
PHYSICAL REVIEW B 109, L180303 (2024)
Letter

Dynamical quantum phase transitions following a noisy quench
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We study how time-dependent energy fluctuations impact the dynamical quantum phase transitions (DQPTs)
following a noisy ramped quench of the transverse magnetic field in a quantum Ising chain. By numerically
solving the stochastic Schrödinger equation of the mode-decoupled fermionic Hamiltonian of the problem, we
identify two generic scenarios: Depending on the amplitude of the noise and the rate of the ramp, the expected
periodic sequence of noiseless DQPTs may either be uniformly shifted in time or else replaced by a disarray
of closely spaced DQPTs. Guided by an exact noise master equation, we trace the phenomenon to the interplay
between noise-induced excitations which accumulate during the quench and the near-adiabatic dynamics of
the massive modes of the system. Our analysis generalizes to any one-dimensional fermionic two-band model
subject to a noisy quench.

DOI: 10.1103/PhysRevB.109.L180303

Introduction. Dynamical quantum phase transitions
(DQPTs) have become one of the focal points in the study
of quantum matter out of equilibrium [1,2], spurred by the
prospect of performing high-precision tests using quantum
simulators [3,4]. DQPTs appear at critical times at which
the overlaps between initial and time-evolved states vanish.
As a result, the rate function which plays the role of a
dynamical free energy density [5] becomes nonanalytic in
the thermodynamic limit. With time replacing the usual
notion of a control parameter, DQPTs are different from
ordinary phase transitions, requiring new ideas and concepts
for their understanding. Progress has come thick and fast,
with an expanding literature on theory [5–33], modeling, and
experimentation [34–47].

Most research so far, theoretical as well as experimen-
tal, has considered DQPTs triggered by a quantum quench
where an isolated system is forced out of equilibrium by a
change of its Hamiltonian. The quench may be modeled as
sudden, or more realistically, as having a finite duration with
a Hamiltonian parameter being swept from an initial to a final
value, also known as a “ramp.” While the quench is usually
assumed to be governed by a well-defined Hamiltonian, its
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realization in an experiment is always imperfect. As a result,
when energy is transferred into or out of an otherwise isolated
system via a quench in the laboratory, there will inevitably
be time-dependent fluctuations (“noise”) in this transfer. Ex-
amples include noise-induced heating caused by amplitude
fluctuations of the lasers forming an optical lattice [48] and
fluctuations in the effective magnetic field applied to a system
of trapped ions [49]. This raises the important issue about
the robustness of DQPTs following a noisy quench. Do the
DQPTs survive? If so, what is the effect from noise on the
dynamical critical behavior?

We address these questions in the setting of the trans-
verse field Ising (TFI) chain, arguably the simplest benchmark
model for this purpose. The model has served as a paradigm
for exploring quantum phase transitions in and out of equilib-
rium and is also the first [5] and best studied model exhibiting
DQPTs. The availability of platforms for well-controlled ex-
perimental probes of DQPTs in TFI-like chains [34–36,43,44]
is yet another reason why we choose it for our study. Quan-
titative reliable results for the simple TFI chain, amenable to
experimental tests, should prepare the ground for a compre-
hensive theory of DQPTs following a noisy quench.

Representing the noise by a dynamical stochastic variable
added to the TFI Hamiltonian, we numerically study the
stochastic Schrödinger equation of the corresponding mode-
decoupled fermionic Hamiltonian that governs the dynamics
of a single quench. In addition, we construct and solve an
exact master equation for the quench dynamics averaged over
the noise distribution. This allows us to highlight the interplay
between the near-adiabatic quench dynamics of the gapped
modes of the system and the accumulation of noise-induced
excitations. As suggested by our analysis, the competition
between adiabaticity and noise-induced excitations underlies
the sometimes surprising outcome of a noisy quench. While
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a small ratio between noise amplitude and rate of energy
transfer at most results in a shift of the expected periodic
sequence of noiseless DQPTs, a larger ratio may have a dra-
matic effect: The periodic sequence can now get scrambled,
resulting in a disarray of closely spaced DQPTs.

