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Locally controlled arrested thermalization
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The long-time dynamics of quantum systems, typically, but not always, results in a thermal steady state. The
microscopic processes that lead to or circumvent this fate are of interest, since everyday experience tells us that
not all spatial regions of a system heat up or cool down uniformly. This motivates the question: Under what
conditions can one slow down or completely arrest thermalization locally? Is it possible to construct realistic
Hamiltonians and initial states such that a local region is effectively insulated from the rest, or acts as a barrier
between two or more regions? We answer this in the affirmative by outlining the conditions that govern the
flow of energy and entropy between subsystems. Using these ideas we provide a representative example for how
simple quantum few-body states can be used to engineer a “thermal switch” between interacting regions.
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Introduction. A central objective in nonequilibrium physics
is to predict the dynamical behavior of isolated and open
quantum systems in the long-time limit. Typically, the system
will reach a thermal state that may be described by the eigen-
state thermalization hypothesis (ETH) [1–3]. However, recent
developments have demonstrated examples where the ETH is
violated [4–17]. This originates from the complete or partial
breaking of ergodicity.

Here, we explore the possible impact on thermalization
when the interaction between, or the initial state of, a few spins
in a local region of the system is altered, a scenario that can be
realized in ultracold atoms with tunable interactions [18–26].
The impact of such local perturbations can be dramatic—for
example, one of us (in collaboration with others) recently
found that a locally driven spin can be effectively decoupled
from the rest of the system and remains athermal [27,28].
Alternatively, one can locally heat and cool regions through
local deformation of the Hamiltonian [29–33]. It is thus use-
ful to consider thermalization in different local regions of a
system and their dependence on initial conditions (including
inhomogeneous states). In addition to the conceptual question
being interesting in its own right, such explorations may have
practical implications as well. Preventing energy and entropy
flow between different spatial regions translates to realizing
a “thermal switch”—it is “on” (allows energy flow) or “off”
(completely stops energy flow) depending on which initial
quantum state the system is prepared in. In this Letter we
develop a framework for the conditions that are required to
arrest thermalization in a local region.

Consider an isolated quantum many-body system that is
divided into two regions A and B with strictly local Hamilto-
nians and an intervening region AB which has support in A
and B. Our objective is to selectively (not trivially) decouple
these two regions, i.e., completely stop energy flow between
them only for a certain (but fairly generic, and easy to realize)
choice of initial conditions. The system is described by the
Hamiltonian,

H = HA + HB + HAB. (1)

where HA and HB denote the Hamiltonians of region A
and B, respectively, and HAB is the coupling between the
regions. Since the Hamiltonians considered are strictly lo-
cal, [HA, HB] = 0. We consider three distinct cases: (1)
[HA, HAB] �= 0 and [HB, HAB] �= 0; (2) [HA, HAB] = 0 and
[HB, HAB] = 0; and (3) [HA, HAB] = 0 and [HB, HAB] �= 0.

Case 1 is the most generic one, and we expect all the
usual characteristics of ETH to be seen for most, but not
all initial conditions. It will be our objective to show how
a “thermal switch” can be realized for this case. Cases 2
and 3, while distinct, will be shown to share many similari-
ties in their behavior. We mention that aspects of heat flow
and entropy production for commuting and noncommuting
subsystems have been previously addressed in the field of
quantum thermodynamics [34–44], however, less attention
has been devoted to a study of (1) physical observables beyond
the energy and (2) the role of specific initial conditions in
governing the long-time behavior.

Controlling thermalization in commuting subsystems. Con-
sider case 2, for example. [HA, HAB] = 0 implies [HA, H] = 0,
i.e., HA is a constant of motion. Even if B is initially prepared
to be “hot” (say by initializing it in a random state), and A
“cold” (i.e., by choosing an initial state with a low expectation
value of energy), there will be no energy flow into subsystem
A even though it is coupled to B via HAB. How about the
evolution of the quantum state itself and the local physical
observables if the system is initially prepared in a separable
state, |�(t = 0)〉 = |ψ〉A ⊗ |ϕ〉B?

