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Even-odd effect on robustness of Majorana edge states in short Kitaev chains
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We construct two-band effective models describing Majorana edge states in a short Kitaev chain. We derive
an analytical formula for the effective Hamiltonian as a function of model parameters. Then, we discuss the
robustness of Majorana edge states as a function of model parameters. We have found an even-odd effect on the
robustness of Majorana states, which is characteristic of short Kitaev chains. It is experimentally observable as
a differential conductance in quantum dot systems. We also study effects of coupling to an environment based
on non-Hermitian Hamiltonians derived from the Lindblad equation. It is found that the Majorana zero-energy
edge states acquire nonzero energy such as E ∝ ±(i�)L for the local dissipation, where � is the magnitude of
the dissipation and L is the length of the chain. The even-odd effect is manifest for small L in this formula.
On the other hand, the Majorana zero-energy edge states acquire nonzero energy such as E ∝ ±i� for small �

irrespective of the length L for the global dissipation.
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Introduction. Majorana fermions are basic ingredients of
topological quantum computation [1–6]. The Majorana edge
states form a nonlocal qubit, which is robust against local
perturbation due to topological protection. Thus, the qubit
based on Majorana fermions will resolve the problem of deco-
herence in quantum computation. Majorana fermions must be
materialized in topological superconductors [7–10], although
their experimental realization is still controversial. The sim-
plest model of a topological superconductor hosting Majorana
fermions is the Kitaev chain [11]. Despite the simplicity of the
model, it is hard to materialize it because it is hard to realize
the p-wave superconducting order on the lattice. Although
there are several proposals on the detection of the signature of
Majorana fermions including fractional quantum Hall effects
and Kitaev spin liquids, no compelling evidence of Majorana
fermions has been obtained.

According to recent reports [12,13], the two-site and three-
site Kitaev chains were experimentally realized in quantum
dots. They evoke studies on the minimal Kitaev chain based
on double quantum dots [14–21] and a few quantum dots
[22–24]. For future topological quantum computation, it is
desirable to materialize Majorana states with a minimal com-
ponent, where the short Kitaev chain is an ideal platform.
However, the Majorana edge states in a short Kitaev chain
are not topologically protected. Indeed, we need a precise
tuning of the model parameters so that the Majorana edge
states exist exactly at the zero energy. There are studies on
the condition for the Majorana edge states to have exact zero
energy [25–29]. It is intriguing to estimate the robustness
of the Majorana edge states for a short Kitaev chain. It is
discussed [11] that the robustness of the Majorana zero-energy
states increases exponentially as a function of the length of
the Kitaev chain. Eventually, if the length of the Kitaev chain
is long enough, the Majorana edge states are topological
protected.

The platform of the Majorana fermions such as a quantum
dot system has an interaction with another system such as

a substrate. In general, the coupling to the bath makes the
system an open quantum system. It is commonly analyzed
based on the Lindblad equation [30]. The short-time dynamics
is well described by a non-Hermitian Hamiltonian derived
from the Lindblad equation [30]. A Kitaev chain with loss
and gain has been studied in the context of a non-Hermitian
Hamiltonian for a sufficiently long chain [31–44]. A Kitaev
chain interacting with its environment has also been studied
for a sufficiently long chain [45–47].

In this paper, we investigate numerically and analytically
the robustness of the Majorana edge states in a short Kitaev
chain. We construct an effective two-band model by using
the isospectral matrix reduction method [48,49]. First, we
study the Hamiltonian in the absence of dissipation. We have
found an even-odd effect on the robustness of Majorana states
as a function of the length L of the Kitaev chain, which is
characteristic of short chains. It is possible to observe this
phenomenon by measuring the differential conductance in
quantum dot systems. Next, we study the Hamiltonian in the
presence of local dissipation. We show that the Majorana edge
states have energy E ∝ ±(i�)L, where the even-odd effect
with respect to L is manifest.

Kitaev chain. The Kitaev p-wave superconductor model is
defined on the 1D lattice as [8,11]

Ĥ = − μ

L∑
x=1

c†
xcx − t

L−1∑
x=1

(c†
xcx+1 + c†

x+1cx )

−
L−1∑
x=1

(�cxcx+1 + �c†
x+1c†

x ), (1)

where μ is the chemical potential, t > 0 is the nearest-
neighbor hopping strength, � is the p-wave pairing amplitude
of the superconductor, and L is the length of the chain. An
illustration of the Kitaev chain is shown in Fig. 1.

This model hosts two Majorana zero-energy edge states
at both ends of a finite chain for |μ| < 2t . The energy
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FIG. 1. Illustration of the Kitaev model with length L = 4 cou-
pled with two leads, where μ is the chemical potential, t > 0 is the
nearest-neighbor hopping strength, and � is the p-wave pairing am-
plitude of the superconductor. Magenta disks indicate the Majorana
edge states. �L (�R) is a coupling between the left (right) quantum
dot and the left (right) lead.

spectrum is exactly solvable at |�| = t and μ = 0, where
the penetration length is exactly zero. See Sec. I of the
Supplemental Material [52] on this point. Hence, the Majo-
rana edge states emerge even in the two-site system at these
parameters.

