
PHYSICAL REVIEW B 109, L180401 (2024)
Letter

Geometric frustration and Dzyaloshinskii-Moriya interactions
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We study the magnetism of a layered, spin- 1
2 organic-inorganic copper sulfate, which is a close realization

of the star lattice antiferromagnet, one of the playgrounds of geometric frustration and resonating valence
bond physics in two spatial dimensions. Our thermodynamic measurements show no ordering down to 0.1 K
and a characteristic field-induced entropic shift, revealing the presence of an infinite number of competing
states down to very-low-energy scales. The response to external magnetic fields shows, in addition, a peculiar
anisotropy, reflected in the formation of a 1/3 magnetization plateau (stable up to full saturation around
105 T) and a paramagnetic, Curie-like susceptibility for one direction of the field (H ‖ c), and a completely
different response in other field directions. Our first-principles density functional theory calculations and exact
diagonalizations show that these experimental puzzles are distinctive signatures of a strong interplay between
geometric frustration and sizable Dzyaloshinskii-Moriya interactions, and the emergence of a continuous U(1)
symmetry at low-energy scales.
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Introduction. The problem of tiling a plane with regu-
lar convex polygons has fascinated architects since ancient
times, engendering a rich cross-cultural heritage. In modern
condensed-matter physics, the very same patterns appear in
a different context: antiferromagnetically coupled localized
spins arranged on the vertices of a tiling are at the heart of
frustrated magnetism [1,2] and high-temperature supercon-
ductivity [3]. The emergent spin lattices split into two classes.
Bipartite lattices, such as the square or the honeycomb lat-
tice, feature the classical Néel ground state (GS), which is
globally compatible with all antiferromagnetic (AFM) bonds.
Such compatibility is fundamentally impossible in geometri-
cally frustrated lattices, where only local constraints can be
satisfied. For instance, in the kagome lattice [Fig. 1(a)], the
local constraint imposes a 120◦-spin structure within each
triangle. Since infinitely many global configurations satisfy
this local constraint, the classical GS manifold is infinitely
degenerate. In the case of spin- 1

2 , quantum fluctuations may
stabilize exotic GSs such as quantum spin liquids [4–6] and
valence bond phases [7–9].
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The spin- 1
2 star lattice antiferromagnet [Fig. 1(a)] is one

of the paradigmatic models of geometrically frustrated mag-
netism in two spatial dimensions [1,2,10]. As in the kagome
lattice, the triangle-based structure leads to an infinite ground-
state degeneracy at the classical level [11] and an array of
unconventional GSs in the spin S = 1/2 limit, including va-
lence bond solids [11–13], resonating valence bond states
[14], chiral spin liquids [15], and magnetic field-induced
phase transitions [11,13]. Unlike the kagome lattice, the
star lattice features two inequivalent nearest-neighbor (NN)
bonds. The respective Heisenberg exchange interactions are
often called JT and JD, as the spins on these bonds are
part of a triangle and a dimer, respectively. The lattice can
also be viewed as a (decorated) honeycomb lattice made of
triangles.

Layered sulfates often provide peculiar spin lattices
such as kagome lattice in natural minerals [16,17] and
organic-inorganic materials [18,19]. In 2020, Sorolla
et al. reported [(CH3)2(NH2)]3Cu3(OH)(SO4)4 · 0.24H2O,
(dimethylammonium copper sulfate, called DiMACuS
hereafter), which is the first realization of the spin- 1

2 star
lattice made of Cu2+ (3d9) ions [20]. The crystal structure
features inorganic [Cu3(OH)(SO4)4]3− layers separated by
dimethylammonium cations and crystal water molecules. In
addition to JT and JD, the next-nearest-neighbor interaction,
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FIG. 1. (a) Kagome and star lattices. Close to the isolated-
triangle limit (JT � JD), the star lattice can be described as a
honeycomb lattice made of spin triangles. (b) Isotropic exchange
interactions in DiMACuS (top): the (a, b, c) frame shown refers to
the hexagonal unit cell. Local crystal structure (bottom) described by
CuO5 pyramid and SO4 tetrahedra, as plotted using VESTA [22]. A
picture of a single crystal is also shown. (c) Observed and calculated
powder x-ray diffraction patterns.

called JH here [Fig. 1(b)], which forms the hexagon, may be
present due to the rotation of the triangles. Similarly modified
next-nearest-neighbor interactions are found in a classical
kagome AFM and their effect on the GS has been examined
previously [21]. Sorolla et al. observed paramagnetic behavior
down to 1.8 K in spite of an AFM Weiss temperature of 41 K
and proposed DiMACuS as a quantum spin liquid candidate
[20].

