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Nonlinear enhancement of coherent magnetization dynamics
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Magnets are interesting materials for classical and quantum information technologies. However, the short
decoherence and dephasing times that determine the scale and speed of information networks severely limit the
appeal of employing the ferromagnetic resonance. Here we show that the lifetime and coherence of the uniform
Kittel mode can be enhanced by three-magnon interaction-induced mixing with the long-lived magnons at the
minima of the dispersion relation. Analytical and numerical calculations based on this model explain recent
experimental results and predict experimental signatures of quantum coherence.
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Introduction. Quantum information processing relies on
the long coherence times of the elements in the network.
These times can be enhanced by the controlled coupling of
the information carrier to other long-lived degrees of freedom
in hybrid devices [1]. For example, a collection of nitrogen-
vacancy centers in diamond can act as a memory for cavity
photons with lower quality [2–6]. Spin refocusing and dy-
namic decoupling of qubits from their environment are other
schemes to tackle “black box dissipation/dephasing sources”
[7,8].

The uniform magnetization oscillation or Kittel magnon
strongly interacts with microwave photons and can be used
to coherently control quantum states [9–13], and can be read
out electrically [14]. However, its lifetime is often shorter
than expected from the intrinsic Gilbert damping of yttrium
iron garnet (YIG) with reported quality factors as large as
105 [15]. To realize, implement, and assess recent proposals
for the generation of Kittel mode quantum states and their
implementation in novel computational paradigms [11,16,17],
the Kittel mode coherence must be pushed to its limits.

Magnon interactions have been mainly associated with an
increase in dissipation or dephasing, which can be useful
for the control of the magnon transport [18–21]. However,
three-magnon interactions may also increase lifetimes. Ac-
cording to recent experiments, the Kittel mode lives longer
by the coherent mixing with spin waves that have finite wave
vectors [22–26]. We observed an excitation power-dependent
enhanced lifetime of the Kittel mode or “persistent” coher-
ence [26] and attributed it to three-magnon scattering (3MS).
Similar physics also explains the power-dependent quenching
of the magnon-photon interaction [27]. Here, we demonstrate
how the valley magnons at the minima of the dispersion re-
lation enhance the coherence lifetime of the Kittel mode in a
monolithic magnet.

Model. Our generic model consists of three interacting
bosonic modes B1(2,3) at (quasi-)equilibrium temperatures
TB1(2,3) and dissipation rates ξB1(2,3) with frequencies that sat-
isfy ωB1 = ωB2 + ωB3 and ξB1 � {ξB2 , ξB3} [see Fig. 1(a)]. We
specialize in magnetic thin films with a sufficiently strong
magnetodipolar coupling that generates a pronounced mini-
mum frequency at finite wave vectors along the magnetization
direction (valley magnons) [see Fig. 1(b)], such that B1 is the
�k = 0 Kittel mode with frequency ω0, and B2(3) is a valley
magnon with momentum +(−)�kV . The dispersion relations
of magnetic disks agree with those of extended films of the
same thickness as long as the demagnetizing fields are approx-
imately constant across the sample and the frequency spacing
of the standing waves does not exceed their inverse lifetime
[28–30].

The magnetodipolar interaction becomes weaker with
decreasing film thickness, with shallower valleys and a min-
imum frequency that exceeds ∼ω0/2, which suppresses the
three-magnon scattering for YIG films with thickness d �
800 nm. However, in small disks, the inhomogeneous demag-
netizing field at the edges pulls the frequencies below the
valley minimum ωmin with corresponding amplitudes local-
ized at the edges. The 3MS interaction of these edge states
with the Kittel magnons is therefore efficient even for thinner
films [26].

