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Floquet-Anderson localization in the Thouless pump and how to avoid it
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We investigate numerically how on-site disorder affects conduction in the periodically driven Rice-Mele
model, a prototypical realization of the Thouless pump. Although the pump is robust against disorder in the
fully adiabatic limit, much less is known about the case of finite period time T , which is relevant also in light
of recent experimental realizations. We find that, at any fixed period time and nonzero disorder, increasing the
system size L → ∞ always leads to a breakdown of the pump, indicating Anderson localization of the Floquet
states. Our numerics indicate, however, that, in a properly defined thermodynamic limit, where L/T θ is kept
constant, Anderson localization can be avoided, and the charge pumped per cycle has a well-defined value —
as long as the disorder is not too strong. The critical exponent θ is not universal, rather, its value depends on
the disorder strength. Our findings are relevant for practical, experimental realizations of the Thouless pump, for
studies investigating the nature of its current-carrying Floquet eigenstates, as well as the mechanism of the full
breakdown of the pump, expected if the disorder exceeds a critical value.
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Introduction. The Thouless pump [1] was instrumental in
understanding the role topology plays in the theory of the
quantum Hall effect. Its simplest form is that of a two-band,
gapped fermionic chain whose parameters are slowly and
periodically varied in time. In the half-filled state, where the
lower/upper band is completely filled/empty, and in the adi-
abatic limit, an integer number Q of fermions are pumped in
the lower band, where Q is a topological invariant, equal to
the Chern number C of the pump sequence.

While it started out as a thought experiment, the Thouless
pump can now be found in the laboratory [2]. After its demon-
stration in photonic systems [3–6], topological pumping has
been realized in a variety of platforms, such as mechani-
cal metamaterials [7,8], ultracold atoms [9–11], and other
quantum systems [12]. More recently, an electrical circuit
demonstration has been put forward [13].

The real-life Thouless pump has a finite size, L, a finite
period time, T , and it is disordered. This raises the question
whether these, either separately or in combination, can prove
detrimental to its robustness, namely, to the quantization of
the pumped charge. For instance, even without disorder, a
finite period time gives corrections to the quantized value
of the pumped charge. For a quench-like switching on of
the pump, the authors of Ref. [14] found these to scale as
1/T 2, but they should be greatly reduced for a smoother
switching-on of the periodic driving cycle. The breaking of
adiabaticity, however, is not always sufficient to destroy the
Thouless pump. As shown in Ref. [15], if the disorder-free

pump is made longer and longer, then adiabaticity will be
strongly broken for any finite T , no matter how large. In
spite of this, they found that the quantization of the pumped
charge survives in the steady-state regime, when the pump
performs cycle after cycle. Similarly, in the adiabatic T → ∞
limit, the quantization of the pumped charge should be robust
against small disorder, as discussed by Thouless and Niu [16].
Here, eigenstates of the time-dependent Hamiltonian are all
Anderson localized, and in the adiabatic limit an intuitive
(although possibly misleading) picture is that periodic mod-
ulation pumps charge between them.

In this Letter we focus on the effect of onsite disorder on an
actual Thouless pump (finite T rather than the adiabatic limit).
On the one hand, disorder can even result in a suppression of
finite-T corrections, and a higher pumped charge [17]. On the
other, adding too much disorder has to result in a breakdown
of the pump, via an Anderson localization transition — a few
works have already studied this numerically [17,18].

On-site disorder on the Thouless pump is particularly in-
teresting because of the connection to the “levitation and
annihilation” in Chern insulators [19]. Disorder in the Chern
insulator localizes its eigenstates, but each topological band
has (at least) one state that remains extended in the thermo-
dynamic limit, which “carries the Chern number” [20–22]. As
disorder is increased, full Anderson localization happens by
these robustly extended states “levitating” towards each other
in energy and “annihilating.” Can such phenomena be ob-
served in the Floquet states of the disordered Thouless pump?
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Numerical results [17] are consistent with this, and have even
identified a critical exponent for this Anderson localization
transition, obtained by scaling up the size of the pump at a
constant (and large) period time.