In this Letter, we report the successful synthesis of
millimeter-size single crystals of DiMACuS as well as pure
powder suitable for detailed magnetic characterizations. We
performed magnetization measurements on single crystals
down to 0.1 K and measured the entire magnetization process
of the powder sample in pulsed magnetic fields up to 120 T.
We also measured the specific heat with and without magnetic
fields. Two remarkable experimental results are the absence
of magnetic ordering down to 0.1 K and a peculiar magne-
tization anisotropy, with a 1/3 plateau visible only in H‖c.
By combining first-principles calculations with analytical and
numerical model simulations, we show that DiMACuS is a
quantum star lattice magnet with JT � JD and substantial chi-
ral Dzyaloshinskii-Moriya (DM) interactions within the spin
triangles.

Synthesis. The sample was prepared by reacting 0.4 g of
CuSO4 · 5H2O, 0.5 ml of sulfuric acid and 5 ml of N,N-
dimethylformamide in a glass vial at 80 ◦C for a few days.
An aggregation of bright green crystals including hexagonal
plates of a few millimeter size is formed [Fig. 1(b)]. The
aggregation is recovered by decantation and washed by N, N-
dimethylformamide. The sample is immediately vacuum dried
and stored inside an argon-filled glove box as the crystal
is hygroscopic. The crystal is covered by Apiezon-N grease
or sealed inside a plastic tube before being exposed to air
for measurements. Powder x-ray diffraction measurement is
performed on the crushed crystals by a diffractometer with
Cu-Kα1 radiation (Smart Lab, Rigaku). The observed pattern

matches well with the calculated pattern of DiMACuS with
the space group R3̄ and lattice constants a = 12.7222(2) and
c = 26.0836(4) Å, indicating the successful synthesis: the
pattern calculation is performed by FULLPROF software [23]
including the effect of preferred orientation along the c axis.

Low-field magnetization measurements. The magnetization
of a single crystal was measured by a SQUID magnetometer
(MPMS-XL, Quantum Design) in the T range 1.8–300 K and
magnetic fields of up to 5 T. We made a Curie-Weiss fit to the
magnetic susceptibility χ using the expression χ (T )=χ0 +
C/(T +�), where C and � are the Curie constant and the
Weiss temperature, respectively, and χ0 is the T -independent
term. Above 150 K, we obtain C = 0.469(8) emu/mol Cu K
(μeff = 1.94 μB), � = 43(2) K, and χ0 = −3.0(1) × 10−4

emu/mol Cu for H‖c. The same fit for the data in H‖ [120],
parallel to the edge of the hexagonal crystal, yields a simi-
lar result with a slightly larger Curie constant: C = 0.498(8)
emu/mol Cu K (μeff = 1.99 μB), � = 43(2) K, and χ0 =
−3.0(1) × 10−4 emu/mol Cu. Note that no clear anisotropy
was observed in χ (T ) in H‖ [120] and H‖a above 1.8 K.
The linear behavior of the inverse susceptibility (χ − χ0)−1

justifies the fits [Fig. 2(a)]. The enhancement of μeff with
respect to the spin-only value (1.73 μB) is typical for Cu2+
compounds and shows a slight anisotropy in the g factor
(g‖ � 2.24 vs g⊥ � 2.30).