The Lindblad master equation for the density matrix ρ of
the driven interacting magnon gas reads [31–34]

ρ̇ = −i[H(L) + H(NL) + H(d ), ρ] +
∑

�k
ξ�kL(L)

�k [ρ], (1)

where �k ∈ {0, �kV }. The system is tuned such that the valley
magnon frequency is close to twice that of the Kittel mode,
ω�kV

∼ ω0/2. In H(L) = ∑
�k �ω�kc†

�kc�k , c�k is the annihilation
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operator of the �k magnon in a rotating frame so that
�ω0 = 0 and �ωkV = ωkV − ω0/2. The leading magnon non-
linearities are H(NL) = H(3MS) + H(4MS), where H(3MS) =∑

�kV
D�kV

c†
0c�kV

c−�kV
+ H.c. is the three-magnon interaction

with coefficient D�kV
, while H(4MS) includes the four-magnon

scattering terms [33,34]. Here we address the weak excitation
regime in which we may disregard H(4MS). The Kittel mode
can be driven either resonantly or parametrically, i.e., H(d ) =
(Prc0 + P∗

r c†
0) + (Ppc2

0 + P∗
p c†2

0 ), with amplitudes Pr and Pp,
respectively, that are proportional to the power of an external
drive. ξ�k is a dissipation rate and L(L)

�k is a linear Lindblad
dissipation operator that acts only in the Hilbert space of the
�k mode,

L(L)
�k = (n̄�k + 1)(2c�kρc†

�k − c†
�kc�kρ − ρc†

�kc�k )

+ n̄�k (2c†
�kρc�k − c�kc†

�kρ − ρc�kc†
�k ), (2)

and n̄�k is the average particle number of a thermal bosonic
bath formed by other magnons and/or phonons that at equi-
librium, reduces to a Planck distribution at temperature T .
Here we assume that a resonant microwave excitation drives
the magnon dynamics. In experiments, a larger cone angle of
the Kittel mode is efficiently excited by parametric pumping
[26], but the associated magnetization dynamics is the same.

In the following, we address the lifetimes of the phase and
amplitude of the coherent states of the Kittel mode as well as
the quantum interferences of “Schrödinger cat states,” which
are quantum superpositions of those coherent states.

Lifetime of coherent states. The effect of three-magnon
scattering on classical coherence of the Kittel mode is at the
hand of the mean-field amplitudes 〈c0〉 and 〈c−�kV

c�kV
〉, with

a coupled equation of motion (EOM) that follows from the
master Eq. (1),

d〈c0〉
dt

= −i
∑
�kV

D�kV

〈
c−�kV

c�kV

〉 − ξ0〈c0〉 − iP∗
r , (3)

d
〈
c−�kV

c�kV

〉
dt

= − i(2�ω±�kV
)
〈
c−�kV

c�kV

〉
− iD�kV

[〈c0〉
(
2
〈
n�kV

〉 + 1
)] − 2ξ�kV

〈
c−�kV

c�kV

〉
, (4)

d
〈
n�kV

〉
dt

= 2D�kV
Im

[〈c0〉
〈
c−�kV

c�kV

〉] − 2ξ�kV

(〈
n�kV

〉 − n̄�kV

)
, (5)

where n�kV
= c†

±�kV
c±�kV

[35].
We first consider a valley-magnon pair with a δ-

function density of states at ω0/2, which is justified for
relatively thin disks, as in Ref. [26]. We analyze the de-
cay dynamics of a nonequilibrium state by switching off
the external drive field and setting �ω±�kV

= 0. For t 	
1/(2ξ�kV

), 〈n�kV
〉(t ) ∼ 〈n�kV

(0)〉 and Eq. (5) does not con-
tribute. The solution is then [〈c0〉, 〈c�kV

c−�kV
〉]T = A+eλ+tv+ +

A−eλ−tv−, where λ± = 1
2 [±√

A − ξ0 − 2ξ�kV
], v± = [−ξ0 −

2ξ�kV
∓ √

A,−2iD�kV
(2〈n�kV

〉 + 1)]T , and A = (ξ0 − 2ξ�kV
)2 −

4D2
�kV

(2〈n�kV
〉 + 1). For |4D2

�kV
(〈n�kV

〉 + 1)| 	 |(ξ0 − 2ξ�kV
)2|,

λ+ ≈ −ξ0 and λ− ≈ −2ξ�kV
, i.e., a fast (ξ0) and slow (2ξ�kV

)
double exponential decay. When 4D2

�kV
(2〈n�kV

〉 + 1) > (ξ0 −
2ξ�kV

)2, the Kittel mode amplitude oscillates with frequency

FIG. 1. (a) Schematics of the generic three-state model with fre-
quencies ω and dissipation rates ξ . (b) In a thin film magnet, the
Kittel mode interacts with valley magnon pairs with wave vectors
±�kV . Here we show the dispersion ω�k of a d = 1 µm YIG film, for
�k‖ �H (bottom curve) and �k ⊥ �H (top curve), where �H is an in-plane
magnetic field.