Here, we uncover a previously unexplored behavior of
the disordered Thouless pump, specifically with regard to
its thermodynamic limit. One might think that for a ther-
modynamic limit, L → ∞ and T → ∞ should be taken one
after the other. However, we argue this is inadequate. Taking
T → ∞ first is problematic, since the charge pump becomes
infinitely slow. Moreover, in this “ultra-adiabatic” limit tran-
sitions occur between distant Anderson localized eigenstates,
thus computation of Q needs open boundary conditions [23].
Taking L → ∞ first is often (sometimes tacitly) assumed.
However, as we show in the following, this leads to a break-
down of the pump due to the Anderson localization of the
Floquet eigenstates. In this Letter we suggest a properly de-
fined way to take L → ∞ and T → ∞.

The model. We consider the periodically driven Rice-Mele
model [24] with an on-site potential disorder that is inde-
pendent of time. Spinless fermions hop on a closed chain of
L = 2N sites, with the unitary time evolution governed by the
Hamiltonian

Ĥ (t ) = −
L∑

m=1

[
J + (−1)mJ̃ cos

2πt

T

]
ĉ†

mĉm+1 + H.c.

−
L∑

m=1

[
(−1)m� sin

2πt

T
+ W ζm

]
ĉ†

mĉm, (1)

where ĉm annihilates a fermion on site m, with ĉL+1 = ĉ1,
i.e., periodic boundary conditions, J/J̃ are uniform/staggered
components of the nearest-neighbor hopping, � is a staggered
on-site potential, and t and T are time and period time. The
on-site disorder has amplitude W and the ζm’s are real random
numbers uniformly distributed on [−1/2, 1/2]. We set h̄ = 1
for convenience. In this noninteracting model, all quantitites
of interest can be computed from the single-particle L × L
Hamiltonian matrix H (t ), with Ĥ (t ) = ∑L

l,m=1 ĉ†
l Hlm(t )ĉm.

We use the basis of Floquet states: eigenstates |ψn〉 of the
single-particle (Floquet) unitary operator Û for one period of
time evolution, Û |ψn〉 = e−iεnT |ψn〉. Here Û = T e−i

∫ T
0 dtĤ (t ),

where T is time ordering, n = 1, 2, . . . , L is the eigenstate
index and εn is the quasienergy. Floquet states evolve period-
ically in time, up to a phase factor

|ψn(t )〉 = T e−i
∫ t

0 dt ′Ĥ (t ′ ) |ψn〉 = eiεnT |ψn(t + T )〉 . (2)

If the disorder is weak and the pump is run slowly enough,
Floquet states can be assigned to bands according to their
average energy

En = 1

T

∫ T

0
dt 〈ψn(t )| Ĥ (t ) |ψn(t )〉 . (3)

Floquet states carry current whose integral over the time pe-
riod gives the pumped charge in that state

Qn = 2
∫ T

0
dt

(
J + J̃ cos

2πt

T

)
Im[ψ∗

n,2(t )ψn,1(t )]. (4)

FIG. 1. Pumped charge Q decreases as chain length L is in-
creased from 80 to 4480, with disorder W = 2.5 (average of 20
disorder realizations). Results for various period times T fall onto
each other if rescaling the system size as L/T θ , with θ = 3.95. Inset:
unscaled data.

Here we take the current between sites 1 and 2, with ψn, j

denoting the amplitude of the nth Floquet state on site j, but
the position does not matter, due to the periodicity of the time
evolution of Floquet states.

We calculate the charge pumped in the so-called sustained
pumping limit of a filled lower band [17,25]: The system is
initialized at t = 0, with the L/2 lowest-energy eigenstates
|φl〉 of the instantaneous Hamiltonian fully occupied, and then
is time evolved. After many cycles, this results effectively in
a Floquet diagonal ensemble [25], i.e., an incoherent mixture
where Floquet states are populated with the same weights as
at t = 0. Thus, the charge pumped per cycle in this limit is

Q =
L∑

n=1

Qn

L/2∑
l=1

|〈φl | ψn〉|2. (5)