Below ∼50 K, the susceptibility starts to deviate from the
Curie-Weiss behavior [Fig. 2(a)]. In accord with a previous
study [20], neither anomalies indicative of magnetic ordering
nor signatures of a spin gap formation were observed down to
1.8 K. To obtain more information on the low-T regime, we
measured magnetization of the single-crystal samples down
to 0.1 K by the capacitive Faraday method [24]. Again, the
results do not show any sign of magnetic ordering, despite
the relatively large � value [Fig. 2(b)]. This is one of the key
experimental results. Furthermore, the low-T susceptibility is
highly anisotropic and is significantly suppressed in H‖ [120]
compared to that in H‖c. More importantly, at the lowest
field measured (0.1 T), χ‖ exhibits paramagnetic behavior
(χ‖ ∝1/T ) down to 0.1 K, whereas χ⊥ appears to saturate
at low T . So the longitudinal and transverse responses are
qualitatively different. This is another key experimental result,
which suggests the presence of anisotropic interactions.

High-field magnetization measurements. In a magnetic
field, the star lattice models can feature exotic behavior with a
cascade of phases [11,13]. To study the emergence of field-
induced phases in DiMACuS, we performed magnetization
measurements in a pulsed high-magnetic field. Measurements
at 4.2 K up to 65 T were performed by the induction method
in a magnetic field with the pulse length of 4 ms [Fig. 2(c)].
As in the magnetic susceptibility, M is much larger in H‖c
than in H‖ [120], with the powder data taking intermediate
values. While the magnetization increases rapidly below 20 T,
its slope ∂M

∂H first decreases as the field increases, but then
saturates around 30 T, which is reminiscent of a magnetization
plateau.

This feature is examined in more detail by measuring the
magnetization process at 0.13 K [Fig. 2(d)]. In H‖c, the
magnetization increases steeply and becomes essentially flat
above 2.5 T (with ∂M

∂H exhibiting a saturating behavior already
at 1 T), at around 0.37 μB/Cu. With g‖ � 2.24 (estimated
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FIG. 2. (a) T dependence of inverse susceptibility at 1 T and the
Curie-Weiss fits. (b) Magnetic susceptibility at 0.1 and 1 T below
2 K. (c) Magnetization curves of the single crystal and powder
sample at 4.2 K and up to 65 T. The magnetic field derivative for
powder data is also shown. (d) Magnetization curve of the single
crystal at 0.13 K. (e) Magnetization curve of the powder sample up to
120 T measured at Tinitial = 4.2 K and its field derivative. (f) Specific
heat divided by T at 0 and 9 T below 20 K and magnetic entropy
estimated as in the main text.

from the Curie-Weiss fit), this is close to 1/3 of the full
moment. Therefore, we conclude that DiMACuS exhibits a
1/3 magnetization plateau in H‖c. On the other hand, the
magnetization in H‖ [120] gradually increases without a clear
flat region. The presence of a clear 1/3 plateau for H‖c
despite the presence of anisotropic interactions is the third key
experimental result.

The end of the plateaulike regime is signaled by the in-
crease of ∂M

∂H which becomes noticeable around 40 T at 4.2 K.
A more evident increase of magnetization is observed in
H‖ [120], where magnetization is suppressed at low magnetic
fields. The extrapolated (dashed) lines [Fig. 2(c)] cross at
53 T, which may be considered as the onset of the jump to
saturation for H⊥c. To study the behavior in higher fields,
we performed magnetization measurements by the induction
method up to around 120 T [Fig. 2(e)] generated by the de-
structive single turn coil method with a pulse length of 7 µs
[25]. The powder sample was used due to the small sample
space. ∂M

∂H exhibits a minimum at around 30 T and a maximum
at around 65 T, which are consistent with the data obtained in
the measurements up to 65 T, albeit with large noise caused by

the magnetic field generation. The field derivative becomes
small and almost constant above 105 T, indicating that the
fully polarized state is reached. Indeed, the magnetization at
105 T is approximately three times larger than the value at
30 T in the 1/3 plateaulike region.

