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equation: Linear conductivity in insulating systems

Ibuki Terada,1 Sota Kitamura ,2 Hiroshi Watanabe ,3,4 and Hiroaki Ikeda 1

1Department of Physics, Ritsumeikan University, Shiga 525-8577, Japan
2Department of Applied Physics, The University of Tokyo, Hongo, Tokyo, 113-8656, Japan

3Research Organization of Science and Technology, Ritsumeikan University, Shiga 525-8577, Japan
4Department of Liberal Arts and Basic Sciences, College of Industrial Technology, Nihon University, Chiba 275-8576, Japan

(Received 1 February 2024; revised 26 April 2024; accepted 29 April 2024; published 17 May 2024)

The nonequilibrium steady states of quantum materials have many challenges. Here, we highlight issues with
the relaxation time approximation (RTA) for the dc conductivity in insulating systems. The RTA to the quantum
master equation (QME) is frequently employed as a simple method, yet this phenomenological approach is
exposed as containing a fatal flaw, displaying non-negligible dc conductivity in the linear response regime. We
find that the puzzling behavior is caused by the fact that the density matrix in the RTA incompletely incorporates
the first order of the external field. To solve this problem, we have derived a calculation scheme based on the
QME that ensures correct behavior in low electric fields. Our method reproduces well the overall features of the
exact electric currents in the whole field region. It is not time consuming, and its application to lattice systems is
straightforward. This method will encourage progress in this research area as a simple way to more accurately
describe nonequilibrium steady states.
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Introduction. Field-induced phenomena in quantum sys-
tems under strong electric fields have attracted much attention
with the recent developments in laser technology [1–6]. The
electromagnetic responses of condensed-matter systems be-
yond the linear response regime lead to a variety of intriguing
phenomena, including bulk photovoltaic effects [7–12] and
nonreciprocal transport of quantum geometric origin [13–17].
Laser light with stronger intensities triggers photoinduced
phase transitions as a result of nonperturbative quantum ef-
fects, which is experimentally demonstrated in the ultrafast
timescale and investigated theoretically [18–26].

When the driving field becomes strong, dissipation to en-
vironment plays a vital role in determining the distribution
function far from equilibrium, which is generally difficult
and has a long history of research [27–35]. The theoreti-
cal description of open dissipative systems necessitates the
nonequilibrium Green’s function [1,36–40] or the density
matrix [41–45] as a fundamental quantity, rather than the
wave function. The nonequilibrium Green’s function can be
calculated using the diagrammatic approach formulated on
the Schwinger-Keldysh contour, while the density matrix is
calculated on the basis of the quantum master equation (QME)
[46,47]. Recently, nonperturbative modulation of the distribu-
tion function due to the Landau-Zener tunneling [48–50] has
been formulated by combining the nonequilibrium Green’s
functions approach with analytic methods [14]. There, it
was discussed that systems with broken inversion symmetry
lead to interesting nonperturbative phenomena such as tunnel
spin current and nonreciprocal current. The Green’s function
method is a powerful tool, but it is time consuming and
its application to lattice systems requires the cumbersome
treatment of dynamical phases. The development of QME

methods as a complementary method is therefore considered
important.

The relaxation time approximation (RTA) is the simplest
approximation to describe the nonequilibrium steady state in
the QME approach [51–53]. It has been frequently used in
the context of the semiclassical Boltzmann equation and the
semiconductor Bloch equation. Quite recently, however, it has
been pointed out that the RTA has a problem in its application
to nonlinear optics [44,45]. We show here that, in addition to
this problem, the RTA treatment in insulating systems involves
a fatal flaw that the dc conductivity exhibits conducting behav-
ior in the linear response regime, despite the absence of Fermi
surfaces. The reason why this has been overlooked until now
is that the detailed studies of transport properties in multiband
systems have only recently progressed, and that for metallic
systems, the problem is only quantitative.

In this Letter, we demonstrate the fatal flaw inherent in the
RTA by applying it to the Landau-Zener model which is a
minimal model for real insulators. We find that it originates
from the fact that the density matrix in the RTA incorporates
the first order of the external field E in an incomplete form. On
the basis of the QME, we derive a calculation scheme to fix
this issue in low electric fields by sequentially incorporating
the perturbation correction of the external field. Our method
reproduces well the overall features of electric currents in the
whole field region. It is less time consuming and compara-
ble to RTA calculations. Its application to lattice systems is
straightforward.