√−A that is damped by (ξ0 + 2ξ�kV
)/2. According to Eq. (5),

〈n�kV
〉 decays such that after some time, 4D2

�kV
(2〈n�kV

〉 + 1) <

(ξ0 − 2ξ�kV
)2 may be the case, entailing a nonoscillatory decay

∼2ξ�kV
.

The hybridization of two bosons (e.g., magnons, photons,
and phonons) with field operators a and b is often pursued
based on the “beam-splitter” interaction H(BS) = D(ab† +
a†b), which becomes strong at resonances, e.g., in cavity
magnonics [17] or standing sound waves in magnetic mechan-
ical resonators [36]. The EOM of the Kittel mode c0 and a
boson b with dissipation rate 2ξ�kV

is the same as Eqs. (3) and
(4) when 〈n�kV

〉 = 0 and D�kV
= D. The differences between

the nonlinear 3MS and the hybridized systems arise from the
non-Hermitian self-consistent effective coupling that can be
tuned via 〈n�kV

〉, while D is a fixed parameter [22–25,37,38].
We show in the following that numerical solutions of

Eq. (1) corroborate the simple picture sketched above. In
Fig. 2(a), we show results for resonant excitation in the time
interval t ∈ [0, ts] with Pr �= 0. The decay of 〈c0〉(t ) with
and without 3MS interaction (D�kV

= 0 and n̄0 = n̄�kV
= 0) is

drastically different for t > ts, changing from fast (ξ0) to
slow (2ξ�kV

) even for a relatively weak D�kV
	 (ξ0 − 2ξ�kV

)/2,
as predicted by the simple model. Figure 2(b) illustrates
the effect of a relatively large 3MS interaction, while main-
taining 2D�kV

< ξ0 − 2ξ�kV
for different thermal occupations

of the valley magnons n̄�kV
that can be tuned by parametric

pumping, the 4MS, and magnon-conserving phonon scatter-
ing. When n̄�kV

= 0, 〈n�kV
〉(ts) remains negligibly small and

the dynamics is a fast decay followed by a slow one [black
line in Fig. 2(b)]. When we increase the average occupation
of valley magnons to n̄�kV

= 3.5�(t − ts), where �(t − ts)
is the Heaviside function, the 3MS becomes strong. When
D2

�kV
[2〈n�kV

〉(t > ts) + 1] > (ξ0 − 2ξ�kV
)2, the Rabi oscillation

[red line in Fig. 2(b)] is damped by (ξ0 + 2ξ�kV
)/2. Adopting

n̄�kV
= 3.5e−2ξV (t−ts )�(t − ts), which decays by 2ξ�kV

, leads to
the green line in Fig. 2(b) that initially decays like the strong
coupling case, but then by 2ξ�kV

.
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FIG. 2. Numerical calculation of the Kittel mode decay in the
presence of a single valley magnon pair mode under resonant ex-
citation Pr = 0.5ξ0[�(t ) − �(t − ts )], ξ0 = 1 MHz, ξ�kV

= 0.1 MHz,
H(4MS) = 0. (a) 〈c0〉(t ) for two values of D�kV

/ξ0 = 0.05 and 0 and
zero temperature n̄0(�kV ) = 0. (b) 〈c0〉(t ) for three different n̄�kV

= 0,
3.5 f (t ), and 3.5 f ′(t ), where f (t ) = �(t − ts ) and f ′(t ) = �(t −
ts ) exp [−2ξ�kV

(t − ts )], for a stronger interaction D�kV
/ξ0 = 0.25.

Here, and throughout the paper, log is in basis of 10.