Specific heat measurements. The specific heat Cp of the
single crystal was measured by the relaxation method using
a commercial apparatus (PPMS, Quantum Design). At zero
field, Cp/T shows a low-T upturn [Fig. 2(f)], which may
indicate long-range ordering below 0.1 K (the lowest T in
χ measurements). Measurements in 9 T applied along the c
axis reveal a considerable enhancement of Cp/T above 2 K.
While we do not have data below 2 K at 9 T, the system is
already in the 1/3 plateau phase [Fig. 2(d)], and the remaining
magnetic entropy should be small. Hence, the field-induced
enhancement of Cp/T above 2 K gives strong evidence for
the existence of low-lying magnetic excitations residing below
2 K in zero field and which are propelled to higher energies
by the field. This behavior is a hallmark of isolated or weakly
interacting spin-S degrees of freedom emerging at low-energy
scales. To shed further light on this, we estimate the entropy
content of the low-lying excitations by integrating the dif-
ference of Cp/T between 9 and 0 T from 2 K up to 20 K.
The obtained entropy is approximately 1.8 J/K mol Cu at
20 K, very close to 1

3 R ln 2. This value is associated with one
doublet degree of freedom per Cu triangle. This is the fourth
key experimental finding.

Microscopic modeling. We now set out to develop a micro-
scopic description that accounts for all experimental findings.
Based on the crystal structure of DiMACuS, we can iden-
tify three inequivalent exchange paths between neighboring
spins, JT, JD, and JH [Fig. 1(b)], which can be estimated by
first-principles density-functional-theory (DFT) calculations.
To this end, we employed the generalized gradient approx-
imation (GGA) [26] as implemented in the full-potential
code FPLO version 21 [27]. Following Ref. [20], we keep
only Cu3(OH)(SO4)4 magnetic layers and discard the organic
cations. A uniform background charge was used to retain
electroneutrality. Since the experimental structure features the
unusually short hydroxyl bond length of about 0.82 Å, we cal-
culated the optimal hydrogen position (z/c = 0.370 053) with
respect to the GGA total energy. Next, we performed magnetic
supercell calculations using the GGA + U functional with
the Coulomb repulsion Ud of 8.5 ± 1 eV and the Hund’s
exchange Jd of 1 eV, respectively, and the fully localized
limit as the double counting correction. Magnetic exchange
integrals were estimated by mapping the GGA + U energies
of eight different magnetic configurations onto a classical
Heisenberg model; the resulting redundant linear problem was
solved by the least-squares method. For Ud = 9.5 eV, we
found JT = 81.5 K, JD = 5.4 K, and JH = 0.3 K (practically
negligible) [28]. This choice of Ud is justified by the ex-
cellent agreement between the calculated Weiss temperature
� = 1

2 JT + 1
4 JD + 1

2 JH = 42.2 K and its experimental value.
The JT-JD model in the strong-coupling limit JT � JD

suggests an effective description in terms of isolated S = 1/2
Heisenberg triangles. Indeed, the isolated triangle model with
JT = 58.5 K and g = 2.205 accounts for the experimental
χ (T ) measured in H‖c [28] and reproduces the 1/3 plateau,
which corresponds to each triangle being in the Sz = 1

2 member
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of the Zeeman-split doublet (a similar situation is observed in
the frustrated cuprate volborthite featuring magnetic trimers
[29,30]).

However, the isotropic model fails to describe the observed
anisotropy. Moreover, an isolated S =1/2 AFM Heisenberg
triangle has two doublet GSs and not one [28], and therefore
does not capture the 1

3 R ln 2 entropy content of the low-lying
excitations deduced from the Cp data. To determine the rele-
vant anisotropies, we performed full relativistic noncollinear
DFT + U total energy calculations and computed the bilinear
exchange matrix Jαβ

T using the energy-mapping method [31].
Total energies were calculated with the projector-augmented
wave code VASP version 5.4.4 [32] using standard pseu-
dopotentials [33] and an energy cutoff of 400 eV. These
calculations were done on 2 × 2 × 2 k-mesh; for the inter-
action parameters, we used Ud and Jd of 9.5 and 1 eV,
respectively. In this way, we found that [28] (i) the symmetric
and traceless part of the exchange anisotropy is extremely
weak and can be safely disregarded, and (ii) the dominant
Heisenberg exchange in DiMACuS is accompanied by a siz-
able DM anisotropy on the JT bonds (the DM anisotropy on
the JD bonds vanishes due to inversion symmetry). The DT

vectors are perpendicular to the respective bonds and form
acute angles of ∼50◦ to each other, with D‖