Relaxation time approximation. To demonstrate a fatal flaw
contained in the standard RTA, let us consider a two-band
system with a finite gap. With two eigenenergies εk±, the
band gap at each k point is given by �k = εk+ − εk− > 0. We
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introduce the dc electric field E via the Peierls substitution,
k → k − eEt (hereafter e = 1). Following Ref. [14], we intro-
duce the snapshot basis |�kα (t )〉 = |uα,k−Et 〉e−i�α (t ) (α = ±)
with |uα,k〉 being the eigenstate of the snapshot Hamiltonian
H (k). The phase factor �α (t ) consists of the dynamical and
Berry phases [54]. In this basis, the QME for the density
matrix [ρk (t )]αβ is written in the 2 × 2 matrix form as

dρk (t )

dt
= −i[Wk (t ), ρk (t )] +D(ρk (t )), (1)

where [Wk (t )]αα = 0, [Wk (t )]+− = [Wk (t )]∗−+ ≡ Wk (t ) =
E〈u+,k−Et |i∂k|u−,k−Et 〉ei�+(t )−i�−(t ) denotes the transition
dipole matrix elements. Here, the dissipation to environment
is described byD(ρk (t )), whose form in the RTA is given by

[D(ρk (t ))]RTA
αβ = fD(εkα (t ))δαβ − [ρk (t )]αβ

ταβ

, (2)

where fD is the Fermi-Dirac distribution function, and
εkα (t ) = εk−Et,α . τ++ = τ−− = τ1 and τ+− = τ−+ = τ2 de-
note the longitudinal and transverse relaxation time,
respectively.

By solving Eq. (1), we obtain the density matrix of the
nonequilibrium steady state. Then the electric current J (t ) is
calculated as J (t ) = −e

∫
dk
2π

Tr[∂kH (k)ρk (t )], which can be
decomposed into intra- and interband contributions as

J (t ) = Jintra (t ) + Jinter (t ), (3)

Jintra (t ) = −
∑
α=±

∫
dk

2π

∂εkα (t )

∂k
[ρk (t )]αα, (4)

Jinter (t ) = 2 Im

[∫
dk

2π

Wk (t )�k (t )

E
[ρk (t )]−+

]
. (5)

The electric current in the nonequilibrium steady states is
obtained as the long-time limit of J (t ). The presence of Jinter

was pointed out in the early stage [55], and recently it was
rederived and its importance was discussed in detail in the
context of the Landau-Zener tunneling [14].

Hereafter, let us consider the Landau-Zener model for
simplicity,

H (k) =
(

vk δ

δ −vk

)
, (6)

where 2δ corresponds to the band gap. In Fig. 1(a), we show
the field dependence of the electric current JRTA in the RTA
for several τ with τ1 = τ2 = τ at the temperature T = 0.01δ.
In the inset, one can see a remarkable increase of the current
JRTA at around E = 0.5Eth, consistent with the generation
of tunneling carriers. Such an increase of tunneling carriers
is implied by the rapid increase of the tunneling probabil-
ity PLZ = exp(−πEth/E ) with Eth = δ2/v, as shown in the
dashed line of the main panel of Fig. 1(a) [48,56].

Surprisingly, an unexpected linear E dependence with the
slope increasing with τ−1 is observed in the low-E regime,
indicating conducting behavior even though the system is
actually an insulator. What is responsible for this finite linear
dependence? To clarify the origin, in Fig. 1(b), we separately
show the contributions from JRTA

intra (dashed line) and JRTA
inter

(dotted line) for τ−1 = 0.02δ. One can see that the linear E
behavior comes from the interband contribution JRTA

inter .
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FIG. 1. (a) Field dependence of the dc current JRTA in the RTA
at T = 0.01δ. The inset depicts JRTA in a wide range. Solid lines
denote the RTA currents for several τ−1. The dotted line represents
the tunneling probability PLZ. One can see the exponential behavior
in the inset, but encounter an unexpected linear behavior at a low
E limit in the main panel. (b) Intraband JRTA

intra (dashed line) and
interband JRTA

inter (dotted line) contributions of JRTA at τ−1 = 0.02δ as
a function of E/Eth. JRTA

inter shows unphysical linear E behavior.