The commuting conditions of case 2 imply
e−i(HA+HB+HAB )t = e−iHAt e−iHBt e−iHABt . Hence,

|�(t )〉 = e−iHAt e−iHBt e−iHABt |ψ〉A ⊗ |ϕ〉B. (2)

By definition, HA and HB act on different regions. Meanwhile,
the term HAB = ∑

j O
j
A ⊗ O j

B (we consider the case of only
one term in the sum and hence drop the label j) acts on a
small number of spins in the intervening region, for example,
two spins in the Ising spin chain. The action of e−iHABt on the
product state in Eq. (2) will typically generate entanglement
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between A and B. However, |�(t )〉 remains a product state
if |ψ〉A is a nondegenerate eigenstate of HA, or if the initial
state of the spins in AB is an eigenstate of OA. In both cases,
OA|ψ〉A = α|ψ〉A. Hence,

e−iOA⊗OBt |ψ〉A ⊗ |ϕ〉B = |ψ〉A ⊗ (e−iαOBt |ϕ〉B). (3)

This leads to

|�(t )〉 = e−iHAt |ψ〉A ⊗ (e−iHBt e−iαOBt |ϕ〉B). (4)

For an operator OA that only acts on subsystem A,

〈OA(t )〉 = A〈ψ |eiHAt OAe−iHAt |ψ〉A. (5)

Therefore, any local measurement in A will depend solely
on the dynamics of A. In other words, regions A and B can
thermalize in their own ways although they are coupled by
HAB. In particular, 〈OA(t )〉 = 〈OA(0)〉 if |ψ〉A is an eigenstate
of HA or if OA commutes with HA. Meanwhile, an application
of the ETH for subsystem B suggests that 〈OB(t )〉 → 〈OB,th〉,
where 〈OB,th〉 is the value predicted from the thermal average.

The discussion above suggests a simple yet general recipe
to control thermalization in different local regions in a quan-
tum system. In quantum spin systems, the proposal can be
realized by controlling the interaction between a small number
of spins on the boundary between A and B, which we elucidate
with an example.

To illustrate our idea we consider a modification of the
one-dimensional Ising spin chain in a tilted magnetic field,
described by the Hamiltonian

HA,B = −J
∑

i

Sz
i Sz

i+1 − g
∑

j

(
sin θSx

j + cos θSz
j

)
, (6)

HAB = −JABSσ
NA

Sσ ′
NA+1. (7)

The tilted field Ising model was established to be noninte-
grable in Ref. [45] (see also Ref. [46]). The indices 1 � i, j �
NA − 1 for HA. For HB, NA + 1 � i � N − 1 and NA + 2 �
j � N where NA is the number of sites in A and N is the
total number of sites. Here, we have set the magnetic field
to be zero at sites j = NA and j = NA + 1. This allows us to
engineer the interaction (i.e., by choosing σ and σ ′ in HAB)
such that different conditions for [HA, HAB] and [HB, HAB] can
be realized.

As a proof of concept, we employ numerical exact diag-
onalization to study the dynamics of the system with N =
10 spins and NA = 5. We set the parameters J = JAB = 1,
g = 0.5, and θ = π/4. The system is shown schematically in
Fig. 1(a). The initial state for subsystem A is set to the fer-
romagnetic state |↑↑↑↑↑〉, which is a low-lying energy state
but not an eigenstate of HA due to the direction of the magnetic
field. Meanwhile, subsystem B is prepared in a random initial
state. To quantify the average energy stored in subsystems A
and B, we calculate the expectation values 〈HA + HAB/2〉 and
〈HB + HAB/2〉 as a function of time. If no effective thermal-
ization between A and B occurs, the two expectation values
should remain well separated from each other. Otherwise, they
will eventually come close to each other.