T/JT = 0.274,
D⊥

T /JT = 0.493, and |DT|/JT = 0.56 [28]. The latter ratio is
remarkably large, yet not unprecedented for cuprates [34,35].
The sizable DM interaction is supported by the simulated
susceptibility showing excellent agreement for both field di-
rections down to ∼10 K [Fig. 3(a)]. It allows us to further
refine the magnetic exchanges: JT = 57 K and |DT|/JT =
0.42.

The DM interactions have a drastic impact on the physics
of weakly coupled triangles. The leading contribution stems
from D‖

T, while the influence of in-plane DM components
is zero to first order in D⊥

T /JT [28]. Our numerical simulations
(Fig. 3 and Ref. [28]), which include all DM components,
confirm this explicitly. So, to a good approximation, D⊥

T can
be safely disregarded, and the system effectively features two
emergent (i.e., approximate) symmetries at low energies: U(1)
spin rotation and a threefold spatial rotation, both around the
c axis.

Hence, for H ‖ c, the states of the system have well-defined
total moment Sz along c and chirality � (irreps of threefold
spatial rotation). Now, in the absence of D‖

T, each triangle has
two doublet GSs, separated by the S = 3/2 quartet by a gap
of 3JT /2 � 85 K [Fig. 3(b), left]. At lower temperatures, the
JT scale disappears from the problem, and we are left with
two doublets of opposite chirality �. D‖

T lifts the degeneracy
of the two doublets and introduces a new energy scale, the
gap �=√

3|D‖
T| � 35 K [Fig. 3(b), right]. At lower T , this

scale also disappears from the problem, and we are left with
one doublet per triangle, in agreement with the Cp data [see
Fig. 3(d), which also demonstrates the characteristic field-
induced entropic shift seen experimentally, at the level of two
coupled triangles].

The peculiar anisotropy of DiMACuS is governed by the
emergent U(1) symmetry: unaffected by a field along c, but
broken for fields perpendicular to c. This is manifest as fol-
lows [28]. D‖

T gives rise to a characteristic locking between Sz

(a) (b)

(c)

(e)

(d)

FIG. 3. (a) Magnetic susceptibility at 1 T for different field
directions (symbols) and fits (lines) with the anisotropic triangle
Heisenberg model with |D|/J = 0.42 (J = 56.5 K, g = 2.249, and
χ0 = −2.82 × 10−4 emu/mol Cu for H⊥c and J = 58.5 K, g =
2.205, and χ0 = −3.18 × 10−4 emu/mol Cu for H‖c). (b) Spectra of
a Heisenberg triangle and a triangle with D‖

T. (c) Magnetization curve
simulated for the parameters from panel (a). (d) Simulated specific
heat for an isolated triangle (JD =0) at 0 and 9 T, and for two triangles
coupled with JD = 4 K. (e) Powder-averaged magnetization isotherm
of an isolated triangle with |D|/J =0.42 (solid line, obtained by
averaging over a Fibonacci sphere of 500 points), in comparison
with the isotropic triangle (dashed lines) and the experiment (circles).
MATPLOTLIB [36] was used for plotting panels (a) and (c)–(e). For
plotting scripts and numerical data, see Ref. [37].

and �: the Sz = ±1/2 members of one doublet have � = ±1,
whereas for the other doublet � = ∓1. Hence, a field along
c does not couple the two doublets; instead, it gives rise to
a Zeeman splitting for each doublet, the Curie-like suscepti-
bility χ‖ ∝1/(4T ) at temperatures sufficiently below �, and
the flat 1/3 magnetization plateau [Fig. 3(c)], independent
of D‖

T. By contrast, an in-plane field breaks the U(1) sym-
metry explicitly and thus couples the two doublets, leading
to a standard level repulsion, with each doublet retaining its
twofold degeneracy. At low-T , χ⊥ approaches a finite value
[Fig. 3(a)], inversely proportional to D‖

T, and the magnetiza-

tion behaves as h/

√
h2 + 3(D‖

T)2 (where h = g⊥μBH): linear
at low fields [Fig. 3(c)], and asymptotically approaching the
1/3 value, without developing a flat plateau. Precisely this
behavior is observed experimentally in Figs. 2(c) and 2(d).