In fact, the density matrix in the low-E limit can be calcu-
lated as

[ρk (t )]RTA
αα ∼ fD(εkα (t )) + Eτ1

∂ fD(εkα (t ))
∂k

, (7)

[ρk (t )]RTA
+− ∼ − Wk (t )

�k (t ) − iτ−1
2

δ fk (t ), (8)

with δ fk (t ) = fD(εk−(t )) − fD(εk+(t )), by solving Eq. (1) in
a perturbative manner [57]. Then, within the linear response
regime, the electric conductivities σ RTA = limE→0 JRTA/E are
given by

σ RTA
intra = τ1

∑
α=±

∫
dk

2π

(
∂εkα

∂k

)2(
− ∂ fD

∂εkα

)
, (9)

σ RTA
inter = 2τ−1

2

∫
dk

2π

|〈u+,k|i∂k|u−,k〉|2�k

�2
k + τ−2

2

δ fk . (10)

In the insulating case, the intraband conductivity σ RTA
intra van-

ishes at T = 0, which is consistent with the Boltzmann theory.
On the other hand, the interband conductivity σ RTA

inter does not
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vanish even in the insulating case, which gives the slope of
JRTA

inter at E → 0. This term increases roughly in proportion to
damping τ−1

2 . The presence of the small but finite conductivity
is only a quantitative problem in metallic systems, but critical
in insulating systems. It is a fatal flaw of the RTA in the
QME [58]. It has also been recently argued that the RTA is
problematic for the optical response [44,45], which is another
problem different from the unphysical behavior observed here
for the dc current. As we will show later, the current prob-
lem comes from the presence of iτ−1

2 in the denominator of
Eq. (8). This is due to the fact that the RTA does not properly
incorporate the first-order contribution of the electric field E .
In our formalism beyond the RTA, this term in the denomina-
tor vanishes [cf. Eq. (19)]. This iτ−1

2 term also affects the Hall
current, with which the Hall conductivity does not quantize
within the RTA [51].

Beyond RTA. To fix the issue in the RTA, here we consider
a two-band insulating system coupled to a fermionic reser-
voir [1,59] within the QME formalism, and then derive the
dissipation term D(ρk (t )) microscopically. We start with the
Born-Markov master equation [46,60]

dρ̃k (t )

dt
= −

∫ t

−∞
TrB[H̃I,k (t ), [H̃I,k (s), ρ̃k (t ) ⊗ ρ̃B]]ds,

(11)
where ρ̃k (t ) is the reduced density operator and ρ̃B is the
thermal density operator of the fermionic reservoir (bath), re-
spectively. Here, the tildes on operators denote the interaction
picture. H̃I,k (t ) represents the interaction term between the
system and the bath, H̃I,k (t ) = ∑

σ p Vpb̃†
kσ p(t )c̃kσ (t ) + H.c.,

where c̃kσ (t ) and b̃kσ p(t ) = b̃kσ p(t0)e−iωp(t−t0 ) are respectively
the annihilation operators of an electron in the system and the
bath with momentum k and pseudospin σ . TrB[· · · ] means
tracing out the bath degrees of freedom. We impose the
broadband condition for the spectral density of the fermionic
reservoir as

∑
p

π |Vp|2 δ(ω − ωp) = � (const). (12)

The key point of our formalism is to express Eq. (11) in the
snapshot basis by introducing the transformed field operator

ψ̃kα (t ) =
∑

σ

〈�kα (t )|σ 〉c̃kσ (t ), (13)

and evaluate the integral in Eq. (11) with employing the
adiabatic perturbation theory [13,14]. The key part of time
evolution is contained in the dynamical phase as

Wk (t − s) ∼ e−i�k (t )sWk (t ), (14)

|�kα (t − s)〉 ∼ eiεkα (t )s|�kα (t )〉. (15)

Specifically in the adiabatic limit E → 0, these are the exact
expressions. We further evaluate the dissipation term in a
perturbative manner, such that the resultant QME is exact up
to O(E ) while maintaining the unitarity of the time evolution
operator up to O(E2). We call this approximation the dynam-
ical phase approximation (DPA).
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FIG. 2. Occupation number of a single electron in the upper
band. Solid lines and solid circles denote the results in DPA and
the numerically exact results [14], respectively. The schematic fig-
ure represents the electron dynamics in the Landau-Zener model. The
DPA results are almost consistent with the exact results. The small
deviation is due to the damping-induced excitation inherent in open
systems.

Finally, we obtain the dissipation term in the DPA as
D(ρk (t )) = D0 +D1 +D2, where

[D0]αβ = −2�([ρk (t )]αβ − fD(εkα (t ))δαβ ), (16)

[D1]αβ = −2�
[Wk (t )]αβ

�k (t )
δ fk (t ), (17)

[D2]αβ = 2�α
|Wk (t )|2
�2

k (t )

(
δ fk (t ) + �k (t ) f ′

D(εk,−α (t ))
)
δαβ.