We first set HAB = −Sx
5Sx

6 to achieve case 1. The bipar-
tite entanglement entropy (EE) between A and B is shown
in Fig. 2(a). The bipartite EE reaches the saturated value
rather quickly, which indicates that the two subsystems are

(b)(a)

FIG. 1. Panel (a) shows the bipartite one-dimensional Ising chain
under an external magnetic field, with gj being the field strength at
site j. To achieve commuting subsystem Hamiltonians, the magnetic
field at the boundary (i.e., the fifth and sixth spins) is set to zero.
Panel (b) shows the Heisenberg chain with a thermal switch (formed
by the fifth and sixth spins). Here, dots, squares (left panel), and
bonds (right panel) in red, blue, and orange are in subsystems A,
B, and their intervening region AB, respectively. Note that AB has
support in both A and B.

effectively entangled. In Fig. 2(b), we also observe that 〈HA +
HAB/2〉 and 〈HB + HAB/2〉 eventually come close to each
other. This signifies the energy flow from B to A through the
boundary, such that the two subsystems can thermalize.

To demonstrate that genuine thermalization has been
reached between the two subsystems, we obtain the energy
associated with each bond, the spin magnetization 〈Sz

j (t )〉 for
all individual spins, and their corresponding von Neumann
entropy in base 2 for 0 � t � 5 × 104. These are shown as
spatiotemporal plots in Figs. 3(a), 3(d), and 3(g), respectively.
The von Neumann entropy of a single spin is determined from
the reduced density matrix obtained by partial tracing out all
other nine spins. Since H is not translationally invariant (no
magnetic field acting on spins 5 and 6, and their spin-spin
interaction is different from other spins), it is natural that the
four spins close to and on the boundary behave differently
from other spins. Meanwhile, the energy stored in bonds 1–3
and 7–9 are close to one another. Additionally, the spin mag-
netization and von Neumann entropy for spins away from the
boundary are close to one another.

We then move to cases 2 and 3 by setting HAB = −Sz
5Sz

6 and
HAB = −Sz

5Sx
6, respectively. Using procedures and definitions

similar to the first case, we show the corresponding results
for the two cases in Figs. 2 and 3. In contrast to the first
case, the bipartite EE stays at zero, and the average energy
for the two subsystems remain separated from each other.
The panels in the middle and right columns of Fig. 3 further
demonstrate that the boundary acts as a barrier, such that A and
B evolve as if they are insulated from each other. These results
provide examples of impeding thermalization in commuting
subsystems.

What happens if the initial ferromagnetic state of A is
changed, but the initial state of B remains unchanged? On one
hand, HA remains a constant of motion in cases 2 and 3. On
the other hand, the change in the initial state will impact the
dynamics of subsystem A, and hence the local measurement
of physical quantities there. To highlight this, we set the initial
state of A to [(| ↑〉 + | ↓〉)/

√
2]⊗5 in which case Eqs. (3)–(5)

no longer hold. Although not shown here, we find that the
spatiotemporal profiles of the bond energy, 〈Sz

j〉, and the von
Neumann entropy of the spins differ from those in Fig. 3. In
the inset of Fig. 2(a), we show the bipartite EE for cases 2 and
3. Instead of being a constant at zero, the EE now oscillates
between zero and one in case 2, or increases from zero and
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(b)(a)

FIG. 2. Time evolution of the half-cut entanglement entropy between the two subsystems [(a)] for the tilted field Ising model described by
Eqs. (6) and (7), and the expectation values of energy for the subsystems [(b)]. The spin chain consists of ten spins. Each subsystem has five
spins. Three different scenarios (the spin-spin interaction for the two spins at the boundary) are considered, which are explained by the legends
in the figure. The initial states for all three cases are |↑↑↑↑↑〉A ⊗ |ran〉B, where |ran〉B stands for a random state for the five spins in subsystem
B. The inset of (a) shows the half-cut EE of the system when A is prepared in the initial state |x〉⊗5, where |x〉 = (|↑〉 + |↓〉)/

√
2.

saturates to one in case 3. This difference distinguishes the
two cases. Note that the entropy value of one (in base two)
stems from the maximal entanglement between the two spins
in the region AB. Thus, both the Hamiltonian and initial states
of the subsystems play a role in the dynamics and thermaliza-
tion of the system.