Noiseless ramped quench: background. To set the stage,
we write down the Hamiltonian of the Ising chain with peri-
odic boundary conditions and subject to a noiseless transverse
magnetic field h0(t ):

H0(t ) = −J
N∑

n=1

σ x
n σ x

n+1 − h0(t )
N∑

n=1

σ z
n . (1)

When the field is time independent, h0(t ) = h, and with J set
to unity, the ground state is ferromagnetic for |h| < 1, other-
wise paramagnetic, with the phases separated by equilibrium
quantum critical points at h = ±1 [50]. Here, and in what
follows, h̄ = 1.

The Hamiltonian H0(t ) in Eq. (1) can be mapped onto
a model of spinless fermions with operators cn, c†

n using
a Jordan-Wigner transformation [51]. Performing a Fourier
transformation, cn = (eiπ/4/

√
N )

∑
k eiknck (with the phase

factor eiπ/4 added for convenience), H0(t ) gets expressed as
a sum over decoupled mode Hamiltonians H0,k (t ):

H0(t ) =
∑

k

C†
k H0,k (t )Ck, k = (2m − 1)π

N
, (2)

with m = 1, 2, . . . , N/2. Here N and the fermion parity
exp(iπ

∑N
n=1 a†

nan) are taken to be even [52]. C†
k = (c†

k c−k )
are Nambu spinors, and

H0,k (t ) = h0,k (t )σ z + �kσ
x, (3)

with h0,k (t ) = 2[h0(t ) − cos(k)] and �k = 2 sin(k) when
J = 1. The instantaneous eigenstates and eigenvalues of
H0,k (t ) are given by

|χ±
k (t )〉 = α±

k (t )|α〉 + β±
k (t )|β〉, (4)

ε±
k (t ) = ±εk (t ) = ±

√
h2

0,k (t ) + �2
k, (5)

where |α〉 = (1 0)T , |β〉 = (0 1)T , and α±
k (t )= [h0,k (t )∓

εk (t )]/N±
k (t ), β±

k (t )=�k/N±
k (t ), with N±

k (t ) normalization
constants. Note that for large N , the gap between the two
levels vanishes in the limit k → π (k → 0) when reaching
the critical points h0(t )=−1 (h0(t )=+1). Also note that the
Pauli matrices in Eq. (3) are not to be mixed up with the spin
operators in Eq. (1).

As a preliminary, let us briefly review DQPTs in case of a
noiseless ramp with sweep velocity v, h0(t ) = h f + vt , from
an initial value hi at time t = ti < 0 to a final value h f at t =
t f =0. The Hamiltonian in Eq. (3) for each mode has the form
H0,k (t ) = 1

2vτkσz + �kσx, so transition rates can be calculated
by the Landau-Zener formula [53,54]. Here τk = 2h0,k (t )/v
defines a mode-dependent time, which changes sign when
an avoided level crossing occurs [55,56]. As expected from
the adiabatic theorem [57], a quasiparticle mode with wave
number k remains in its instantaneous eigenstate in the limit
v�k/2ε3

k (t ) → 0 [58] [with 2εk (t ) the gap of the mode at time
t ; cf. Eq. (5)]; hence {|χ±(τk )〉} spans the adiabatic basis, with
{|α〉, |β〉} the diabatic basis.

Starting with hi � −1 in the ground state of the param-
agnetic phase, all modes initially reside in the lower level
|χ−

k (ti )〉. After a ramp across the critical field h = −1 to some
final value h f in the ferromagnetic phase, the probability to
find mode k in the upper level |χ+

k (t f )〉 will depend on the
value of k, and we denote this probability by pk . Modes
close to k = 0 show no sign change of τk , so they mostly
remain in the lower level pk < 1/2, while modes close to the
gap-closing limit k = π will be excited to the upper level with
probability pk > 1/2 [5,15]. Given these two cases, continuity
of the spectrum as a function of k in the thermodynamic
limit implies that there exists a “critical mode” k∗ with equal
probabilities pk∗ = 1/2 for occupation of the lower and upper
levels after the ramp, corresponding to a maximally mixed
state. This is the mode that triggers the appearance of DQPTs
at critical times [1,59],

t n
c = (2n + 1)

π

2εk∗, f
, n = 0, 1, . . . , (6)

with εk∗, f = εk∗ (t f ) the energy in Eq. (5). Note that the ramp
occurs at negative times, t < t f = 0, while the DQPTs take
place at positive times.