(18)

The subscript n of Dn denotes the perturbation order of Wk

[57]. Note that the expression here is a simplified one un-
der the particle-hole symmetry, εk+(t ) = −εk−(t ). Here, the
zeroth-order termD0 corresponds to the RTA with τ1 = τ2 =
1/2�, while D1,D2 describe the field-induced correction
terms. Specifically, in the presence of Eq. (17), the low-E
expression for [ρk (t )]+− is replaced from Eq. (8) into

[ρk (t )]DPA
+− ∼ −Wk (t )

�k (t )
δ fk (t ), (19)

with which the unphysical linear term in JRTA
inter [Eq. (10)] is

completely canceled out.
Now, let us compare the DPA calculation with the numer-

ically exact calculation [14]. Figures 2(a) and 2(b) show the
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FIG. 3. (a) Field dependence of the dc current JDPA in the DPA.
The inset depicts JDPA in the wide range. In the main panel, solid lines
denote the DPA currents for several τ−1, the dashed line represents
the RTA current at τ−1 = 0.02δ, and the solid circles the result of the
numerically exact result. In the inset, one can see that the DPA result
reproduces the exact result well. JDPA almost vanishes at E < 0.2Eth.
We can verify in (b) that JDPA has no linear E terms with an accuracy
of less than 10−7δ at E < 0.06Eth. At the intermediate region E ∼
0.4Eth, JDPA deviates from the exact result by ∼10−3δ but roughly
increases with the tunneling probability P, implying that the excited
carriers are carrying the electric current.

occupation numbers of the upper band at τ−1 = 2� = 0.02δ

and T = 0.01δ as a function of k(t ) = −Et . Electrons starting
from t = t0 < 0 (k > 0) are excited by Landau-Zener tunnel-
ing as they pass through the gap minimum at t = 0 (k = 0).
Then, at t > 0 (k < 0), the excited electrons decay with a
relaxation time τ . As shown in Fig. 2(a), the DPA results
are consistent with the exact result at higher temperatures
and stronger electric fields. The small deviation in the low-E
regime in Fig. 2(b) is due to the damping-induced excitation
inherent to the present fermionic reservoir, which is only
partially included in the DPA. While this is incorrect from the
viewpoint of the rigorous treatment of the fermionic reservoir,
it could be considered an advantage since this particular exci-
tation should be absent for the ideal environment.

Finally, we illustrate the field dependence of the electric
current in the DPA in Fig. 3. Solid lines in Fig. 3(a) denote

the DPA currents for several damping parameters, the dotted
line represents the RTA current at τ−1 = 0.02δ, and the solid
circles are the numerically exact results. It is clear that the
RTA fails to capture qualitative features of the exact result.
On the other hand, as shown in the inset of Fig. 3(a), the
DPA result well describes the exact one. The most significant
improvement is the disappearance of the linear E dependence
in the interband contribution. This is due to the fact that the
iτ−1 term in the off-diagonal term of the density matrix in the
RTA is completely canceled by correctly treating the electric
field up to the first order. This also improves the behavior of
the intraband contribution, where the exponential behavior is
more pronounced. As a result, the total current in the low-
field region is also greatly improved and shows exponential
behavior. Indeed, JDPA almost vanishes at E < 0.2Eth. It can
be verified in Fig. 3(b) that JDPA has no linear E terms with an
accuracy of less than 10−7δ at E < 0.06Eth. At the intermedi-
ate region E ∼ 0.4Eth, JDPA has an error of ∼10−3δ. This is
thought to be due to the damping-induced excitation and/or
the fact that the DPA calculation was terminated up to D2.
Although further refinements to incorporate these effects are
available in principle, the overall features of the dc current are
described well enough qualitatively and semiquantitatively
in our DPA. In addition, it has a great advantage that the
computational time required to obtain these results is almost
the same as for the RTA.

Conclusion. This Letter highlights issues with the RTA
for the dc current in insulating systems and proposes an
improvement based on the QME. The RTA is frequently
employed as a simple method, yet this phenomenological
approach is exposed as containing a fatal flaw, displaying
non-negligible dc conductivity at the low-E limit in generic
insulating systems. This puzzling behavior is because of the
incomplete inclusion of the first-order contribution of the
electric field in the density matrix. We reevaluate the QME
and incorporate the dynamical phase of the transition matrix,
thereby correctly capturing the first-order terms of the electric
field. We obtained a scheme that accurately describes the
insulating behavior. It was demonstrated that it accurately
predicts the correct off-diagonal terms in the density matrix
and is in semiquantitative agreement with the numerically
exact result. This also improves the calculation of quantum
Hall effects. While numerically exact calculations can be per-
formed for the present fundamental model, it is often time
consuming. Our method is not rigorous but correctly captures
the overall features in the dc current. Furthermore, it does
not require much computation time and is straightforward to
apply to lattice systems. The DPA is an alternative to the RTA,
which describes nonequilibrium steady states more correctly.
We believe that this method will encourage progress in this
research field.
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