We show the energy spectrum of Eq. (1) as a function of
�/t for L = 2, 3, 4, 5, 6 in Figs. 2(a1)–2(a5) and that as a
function of μ/t in Figs. 2(b1)–2(b5). Especially, the energy
has a linear dependence E = |� − t | for the two-site Kitaev
chain with μ = 0 as shown in Fig. 2(a1). On the other hand,

the energy has a parabolic dependence E ∝ μ2/t for the two-
site Kitaev chain with � = t as shown in Fig. 2(b1).

The real part of the energy is exactly zero for the model
with odd L as shown in Figs. 2(a2) and 2(a4). We will ana-
lytically verify these results by deriving an effective two-band
model in the following.

The energy of free Majorana fermions should be exactly
zero in topological superconductors. However, it acquires a
nonzero real energy for a finite length chain as in Fig. 2 in
general, because there is an overlap between the left and right
edge states. There is an exceptional case of |�| = t and μ =
0, where the penetration length of the Majorana edge state is
exactly zero irrespective of the value L, as we review in Sec. I
of the Supplemental Material [52]. Since the energy is exactly
zero, the Majorana states are robust in this exceptional case.
We note that the robustness is estimated by the amount of how
much their energy is different from zero.

Effective two-band model. In order to reveal the behavior
of the energy of Majorana states analytically near the ex-
actly solvable point with the parameters |�| = t and μ =
0, we construct an effective two-band model based on the
isospectral matrix reduction method [48,49]. As we give a de-
tailed derivation in Sec. II of the Supplemental Material [52],

FIG. 2. (a1)–(a5) Energy E/t as a function of �/t . (b1)–(b5) Differential conductance in the �/t-E/t plane. We have set μ = 0. (c1)–(c5)
The energy E/t as a function of μ/t . (d1)–(d5) Differential conductance in the μ/t-E/t plane. We have set � = t . (a1)–(d1) L = 2, (a2)–(d2)
L = 3, (a3)–(d3) L = 4, (a4)–(d4) L = 5, and (a5)–(d5) L = 6. Blue dotted curves are the energy derived from the effective two-band model.
(e) Color palette for (a1)–(a5) and (c1)–(c5) indicating the amplitude at the edge sites, where red color indicates the edge states and the green
color indicates the bulk states. (f) Color palette for (b1)–(b5) and (d1)–(d5) indicating the magnitude of the differential conductance. We have
set �L = �R = 0.1t .
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we obtain

Heff = (−1)L+1

(� + t )L−1

�L/2�∑
m=0

(
L − m

m

)
μL−2m(�2 − t2)mσy (2)

for L � 2, where (L − m
m ) is a binomial coefficient.

If μ = 0 in (2), we have Heff = 0 for odd L, which well de-
scribes the energy near the zero energy as shown in Figs. 2(a2)
and 2(a4). On the other hand, we have

Heff = − (� − t )L/2

(� + t )L/2−1 σy (3)

for even L, which well describes the energy near the zero
energy as shown in Figs. 2(a1), 2(a3), and 2(a5). The energy
spectrum in the vicinity of the zero energy is significantly
different between even and odd length of the chain. This is
the even-odd effect, which is negligible for longer chains.
According to Eq. (3) the energy is almost zero for small
|� − t | and large L, implying that the Majorana edge states
are robust.

If � = t in (2), we have

Heff = − μL

(2t )L−1 σy. (4)

It fits well the energy near the zero energy as shown in
Figs. 2(b1)–2(b5). It is almost zero for small μ and large L,
implying that the Majorana edge states are robust.

Differential conductance. Differential conductance is an
experimentally measurable quantity in quantum dot systems
[12,13]. It is calculated based on the S-matrix theory in the
wideband limit [12,50]. The S matrix is calculated as

S(E ) =
(

See(E ) Seh(E )

She(E ) Shh(E )

)

= 1 − iW †

(
E − H + i

2
WW †

)−1

W, (5)

where

W ≡ diag{
√

�L, 0, . . . , 0,
√

�R,−
√

�L, 0, . . . , 0,−
√

�R}
(6)

is the tunnel matrix, with �α being the tunnel coupling
strength between the dot α and the lead α (α = L, R). See
Fig. 1. The zero-temperature differential conductance is ob-
tained as [12,50]

Gαβ (E ) = dIα
dVβ

= e2

h

(
δαβ − ∣∣Sαβ

ee (E )
∣∣2 + ∣∣Sαβ

he (E )
∣∣2)

. (7)

We show the differential conductance GLL as a function of
�/t and E/t in Figs. 2(b1)–2(b5) and that as a function of μ/t
and E/t in Figs. 2(d1)–2(d5). They well agree with the energy
spectra shown in Figs. 2(a1)–2(a5) and Figs. 2(c1)–2(c5),
respectively. Hence, the energy spectrum is experimentally
observable in quantum dots.