The numerical method. We compute the time evo-
lution of the Floquet states, needed for Eq. (4), as
a matrix product of time-slices of the timestep opera-
tor. For the time-slices, we used a recently developed
method based on the Chebyshev polynomial representa-
tion of skew Hermitian matrices, e−iHdt ≈ α0 − iz0Hdt −
α1[Hdt]2 + iz1[Hdt]3 + α2[Hdt]4 − iz2[Hdt]5, with con-
stants specified to 20 decimals [26]. This gives the matrix
exponential to numerical accuracy, as long as ||H (t )dt ||1 <

1.17 × 10−2. We could reach chains lengths up to L = 10 000,
more than a factor of 10 larger than previous works [17]. We
use the hopping J as our energy scale, and set parameters as

J = 1, J̃ = 1/2, � = 1.5, (6)

for a well-defined gap with a Chern number C = 1. Thus,
Q = 1 in the adiabatic limit, as long as the instantaneous
Hamiltonian is gapped, i.e., W � 3.5 [17].

Results. We find that the disordered Thouless pump breaks
down when increasing the length L of the chain, keeping
the period time T constant. Examples are shown in Fig. 1,
for disorder W = 2.5, for T = 8 to 50, and L = 80 up to
4480. In these and all cases we studied, the pumped charge
decreased as the length was increased. This suggests that
Floquet-Anderson localization does not only set in when
the disorder is large (W > 3.5), but occurs for any on-site
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FIG. 2. The scaling exponent θ , obtained by three numerical
approaches for each value of disorder W (see main text for details).
The exponent decreases as W increases, while it appears to diverge
at W = 0, consistent with the pumped charge Q being independent
of the system size in the clean case — this later item is shown in the
inset. For a detailed description of how the exponent was extracted
see the Supplemental Material [27].

disorder, W > 0. The length L where the pumped charge
decreases significantly (e.g., Q = 1/2, or Q = 1/4) provides
an estimate for the Floquet localization length ζF .

We find that slower driving (longer period times T ) leads
to more resilient Thouless pumps, with an apparent power-law
relation

Q(L, T,W ) = Q(L′, (L′/L)1/θ (W )T,W ). (7)

This is suggested by the good collapse of the numerically
measured Q values when using the above scaling relation, as
shown in Fig. 1. Thus, the Floquet localization length appears
to scale with the period time as ζF ∝ T θ .

We find that the exponent θ of Eq. (7) does not take on
a universal value, but depends continuously on the disorder
W , as shown in Fig. 2. We extracted the exponent by three
different methods. First and second, by identifying ζF with the
system size where the pumped charge is Q = 1/2, and Q =
1/4, respectively. Third, we took all the data for a fixed W ,
and various T and L values, and fitted it with a three-parameter
Ansatz — detailed in the Supplemental Material (SM, [27]).
These methods agree, and give a disorder-dependent exponent
θ , which approaches θ ≈ 2 near the critical disorder W ≈ 3.5.
Note, however, that the numerical evidence for the power-law
scaling is strong only for the case of moderate disorder. For
smaller disorders, W � 1.5, we have 1/θ 
 1, thus in the
numerically available range the evidence for the power-law
scaling here is not conclusive, as discussed in the SM [27].

For a more complete picture of the breakdown of the
Thouless pump as a function of disorder W , chain length L,
and period time T , we show the numerically obtained map
of pumped charge Q in Fig. 3. The colors show Q values for
L = 320, and results for other lengths are shown as Q = 1/4
isolines. These reveal four qualitatively different regimes of
the charge pump. For small disorder, W � 0.5, the Floquet
localization length ζF decreases sharply as the disorder is
increased. For 0.5 � W � 2, and period times 10 � T � 20,
ζF does not depend much on the disorder strength. For larger
disorder, 2 � W � Wc = 3.5, we have a sharp decrease of

FIG. 3. Colormap: Pumped charge Q, for L = 320, for various
period times T and disorders W (average over 20 disorder realiza-
tions). The Thouless pump works well (light area) for small W and
large T , and breaks down both if T decreases or W increases. For
W � Wc ≈ 3.5, where there is no gap in the instantaneous energy
spectrum, the pumped charge is very close to 0 for any T . Black
lines: For system sizes L fixed at larger values than L = 320, we
show the T (W ) curves along which Q = 1/4. These show that the
pump breaks down easier if the chain is longer.

the ζF as W is increased. Finally, above the critical disorder
value, 3.5 � W , we observe the charge pump breaking down
completely.