Noisy ramped quench: formalism. To approach the problem
with a noisy quench we add a random variable η(t ) to the
magnetic field, writing h(t ) = h0(t ) + η(t ). We shall assume
the noise distribution to be Gaussian with vanishing mean,
〈η(t )〉 = 0, and with canonical Ornstein-Uhlenbeck two-point
correlations [69]:

〈η(t )η(t ′)〉 = ξ 2

2τn
e−|t−t ′ |/τn . (7)

Here τn is the noise correlation time and ξ the noise amplitude
for fixed τn. The frequently employed white-noise limit is
obtained by letting τn → 0.

As before, the probabilities pk for nonadiabatic transitions
will change continuously with k in the thermodynamic limit,
but it is a priori unclear if the special value pk =1/2 occurs
at all, or maybe even for several k values. The inequality
pk,max > 1/2 close to k = π is ensured by the Kibble-Zurek
mechanism (KZM), which predicts a breakdown of adiabatic-
ity when approaching gap closing [70,71]. On the other hand,
noise will in general facilitate additional transitions, so it is
uncertain if modes with pk,min < 1/2 remain, which is the
required condition for DQPTs [1,59]. While there are closed
expressions for finite-time transition probabilities in the adia-
batic basis with no noise [58], there are no known such results
when noise is present. Could it be that noise may increase
the probability for nonadiabatic transitions, corrupting the
inequality pk,min < 1/2? Or maybe instead drive oscillations
of the pk function across 1/2, causing additional DQPTs?

To find out we numerically solve the stochastic
Schrödinger equations (SSEs) [72–74],

[H0,k (t ) + η(t )H1]|ψk (t )〉 = i
∂

∂t
|ψk (t )〉, (8)

for the allowed values of k [cf. Eq. (2)] and for
single realizations of the noise function η(t ) in the
quench interval t ∈ [ti, 0], with H1 =2σ z [cf. Eq. (3)
with h0,k (t ) → h0,k (t ) + η(t )]. Having obtained the solution
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(a) (b) (c)

(d) (e) (f)

FIG. 1. Probabilities for finding a mode with momentum k in the upper level after a ramp across the single quantum critical point hc =
−1 (hi = −50, hf = 1/2) for system size N = 1000 and different noise amplitudes ξ , sweep velocities v, and noise correlation times τn:
(a) ξ = 0.01, v = 0.1, τn = 0.01; (b) ξ = 0.01, v = 0.01, τn = 0.01; (c) ξ = 0.1, v = 0.1, τn = 0.01; (d) ξ = 1, v = 0.1, τn = 0.01; (e)
ξ = 0.1, v = 10, τn = 0.01; (f) ξ = 1, v = 10, τn = 0.01. The probabilities pk for single noise realizations are displayed in red, with the
ensemble averages 〈pk〉 in blue. For comparison, the probabilities pk for noiseless cases (ξ = 0) are shown in black.

|ψk (t )〉 = uk (t )|χ+
k (t )〉 + vk (t )|χ−

k (t )〉 to Eq. (8) at t = t f =0,
one reads off pk = |uk (0)|2 [59].

In addition, we construct an exact noise master equa-
tion (ME) [75–78] for the averaged density matrix
ρk (t ) = 〈ρη,k (t )〉, with ρη,k (t ) the density matrix of the Hamil-
tonian in Eq. (8). Explicitly,

ρ̇k (t ) = −i[H0,k (t ), ρk (t )]

− ξ 2

2τn

[
H1,

∫ t

ti

e−|t−s|/τn [H1, ρk (s)]ds

]
. (9)

By translating Eq. (9) into two coupled differential equations,
the mean transition probabilities are obtained numerically as
ensemble averages 〈pk〉 over the noise distribution {η}. The
averaged probabilities reveal features not easily seen from
a single quench, and, moreover, allows us to validate the
soundness of the SSE numerics. For details, see [59].