Next, we consider the high-field magnetization of the
isolated-triangle model. On exiting the 1/3 plateau, the mag-
netization shows an almost abrupt jump to full saturation
at H∗ equal to 3/2JT in the isotropic case. DT propels the
saturation to higher fields, but only for H‖c. By using the
above refined values of JT and DT in analytical expressions for
H∗ [28], we obtain H∗

‖ � 64 T and H∗
⊥ � 56 T. The latter is

L180401-4
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in satisfactory agreement with the endpoint of the plateaulike
region for H⊥c [Fig. 2(c)]. The difference between H∗

‖
and H∗

⊥ is further corroborated by numerical simulations of
the powder-averaged magnetization [Fig. 3(e)]. We note fi-
nally that, in the powder measurements, the value of H∗ is
distributed between H∗

‖ and H∗
⊥, effectively destroying the

magnetization jumps predicted for both field directions.
The isolated triangle model does not fully account for the

specific heat data: the expected gapped zero-field spectrum
[Fig. 3(d)] is in sharp contrast with the divergence observed
below 0.5 K [Fig. 2(f)]. The root cause of this discrepancy
is interactions between the triangles: for a minimal model of
two triangles coupled with JD, such a peak readily appears
at a temperature very close to the experimentally observed
[Fig. 3(d)]. Obviously, the actual connectivity of triangles
in DiMACuS follows a honeycomb lattice, and its realistic
simulation requires a much larger number of spins. The inter-
actions between the triangles can be described by an effective
model, in which each spin triangle is treated as a rigid entity.
While a full analysis of this model is beyond our scope, we
note that the rescaling of effective spin lengths also reduces
the dominant exchange scale from JD to JD/9, which may
explain the lack of ordering down to 0.1 K.

Finally, we comment on the slight orientational disorder in
the dimethylammonium molecule and the defect in the crystal
water intercalated between the magnetic layers [20]. On the
organic molecular Mott insulator, there is an argument that
random freezing of the electric polarization of the molecules
causes magnetic bond randomness, which can result in a
gapless spin liquid behavior [38]. In contrast to the organic
Mott insulator where the molecule itself carries the spin,
the dimethylammonium and H2O molecules in DiMACuS
are nonmagnetic and not involved in the magnetism in the
Cu3(OH)(SO4)4 layer. Indeed, no structural disorder is re-
ported in the Cu3(OH)(SO4)4 layer [20]. While we anticipate
the effects of disorder on the magnetism to be weak, this may
still hinder the ordering at very low T .

Summary and outlook. We demonstrate DiMACuS as a
realization of a spin- 1

2 star lattice antiferromagnet, one of the
paradigms for geometric frustration and resonating valence
bond physics. The main experimental puzzles, including the
absence of magnetic ordering down to very low temperatures,
the characteristic field-induced entropic shift seen in the spe-
cific heat data, and the peculiar anisotropy in the magnetic
response, can all be accounted for by the strong frustration
in the Cu triangles and the sizable Dzyaloshinskii-Moriya
anisotropy. Further studies are needed to clarify if DiMACuS
orders magnetically at a very low temperature and investigate
the possible role of disorder.

Star lattice magnets are known to exhibit a chiral spin
liquid state in the presence of Kitaev-type anisotropic interac-
tion [15]. Substituting Cu with divalent Co may substantially
enhance the exchange anisotropy and give rise to bond-
dependent interactions that underlie the Kitaev physics. As
demonstrated in a kagome system, cobaltate analogs of
cuprates exist in nature [39] and can be synthesized [40].
Synthesis of relative materials with different magnetic cations
will pave the way to explore the star lattice magnetism
from the extreme quantum case to the classical large-S
limit.
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