Depending on the shape of the magnet and the applied
magnetic field, the Kittel mode may interact with a quasicon-
tinuum rather than a discrete state of valley magnons, such
as in a relatively thick and wide film with ω0/2 � ωmin, as in
Fig. 1(b). This scenario is similar to that of monochromatic
photons interacting with an inhomogeneously broadened en-
semble of NV center spins [2–6]. Here we introduce the
frequency-dependent interaction parameter G(ω) that governs
the dynamics of the Kittel mode immersed into a continuum.
We extend our theory by considering two limiting cases of

G(ω) = R(ω)D̄2(ω), (6)

where R(ω) is the density of states (DOS) of valley magnons,
and D̄(ω) is the average of D�kV

at frequency ω,

(I)G (I)(ω) = C�(ω − ω0/2), (II)G (II) = C, (7)

where C is a constant. (I) and (II) correspond to ωmin = ω0/2
and ωmin 	 ω0/2, respectively. Figure 3(a) shows the calcu-
lated dynamics for C = 0.1, in which the decay for (I) is both
fast (ξ0) and slow (2ξ�kV

), while for (II) it is only fast. Next,
we explain the dependence of the persistent coherence on the
spectrum of valley magnons in more detail.

The dynamics at t > ts is easy to understand
when the valley magnons are initially incoherent, i.e.,
〈c�kV

c−�kV
〉|ω�kV

=ω(ts) = 0. From the full numerical calculations
with 〈c�kV

c−�kV
〉|ω�kV

=ω(ts) �= 0, we conclude that coherent
valley magnons do not affect the time scales of interest.
Equations (3)–(5) then lead to

∂t 〈c0〉(t ) = − ξ0〈c0〉(t ) −
∫ ∞

0
G(ω)[2〈nω〉 + 1]dω

×
∫ t

0
dτe−i(2�ω−2iξ�kV

)(t−τ )〈c0〉(τ ), (8)

for constant 〈n�kV
〉|ω�kV

=ω = 〈nω〉(t ) = 〈nω〉(0). The solution of
Eq. (8) [5] is

〈c0〉(t ) = 〈c0〉(0)

[∑
i

Ri + Q

]
, (9)

FIG. 3. Decay dynamics for a spectrum of valley magnons and
dependence of frequency-dependent interaction parameter G(ω).
(a) The time evolution for G (I) = 0.1�(ω − ω0/2) and G (II) = 0.1.
Pr/ξ0 = 105. (b) The dependence of 〈c0〉(t ) calculated from Eq. (9),
on the peak amplitude of Gn(ω), for G (I ) (left panel) and G (II ) (right
panel). The magenta lines in (b) correspond to 〈nω〉(ts ) in (a). (c) The
minimum decay rate ξmin calculated from the last 2 μs of the dynam-
ics plotted in (b) at each max[Gn(ω)].

where

Q = e−2ξ�kV
t
∫ ∞

0
Gn(x/2)B(x)e−ixt dx, (10)

Gn(x) = G(x)[2〈nx〉 + 1], Ri are the residues of estL at
the poles si of L = {s + ξ0 + ∫ ∞

0 dωGn(ω)[s + i(2�ω −
2iξ�kV

)]−1}−1, B(x) = {[πGn(x/2)/2]2 + [i(ξ0 − ξ�kV
) + x −

ω0 + P (x)/2]2}−1, and P (x) is the Cauchy principle value of∫ ∞
0 Gn(ω′/2)dω′/(ω′ − x).

Here, 〈nω〉 at t = ts in Fig. 3(a) is best fit by a Gaussian
of broadening 2ξ�kV

. We determine 〈c0〉(t ) from Eq. (9) by
evaluating the poles si and calculating the integral in Q, for
G (I ) and G (II ). In Fig. 3(b), we assess the dependence of 〈c0〉(t )
on the peak amplitude of Gn, which can be experimentally
accessed by varying 〈nω(ts)〉. For G (I) (G (II)), the decay rate
of the tails of the dynamics is ξmin ∼ 2ξ�kV