Results. Let us analyze the results predicted by Eqs. (8)
and (9) for a quench across the equilibrium critical point
h = −1, from hi = −50 to h f = 1/2. The effect of noise is
bound to increase with the amplitude ξ but will also depend
on the correlation time τn, as well as on the sweep velocity
v. For transparency we focus on a few representative cases,
displayed in panels (a)–(f) of Fig. 1.

(a) We take off from a noiseless quench that supports an
extended adiabatic regime, i.e., with modes satisfying pk ≈0.
As discussed above, when a quench is noiseless there appears
only a single critical momentum k∗ (satisfying pk∗ =1/2).
Panel (a) shows that adding noise in the velocity-weighted
low-amplitude limit ξ/v � 1 does not perturb k∗. Hence, in
this limit the corresponding DQPTs are robust against noise.

(b) Increasing ξ/v by lowering the sweep velocity v

as compared to (a), one enters a crossover region with
ξ/v ∼ O(1). In this region the impact of noise depends on
its nonweighted amplitude ξ . Panel (b) shows that the noise-
less critical momentum remains unperturbed for a sufficiently
small ξ [here with the same value as in (a)]. Thus, the corre-
sponding DQPTs stay robust against noise.

(c) Boosting the amplitude ξ in the crossover region
ξ/v ∼ O(10) [here by a factor of 10 compared to (b)] causes
the pk function for a single noise realization to cross the value
1/2 for several k values. The convergence of pk to a con-
tinuous function of k in the thermodynamic limit N → ∞ is
now extremely slow, reflecting that the large-amplitude noise
variability morphs into a finite-N pk-function with occasional
large jumps between neighboring modes. Going to larger val-
ues of N will eventually smoothen the graph, implying a set of
randomly distributed critical momenta {k∗

i } in the thermody-
namic limit where pk becomes continuous. By inserting {k∗

i }
into Eq. (6), one obtains an aperiodic sequence of densely
spaced DQPTs. Figure 2 shows how such DQPTs are signaled
by cusps in the dynamical free energy g(t ) = (1/N ) ln |G(t )|,
being finite-size precursors of the nonanalyticities in the ther-
modynamic limit. Here

G(t ) =
∏

k

〈ψk (0)| exp(−iH0,k (0)t )|ψk (0)〉 (10)

is the Loschmidt amplitude for the time-evolved postquench
state [59].

As seen in both panels (b) and (c), the blue graphs for the
ensemble-averaged transition probabilities 〈pk〉 are concave
away from the gap-closing region at k =π . This suggests an
intriguing interplay between noise-induced excitations and the
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FIG. 2. The dynamical free energy g(t ) of the model for the noisy
quench corresponding to Fig. 1(c). The vertical dotted lines mark the
times for the finite-size (N = 1000) precursors of DQPTs.

dynamics of the gapped modes driven by the slow noise-
less ramp: Deep in the adiabatic regime where the averaged
instantaneous gap is large (with the average taken over the
duration of the quench), noise has a negligible effect. For
intermediate-sized gaps, noise excitations become effective
but then level off as one approaches the neighborhood of
k =π . Here the KZM takes over, dominating the nonadiabatic
dynamics and making the presence of noise largely irrelevant.

(d) Increasing ξ/v further, entering the velocity-weighted
large-amplitude regime ξ/v�1 (still with the noiseless
quench supporting an adiabatic regime), the number of critical
momenta in the thermodynamic limit proliferate. Similar to
the case displayed in panel (c), this is spelled out by the
finite-size plot of pk in panel (d), which exhibits repeated
jumps of pk across the value 1/2. As an aside, let us remark
that the number of critical momenta increase also when the
correlation time τn decreases: A smaller τn implies a larger
noise variability ξ/τn which gets inherited by the pk function
in the guise of a larger transition variability. Referring to the
correlation time τn, we also note that noise effects are condi-
tioned by the inequality τn < 1/v, with 1/v the ramp time.

The most striking feature in panel (d) is the plateau forma-
tion of the blue curve. Here the average transition probabilities
〈pk〉 are numerically found to be locked to the value 0.5000 ±
0.000 01, signaling the emergence of a maximally mixed
state for the corresponding modes. One may understand this
by noting that an Ornstein-Uhlenbeck process is stationary
and therefore ergodic in the mean [69]. It follows that the
long-time average of the noisy density matrix converges to
that of its ensemble average. Given this, the formation of a
plateau suggests that an asymptotically slow noisy quench
will effectively heat the system to infinite temperature. This is
supported by earlier results showing that a slow quench sub-
ject to large-amplitude white noise may lead to a maximally
mixed state [79,80]. We should add that the width of a plateau
increases with decreasing τn as well as with decreasing v.