Arrested thermalization for noncommuting subsystems. We
now address case 1 and ask whether it is possible to arrest ther-
malization at the local level when the commuting condition is
not satisfied. Taking inspiration from work on global quantum
many-body scars [11–14], we show that this is indeed possible
by constructing an explicit example. The general principle
is to design a Hamiltonian HAB such that (1) the region AB
has a “simple to prepare” eigenstate and (2) this eigenstate is
unchanged by the time evolution in the rest of regions A and B.
We leverage the exact quantum degeneracy of certain locally
frustrated motifs to accomplish this objective.

Consider a lattice geometry that involves two triangles
“pasted together” as shown in Fig. 1(b). As before, region
A consists of sites 1–5, region B consists of sites 6–10, HA

comprises bonds (i, i + 1) for i = 1–4, and HB comprises
bonds (i, i + 1) for i = 6–9. HAB now consists of bonds (4,6),
(5,7), and (5,6). The triangles share a common bond [here
(5,6)], and each one of the unshared vertices connects to
the remainder of the sites in either region A or B. (Periodic
arrangements of such motifs were previously considered in
Ref. [15] in the context of global quantum many-body scars.
Here, we emphasize that the motif can be more generally used
as a barrier to prevent heat flow between different regions
irrespective of the Hamiltonian away from this barrier.)

We simulate the Heisenberg Hamiltonian, H =∑
i, j Ji jSi · Sj, on the lattice topology in Fig. 1(b): Ji j = 1

for all connected links except the shared common bond
[bond (5,6)] which has the strength of Ji j = 2. Each triangle
[comprising sites 4,5,6 and 5,6,7 in Fig. 1(b)] has two
degenerate “dimer covered” eigenstates, a consequence of
the Hamiltonian for each triangle being proportionate to
(Si + S j + Sk )2. Much in the spirit of the Majumdar-Ghosh
Hamiltonian [47] (and other projector constructions [48–50]),
the simultaneous eigenstates of both pasted triangles are

simple—they have a singlet on sites 5 and 6 and arbitrary
spin states at the other vertices not part of this bond (i.e.,
sites 4 and 7). This property is ideal—the time-evolved state
in the remainder of regions A and B has no bearing on the
singlet, and it remains frozen in time. This stems from a local
integral of motion for total angular momentum of the spins,
Q = (S5 + S6)2—the collective dynamics is nonergodic
(Q = 0) or ergodic (Q = 2) [15].

We demonstrate our assertions in Fig. 4 using exact di-
agonalization. We prepare the ten-site system in the initial
state |�〉 = | ↑↑↑↑〉 ⊗ |ψ5,6〉 ⊗ |ran〉 (i.e., sites 1–4 are in a
ferromagnetic state, sites 5 and 6 are prepared in state |ψ5,6〉,
and sites 7–10 in a random state denoted by |ran〉). Note that
the ferromagnetic state is the exact local eigenstate of the
Heisenberg Hamiltonian in region A, however, the coupling to
region AB means it will in general (but not always) decohere
under time evolution.

When |ψ5,6〉 is prepared in a singlet state, we ob-
serve in Fig. 4(a) that the half-cut EE [dividing the bond
(5,6)] is constant, at a value of one, as expected. In
addition, Fig. 4(b) shows that neither the total energy as-
sociated with the left nor right regions changes i.e., there
is no exchange of energy. Here, we define the energy for
the left region as 〈EL〉 = 〈�(t )|∑i, j Si · S j |�(t )〉, where
(i, j) = (1, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 6). These are
the bonds connecting the first four spins and the left tri-
angle formed by spins 4, 5, and 6. Similarly, (i, j) =
(5, 6), (5, 7), (6, 7), (7, 8), (8, 9), (9, 10) are used to define
the energy for the right region, 〈ER〉. The ferromagnet in the
left portion of the chain remains intact, owing to the fact that
it was a local eigenstate of A to begin with. This is verified
in Fig. 4(c), the plot of the local magnetization (〈Sz

j (t )〉 for
each site j). The sites of region B being initially prepared
in a random state evolve in time and eventually appear to
thermalize. We also plot the von Neumann entropy for each
site, and find that it remains low in A but large in B [see
Fig. 4(e)].