(ξmin � 2ξ�kV
) [see

Fig. 3(c)]. For G (I ), the two-exponential dynamics persists
even in the strong coupling regime, while for G (II ), the decay
rate remains � 2ξ�kV

throughout, when increasing max[Gn(ω)]
from relatively small to large values. We thus confirm that an
asymmetry of G(ω) with respect to and in the vicinity of ω0/2
is a necessary condition for reaching the limiting lifetime of
2ξ�kV

, i.e., we should stay close to the band edge.
The difference between the dynamics associated with

G (I ) and G (II ) can be illustrated by the spectrum T (ωt ) =
〈c0〉(ωt )/Pr,t , which is the response to an excitation Pr =
Pr,t e−iωt t , while 〈c0〉(ωt ) is the steady state of 〈c0〉 at
frequency ωt , and ωt is in the frame of ω0. With
|Pr,t | = 1/ξ0, T (ωt ) follows from Eqs. (3) and (4) for
constant 〈n�kV

〉. When D�kV
= 0, |T (0)| = 1. When D�kV

�=
0 and lim2ξ�kV →0

|T (ωt )| = 1 for some ωt , the Kittel
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mode decays at the limiting rate of 2ξ�kV
. Straightfor-

ward algebra leads to lim2ξ�kV →0
T (ωt ) = iξ0{[ωt + P (ω0 +

ωt )/2] + i[ξ0 + πGn[(ω0 + ωt )/2]/2]}−1. In the case of G (I ),
Im[−iT (ωt )−1] > 1∀ωt , thereby |T (ωt ) < 1|. On the other
hand, when ωt < 0 for G (II ), we have Gn[(ωt + ω0)/2] =
0. Since limωt →0− P (ωt + ω0)/2 = ∞ and limωt →−∞ P (ωt +
ω0)/2 = 0, ωt + P (ωt + ω0)/2 = 0 for an ωt < 0 at which
T (ωt ) = 1 is reached. For the partially suppressed density of
states in G (II ), we therefore predict effects that resemble those
of spectral hole burning of inhomogeneously broadened NV
center spin ensembles, an established method to reach the
dissipation rate of individual spins [3,4].

Next, we address material dependence for samples of
equal size. The 3MS coefficient D�k = ωMgk sin θ�k cos θ�k (u�k +
v�k )(u�kv0 + v�ku0)/

√
2S [33], where u�k = √

(A�k + ω�k )/2ω�k
and v�k = −sign(B�k )

√
[(A�k − ω�k )/2ω�k], A�k = ωH +

ωM/2[2αexk2 + gk sin2 θ�k + 1 − gk], B�k = ωM/2[g�k sin2 θ�k +
gk − 1], gk = 1 − [1 − e−kd ]/kd , αex = 2Aex/μ0M2

s , θ�k is the
in-plane angle of �k with magnetization, Aex is the exchange
stiffness, Ms is the saturation magnetization, ωM = μ0γ Ms,
ωH = μ0γ H , and γ is the gyromagnetic ratio, S = V Ms/(h̄γ )
is the number of spins, and V is the sample volume. Since
for valley magnons u�k ∼ 1 and v�k ∼ 0, D±�kv

∝ √
ωM .

From ω�k =
√

A2
�k − |B�k|2 and some simple algebra, we

find the kmin associated with ωmin. The approximation
kmin ≈ 1/

√
4dαex is justified for ωH � ωMαexk2

min. ω2
min ≈

ω2
H + 5ω2

Mαexkmin/(4d ) + ωMωH [2αexk2
min + 1/(kmind )],

while ω2
0 = ω2

H + ωMωH . Aex increases while αex decreases
with Ms. Therefore, ωmin increases with Ms, but less
so than ω0. Since the curvature ∂2ωk/∂k2|k=kmin , and
ω2

�k − ω2
min ≈ ωHωMθ2

�k when |�k|= kmin, increase with Ms,
the DOS of the valley magnons does not change much. For
the given material parameters and sufficiently thick films,
ωmin = 2ω0 can always be reached by applying a magnetic
field. The interaction spectrum G(ω) can therefore be tuned
without changing the material simply by the sample thickness
and the magnetic field.