(e) Let us finally consider a noiseless quench where, differ-
ently from the cases (a)–(d), the assumption v�k/2ε3

k (t ) � 1

is violated for most of the modes, implying that their dynamics
is nonadiabatic. The nonadiabaticity is here driven by a larger
value of the sweep velocity v, also giving less time for noise
to become effective. As expected, and similar to the case in (a)
where ξ/v � 1, panel (e) confirms that the presence of noise
also now has a negligible effect when ξ/v is sufficiently small.

(f) In contrast, when ξ/v is above some threshold value,
however still with ξ/v � 1, the noise may cause a noticeable
shift of the single noiseless critical momentum, as displayed
in panel (f). This results in a uniform shift of the sequence of
noiseless periodic DQPTs; cf. Eq. (6).

It is important to note that all DQPT scenarios in panels
(a)–(f) of Fig. 1 are fully determined by the pk function. It
follows that any one-dimensional fermionic two-band model
subject to a noisy ramp with a behavior of the pk func-
tion analogous to that of the TFI chain will show similar
postquench dynamics. Let us also mention that the averaged
pk curves in Figs. 1(a)–1(f) obtained from the ME, Eq. (9),
are well reproduced by averaging over a finite sample of
solutions to the SSEs in Eq. (8), each SSE with a distinct noise
realization η(t ); see Ref. [59]. This serves as a stringent check
on our numerical approach.

Summary and discussion. Summing up, we have shown
how the patterns of DQPTs following a noisy ramped quench
of the magnetic field in the TFI chain depend on the rate of
the ramp (“sweep velocity” v) and amplitude ξ of noise fluc-
tuations. Two distinct classes of scenarios can be identified:
(i) noise having a negligible or weak effect, at most shifting
the expected sequence of noiseless DQPTs; and (ii) noise
causing an aperiodic, closely spaced set of DQPTs. Note that
the stochastic nature of noise does not allow us to delineate
(i) and (ii) by a sharp phase boundary; only for a very small
[large] ratio ξ/v can we predict with certainty that (i) [(ii)]
materializes after a single quench.

While we have here exhibited (i) and (ii) with quench
protocols where one of the TFI equilibrium quantum critical
points is crossed, we expect the two scenarios to be generic.
Specifically, we have checked this for a ramped quench across
both TFI equilibrium quantum critical points [81]. The com-
petition between adiabaticity and noise-induced excitations
that brings about the two scenarios is known to be at play also
in impacting the Kibble-Zurek scaling of defect formation
when quenching across a critical point [80,82,83]. It would
be interesting to pinpoint related phenomena driven by this
same competition.

With the rapid advances in realizing analog quantum sim-
ulators, experimental tests of our predictions may soon be
within reach. While we have focused our theoretical analy-
sis on the underlying dynamics after a single noisy quench,
an experimental followup must probably settle for ensemble
averages: Real-time tracking of a single-shot outcome will
most likely have to await further advances in weak measure-
ment techniques [84,85]. On the other hand, noise-averaged
(strong) measurements are expected to be fully within the
realm of current experimental methods and will be highly in-
formative (as suggested by the blue-colored graphs in Fig. 1).
Ramped magnetic quenches in the presence of amplitude-
controlled noise have already been achieved with trapped
ions simulating the transverse-field XY chain [86]. The other
backbone for an experimental exploration—detection and
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characterization of DQPTs—is also in place, as demonstrated
on a variety of platforms for TFI-type chains with finite-range
interactions: trapped ions [34,35,44], Rydberg atoms [36], and
NV centers [43]. These breakthroughs, together with recent
advances in quantum-circuit computations on NISQ (noisy
intermediate-scale quantum) devices [87,88], hold promise
for exploring DQPTs following noisy quenches also in the
nearest-neighbor interacting TFI chain studied in this Letter.
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