Thermodynamic limit. For a deeper understanding of how
disorder impacts the Thouless pump, we define an alternate
thermodynamic limit: L → ∞ and T → ∞ together, with
L/T θ kept constant. This is needed, e.g., to explore the
extended/localized nature of the Floquet states, using the
inverse participation ratio [17] (IPR) P2,n = ∑L

m=1 |ψn,m|4. To
show how this limit avoids the problem of the Anderson lo-
calization of Floquet states, see Fig. 4. We choose parameters

FIG. 4. Spectrum of the average energy of Floquet states in a
pump with disorder W = 2, for various system lengths, and with
color representing the IPR value of the states (single disorder real-
izations). In (a), the period time fixed, T = 20, increasing the length
leads to a qualitative change in the spectrum: For L � 100, two bands
of extended states can be seen, which carry current right/left in the
lower/upper band; for larger lengths the gap between the bands is
closed. In (b), the period time is increased together with the system
size, keeping L/T θ constant, where θ = 6.01 was used. Here there is
no qualitative change in the spectrum as L is increased, however, the
range of extended states becomes narrower.
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so that for short lengths, L � 100, the Thouless pump works
well, and Floquet states form two well-separated bands. If the
length is increased at fixed T (panel a), the two bands merge
and the pump begins to break down. In contrast, if L/T θ is
kept constant [Fig. 4(b)], the spectrum of Floquet states shows
no qualitative change up to the largest system sizes that we
were able to access numerically. For each band, states in the
band center are more extended (lower IPR, decreasing with L)
and at the band edges more localized (higher IPR, independent
of L). More detailed analysis of the IPR values, and examples
for shorter period times T , where the breakdown of the pump
is even more visible, are shown in the SM [27]. Also there we
present additional numerical simulations highlighting that this
phenomenology does not occur if the pump is topologically
trivial.

Discussion and conclusions. We find that on-site potential
disorder in the periodically driven Rice-Mele model results in
a breakdown of the Thouless pump in the L → ∞, constant-T
limit due to the Anderson localization of the Floquet states.
This can be avoided by taking L → ∞ and T → ∞ together,
keeping L/T θ constant, where θ is a disorder-dependent crit-
ical exponent. Although we expected θ = 2 based on the
corrections to adiabaticity, we find that this is not the case,
rather, θ depends on disorder strength continuously. It is an
interesting open problem to find an analytical explanation of
this phenomenon.

Our work is a starting point for a more systematic in-
vestigation of the relation between Anderson localization in
the Thouless pump and the “levitation and annihilation” of
extended states in Chern insulators. By finding a suitable ther-
modynamic limit, we open the way to studying numerically
the conduction in the disordered Thouless pump, as well as
the mechanism of its breakdown as disorder is increased. Our
preliminary results, shown in the SM [27], suggest that the

current-carrying states here have a fractal nature since the
corresponding IPR values seem to scale with a power of sys-
tem size with a noninteger exponent, but there are many open
questions here including whether in the thermodynamic it is
only a single Floquet state per band that carries the current.

From a broader perspective, the Thouless pump is the
oldest among a large family of topological pumps, which
by now go well beyond Chern insulators. Topological pump-
ing has been associated with a wide range of topological
insulators and superconductors [28–30], and has been pro-
posed to occur also between topological defects [31,32]. It
has been further extended to higher-order topological phases
[33–35], which can lead to dipole or to quadrupole pumps
[36]. Very recently, topological pumping between the corners
of a two-dimensional sample has been shown to occur both
theoretically and experimentally, with the pump working ei-
ther via bulk states [37,38] or via edge states [39]. Our work
opens a new direction of research in this field, consisting in
the study of the thermodynamic limits associated to this large
family of pumps and the critical exponents characterizing
them.
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