In Fig. 4(a), we plot the frequency dependence of the DOS
R(ω), and average interaction strength D̄(ω) for a magnetic
disk with thickness d = 1 μm and radius r = 100 μm for typ-
ical parameters of YIG and permalloy (Py). D̄(ω) vanishes at
the band edge, but then increases rapidly with ω. Ms and Aex of
Py are almost 10 times larger than those of YIG. According to
our analysis above, the DOS amplitude is about the same, but
D̄ increases substantially. We solve Eqs. (3)–(5) for the R(ω)
and D̄(ω) of YIG for different values of �ω′ = ω0/2 − ωmin,
which can be tuned by the external field H [see Fig. 4(a)].
For better comparison, the drive is switched off at a time ts
at which max[〈nω〉]/S = 10−10, chosen to be small enough
that 4MS interactions may be disregarded. Figures 4(b) and
4(c) show that the slow decay sets in faster and the coherence
persists much longer when �ω′ → 0. The relatively small
(large) detuning corresponds to the case G (I ) (G (II )). Since D̄
is larger for materials with larger Ms such as Py, the persistent
coherence of YIG can be achieved with weaker drive, but it
requires a larger H . For sufficiently large lateral dimension
r > 10 μm, R(ω) of the valley magnons does not change
with r, while D̄(ω) ∝ 1/r. So, smaller disks require weaker

FIG. 4. Calculated results for a magnetic thin disk (thickness
d = 1 µm, radius 100 µm) at an external magnetic field H = 25 mT.
(a) Density of states R(ω) and mean value of the 3MS interaction co-
efficient D̄ up to the FMR frequencies ω

YIG(Py)
0 . (b) The dependence

of the decay log[〈c0〉(t )] on the detuning �ω′ = ω0/2 − ωmin for
Pr/ξ0 = 105. (c) Time evolution for three �ω′ [indicated by dashed
lines colored as in (b)]. In calculations, we used the spectrum of
0.1 GHz width centered around ω0/2 and discretization of 0.01 MHz.
The oscillations in the relatively large �ω′ are the artifact of limited
bandwidth and discretization.

excitation for the same effect. Concluding, as long as ξ0 � ξ�k,
which still has to be proven for Py, a substantial persistent
coherence is easier to achieve for Py than YIG, in spite of the
larger Gilbert damping of the former.

Lifetime of quantum interferences. Here we address the
decay of the quantum interferences in a nonclassical state
such as a superposition of two coherent states that may differ
from that of coherent states and their statistical superpositions.
We focus on the quantum coherence of an initial nonclassical
superposition of a Kittel mode coherent state. We adopt
the Schrödinger cat state of the isolated Kittel mode as the
initial state, |ψ0(0)〉 = |ψ0,cat〉 = N (|α0〉 + |α′

0〉), where |α0〉
and |α′

0〉 are two distinct coherent states with amplitudes α0

and α′
0, respectively, and N is a normalization constant. For

simplicity and without loss of generality, we set α′
0 = −α0

and Im[α0] = 0. For a Kittel mode in the absence of 3MS
interaction, the density matrix in the presence of a linear
dissipation expressed by the L(L)

�k Lindblad operators in

Eq. (1) can be exactly solved as ρ(t ) = N 2{|α0(t )〉〈α0(t )| +
| − α0(t )〉〈−α0(t )| + [C(t )| − α0〉〈α0| + H.c.]}, where
α(t ) = α0e−ξ0t . C(t ) = e−2ξ0t exp[−4α2

0 (1 − e−ξ0t )] [39,40]
determines the difference between quantum and statistical
superposition and vanishes faster than |α(t )|2. At long
times, the state becomes a completely statistical rather than
quantum superposition. Adding a resonant drive Pr (c0 + c†

0),
α(t ) = α0e−ξ0t + (iPr/ξ0)(e−ξ0t − 1) does not affect C(t ).

