〈�Sr〉 as
a function of r under uniform magnetic fields hz = 10−4

along the z direction and hx = 10−3 along the x direction,
respectively. The extracted value hC/iC = 〈Sx

r 〉/〈Sz
r〉 is −0.128

(for hz) and −0.130 (for hx), which are consistent with
each other.

2D zigzag order. As another application of Eq. (3),
we derive the pattern of spin ordering for a system of
weakly coupled 1D chains as shown in Fig. 1(a), which
is a dimerized KJ� model on the honeycomb lattice. The
interaction on bond γ is αγ [KSγ

i Sγ
j + J �Si · �S j + �(Sα

i Sβ
j +

Sβ
i Sα

j )], where αx = αy = 1 and αz � 1. Using the nonsym-
morphic bosonization formulas, the mean-field Hamiltonian
in the four-sublattice rotated frame for the chain enclosed
by the red dashed line in Fig. 1(a) can be derived as
HMF = HLL − λ

a3 〈cos(
√

πθ )〉 ∫
dx cos(

√
πθ ), where HLL is

the Luttinger liquid Hamiltonian and λ = |J|(a2
C + b2

C ) −
(K + J )c2

C + 2�aCbC . Since Nx and Ny have the smallest
scaling dimension [both equal to (4κ )−1], it is expected that
the leading instability is in the SxSy plane. Although dif-
ferent directions in the SxSy plane in the Luttinger liquid
theory are equivalent, the symmetry-allowed irrelevant term

cos(4
√

πθ ) stabilizes a spin order which satisfies the con-
dition that one of 〈Nα〉 (α = x, y) does not vanish, but not
both.

Assuming 〈Nx〉 �= 0, applying Eq. (3), and trans-
forming back to the original frame, the spin expecta-
tion values are determined as �Sm,n = √

2 cos[π
2 (n − m) +

1
2 ]〈Nx〉(aC,−bC, cC ), in which m and n are the row and
column indices in the equivalent brick-wall lattice, respec-
tively, and m = 1 for the enclosed chain in Fig. 1(a). The
solid and open circles in Fig. 1(a) represent the sites which
have positive and negative components along the Sx direc-
tion, respectively, and it can be seen that the pattern is
exactly the 2D zigzag order, recovering the zigzag phase in
the 2D KJ� model [30,36]. However, we note that the spin
orientations also contain components along the Sy and Sz

directions as a consequence of Eq. (3). Furthermore, using
the variational method for the massive sine-Gordon model
[54] and solving the self-consistent mean-field equation, we
obtain 〈cos(

√
πθ )〉 = [πλ/(vκ2a3)]

1
8κ−2 which determines

the strength of the spin magnetization. Detailed discus-
sions on weakly coupled chains are included in Sec. VI in
SM [53].

Line of points with emergent SU(2)1 symmetry. Finally,
although the nonsymmorphic group is discrete and planar,
we demonstrate that the phase boundary between the LL and
FM phases in Fig. 2(a) has an emergent SU(2)1 conformal
symmetry [58]. The FM phase corresponds to a Néel order in
the four-sublattice rotated frame with 〈Nz〉 �= 0 (see Sec. VII
in SM [53]). Hence, at low energies, the phase transition
between the LL and FM phases is the same as the easy-plane
to easy-axis transition in the XXZ model, which is in the uni-
versality class described by the SU(2)1 Wess-Zumino-Witten
(WZW) model [59]. Instead of Abelian bosonization, the non-
Abelian bosonization should be applied to the SU(2)1 line,
i.e., Jα and Nα (α = x, y, z) in Eq. (3) should be replaced
by the current operators and primary fields in the SU(2)1

WZW theory, respectively. Nevertheless, the nonsymmorphic
non-Abelian bosonization formulas on the SU(2)1 line remain
the same form as Eq. (3), still containing ten free coefficients.
Numerical verifications of the emergent SU(2)1 conformal
symmetry are included in Sec. VII in SM [53].

In summary, we have derived the nonsymmorphic
bosonization formulas for the spin- 1

2 Kitaev-Heisenberg-
Gamma model in the antierromagnetic Kitaev region. The
response to weak magnetic fields is analyzed, and the zigzag
phase in the 2D model is obtained by weakly coupling an
infinite number of chains. In addition, a line of critical points
is found with emergent SU(2)1 conformal symmetry in the
phase diagram.
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