In contrast, when |ψ5,6〉 is prepared in a triplet state
|T 〉 = (|↑↓〉 + | ↓↑〉)/

√
2, the half-cut EE quickly grows and

saturates. The energy exchange between the left and right
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FIG. 3. Spatiotemporal profile of the estimated energy at each bond [(a)–(c)], spin magnetization 〈Sz
j〉 for all individual spins [(d)–(f)], and

their corresponding von Neumann entropy [(g)–(i)] in the tilted field Ising model. Three different kinds of boundary are considered. For the
left, middle, and right columns, the interaction terms are HAB = −Sx

5Sx
6, HAB = −Sz

5Sz
6, and HAB = −Sz

5Sx
6, respectively. In all cases, the initial

state of the system is |↑↑↑↑↑〉A ⊗ |ran〉B. Here, we simulate the dynamics of the system for 0 � t � 5 × 104. The insets of the left column
show the results in the short-time interval 0 � t � 100. See the main text for more details.

regions is also rapid. Though the bond energies and en-
tropy are very distinct to begin with [as can be seen from
the inset of Fig. 4(f)], they assume a much more uniform
value as time progresses. Qualitatively similar behavior is
seen (for all the observables reported here) when |ψ5,6〉 is
prepared in a random linear superposition of |↑↑〉, |↑↓〉, |↓↑〉,
and |↓↓〉.

Conclusion. To conclude, we have provided a frame-
work for how thermalization in quantum systems can be
arrested in a controlled way. Our results stem from a
combination of Hilbert space fragmentation and local sym-
metry [51–55]. We provided a proof of principle of our

analytic assertions that were verified numerically in systems
of few spins. All qualitative conclusions presented here were
also found to hold for systems with a few additional spins
(not shown here). Using a tilted field Ising model, our first
exploration demonstrated how energy flow can be arrested
when the interaction between the subsystems satisfy a com-
mutation condition. The dynamics of the local region is
decoupled from the rest of the system. Second, for the case
of noncommuting subsystems, we found that it is possible
to arrest thermalization with the help of local motifs which
have eigenstates that do not evolve and hence do not affect
the evolution in other regions. In the example we presented,
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(a) (c) (d)

(b) (e) (f)

FIG. 4. Time evolution of the bipartite entanglement entropy with subsystem A defined as the first five spins [(a)], and the expected energy
for the left and right subsystems [(b)]. The left subsystem is defined as the spins 1–4 and the “left triangle” formed by spins 4,5,6, whereas
the right subsystem is defined as the “right triangle” formed by spins 5,6,7 and the spins 7–10 (see Fig. 1). (c) and (e) show respectively the
time evolution of 〈Sz

j (t )〉 and the von Neumann entropy for every individual spin. Here, the initial state of the bond (spins 5 and 6) is set to the

singlet state |S〉 = (|↑↓〉 − |↓↑〉)/
√

2. In (d) and (f), the corresponding results for a triplet initial state of the bond |T 〉 = (| ↑↓〉 + | ↓↑〉)/
√

2
are illustrated. The insets show the short-time behavior from t = 0 to t = 50.

when two sites in the boundary region are initially entangled
in a singlet configuration, there is no flow of energy between
the two subsystems. When the initial state is changed, the two
subsystems exchange energy. This is precisely the function of
a thermal switch.

We anticipate the realization of our ideas on mul-
tiple promising platforms—cold atoms [56], Rydberg
atoms [57–60], and circuit QED [61–63]. More generally,
our results suggest that manipulating a small number of spins
and/or the interactions between them can completely change
the thermalizing properties of the entire system. We imagine
the use of these concepts to effectively disconnect or “insu-
late” systems in a controlled way. Finally, we also envision the
generalization to higher-dimensional systems, for example,

by introducing an arbitrary number of small local insulating
puddles.
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