We now assess the effect of 3MS on the density matrix
in the Hilbert space of the Kittel mode and a pair of
valley magnons for two distinct initial conditions ρcat (0) =
|ψ0,cat〉〈ψ0,cat| ⊗ ρ±�kV ,vac and ρstat (0) = |ψ0,stat〉〈ψ0,stat| ⊗
ρ±�kV ,vac, where “vac” indicates valley magnon vacuum,
|ψ0,stat〉〈ψ0,stat| = N ′(|α0〉〈α0| + | − α0〉〈−α0|) is a statistical
mixture of two coherent states, and N ′ is a normalizing
constant. We label the density matrices evolving from these
two initial conditions, ρcat (t ) and ρstat (t ), and integrate the
valley magnons out to obtain an effective density matrix of
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FIG. 5. Decay of quantum coherence. (a) C̃(t ) as a function of
time with relatively weak and completely without 3MS interactions.
The blue dashed line is our analytical result in the presence of 3MS.
(b) C̃(t ) with and without the resonant drive of the Kittel mode, now
for weak and strong 3MS interactions. The red dashed line holds for
n̄�kV

= 2 for weak 3MS and Pr �= 0.

the Kittel mode, ρ0,cat(stat). For a measurement operator Ô
with eigenvalues o and eigenstates |o〉, the coherence of an
arbitrary state |ψ〉 = ∑

i ci|φi〉, where ci = 〈ψ |φi〉, emerges
in the probability distribution P(o) as

∑
i �= j〈o|φi〉〈φ j |o〉,

which vanishes when Ô is diagonal in |φi〉. In other words, the
quantum interferences become observables for a measurement
operator that does not commute with the projection operator
of the measured states [39]. Here the number operator serves
this purpose via pn,cat(stat) = 〈n|ρ0,cat(stat)(t )|n〉, where |n〉
is the n number (Fock) state of the Kittel mode such that
the time dependence of C̃(t ) = ∑

n[pn,cat − pn,stat][ �= C(t )]
measures the decay of the quantum coherence [39]. In the
calculations below, we use the same dissipation parameters as
before.

Figure 5(a) shows our results for C̃(t ) with and without
(weak) 3MS and without drive Pr = 0, compared with the
C(t ) (blue dashed line) for equal starting amplitudes C(0) =
C̃(0). We find that 3MS also increases the quantum coher-
ence, similar to the effect of the beam-splitter interaction of
hybrid systems. As discussed above, 3MS introduces a 〈n�kV

〉

dependence; however, that may be indirectly tuned by driving
the Kittel mode or directly occupying the valley magnons
n̄�kV

. Figure 5(b) shows C̃(t ) when Pr = 0 and Pr = 0.5ξ0,
for a weak D�kV

/ξ0 = 0.05 and a strong D�kV
/ξ0 = 0.5 3MS.

The enhanced quantum coherence is evident. In Fig. 5(b),
we demonstrate that the persistent coherence may be further
enhanced when both Pr = 0.5ξ0 and n̄�kV

= 2. The decay of the

quantum coherence C̃(t ) limits the visibility of the negativity
of the Wigner function of the Kittel mode in the tomography
[14,26] at low temperatures, but, according to our calcula-
tions, the difference with the classical decay rates is minor.

Conclusion. We refine the model calculations of the inter-
action of the Kittel mode with valley magnons that enhances
the magnetic coherence in extended films and microstructures.
In spite of the rather weak nonlinear interactions in the sam-
ples and microwave powers explored to date, a substantial
persistent coherence has been reported [26]. We uncover the
role of the spectral dependence of three-magnon interactions,
density of states, and applied magnetic fields, and predict that
the decay rates of quantum and classical coherence are of the
same order of magnitude. Our model also holds for materi-
als such as Py and for other interacting three-level systems
with mode-dependent dissipation rates [41], such as het-
erostructures composed of different magnetic materials [42]
or nitrogen-vacancy centers in diamond [43]. Other interesting
platforms are antiferromagnets such as MnF2 with hyperfine
interactions that generate Suhl-Nakamura–de Gennes nuclear
spin waves [44–47]. The three-field resonance of electron spin
waves, nuclei spin waves, and phonons was experimentally
demonstrated long ago [48,49] and can now be modeled in a
modern fashion and implemented for enhancing the lifetime
of electron magnons.
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