Open quantum system. The effects of the coupling between
the system and an environment are described by the Lindblad
equation [30] for the density matrix ρ as

dρ

dt
= − i

h̄
[Ĥ , ρ] +

(∑
α

LαρL†
α − 1

2
{L†

αLα, ρ}
)

, (8)

where Ĥ is given by Eq. (1) and L is the Lindblad operator
describing the dissipation.

This equation is rewritten in the form of

dρ

dt
= − i

h̄
(Ĥtotalρ − ρĤ†

total ) +
∑

α

LαρL†
α, (9)

where Ĥtotal is a non-Hermitian effective Hamiltonian defined
by Ĥtotal ≡ Ĥ + Ĥdissipation with the dissipation Hamiltonian

Ĥdissipation ≡ − ih̄

2

∑
α

L†
αLα. (10)

It describes a short-time dynamics [30]. We show the deriva-
tion of Eqs. (9) and (10) in Sec. III of the Supplemental
Material [52].

Local dissipation. We study the local dissipation [42,51],
where the Lindblad operators are given by

L−
x =

√
�−cx, L+

x =
√

�+c†
x , (11)

where �± represent the dissipation. They describe the effect
that the particle is coming in and out of a single site. There is
a relation [51]

�− − �+
�− + �+

= tanh
μβ

2
, (12)

where β ≡ 1/kBT is the inverse temperature. The correspond-
ing dissipation Hamiltonian reads

Ĥdissipation = − ih̄

2

L∑
x=1

[�c†
xcx + �+], (13)

where � ≡ �− − �+. We give a derivation of Eq. (13) in
Sec. III of the Supplemental Material [52].

By introducing a complex chemical potential

μ̃ = μ + ih̄

2
�, (14)

the effect of the local dissipation is fully taken into account.
We show the energy spectrum as a function of � in Fig. 3 by
diagonalizing the Hamiltonian (1) together with (13), where
we have omitted the constant term −ih̄L�+/2 in (13). The
real part of the energy for odd length is exactly zero as shown
in Figs. 3(a2) and 3(a4). On the other hand, the imaginary part
of the energy for even length is exactly zero if the dissipation
is smaller than a certain critical value |�| < |�critical|.

The flat region of the zero-energy Majorana edge states ex-
pands for longer chains. These properties are explained based
on the effective model with local dissipation. By inserting
Eq. (14) into (2), we obtain

Heff = − (ih̄�/2)L

(2t )L−1 σy (15)

for L � 2, � = t , and μ = 0. This formula well explains the
fact that the real [imaginary] part of the energy is zero for
even [odd] L as depicted by blue dotted curves in Figs. 3(a2)
and 3(a4) [Figs. 3(b1) and 3(b3)]. The even-odd effect is
manifest also in the presence of the local dissipation. The
Majorana edge state becomes robust for a long chain provided
|h̄�/2t | < 1.
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FIG. 3. (a1)–(a4) Real part and (b1)–(b4) imaginary part of the energy as a function of the local dissipation h̄�/2t . (a1) and (b1) L = 2,
(a2) and (b2) L = 3, (a3) and (b3) L = 4, (a4) and (b4) L = 5, (a5) and (b5) L = 6. We have set � = t and μ = 0. Blue dotted curves are the
energy derived from the effective two-band model. See the color palette in Fig. 2.

A comment is in order. The Majorana edge state acquires
nonzero pure imaginary energy for odd L in Eq. (15). It
means that the lifetime of the Majorana state becomes finite.
Even in the presence of the non-Hermitian term, particle-hole
symmetry is preserved and Majorana states are intact [39].

We can also study the adjacent and the global dissipation,
whose results are shown in Secs. IV and V of the Supple-
mental Material [52], respectively. In particular, the Majorana
zero-energy edge states acquire nonzero energy such as E ∝
±i� for small � irrespective of the length L for the global
dissipation.

Discussion. We have proposed and analytically studied
two-band effective models describing the Majorana edge
states in a chain with length L, motivated by recent experi-
ments on quantum dots. We have predicted the even-odd effect
on the robustness of the Majorana states in short Kitaev chain.
Especially, we have found that the Majorana states in the
Kitaev chain with L = 3 is more robust than that with L = 4

as a function of �, which is an unexpected result. It will be
observed in the system of quantum dot systems by measuring
the differential conductance.

The status of experiments on quantum dots is still in the
beginning stage. The four- and five-site Kitaev models will
be realized based on four and five quantum dots soon. Our
results provide a criterion of how much it is necessary to tune
the parameters and dissipations to increase the robustness of
Majorana states in a short Kitaev chain with various L. In
addition, we can check whether the Kitaev model is actually
realized in experiments by observing the behavior of the en-
ergy by way of intentionally tuning away from the exactly
solvable parameters � = t and μ = 0. They will be useful for
future experimental works of the short Kitaev chain based on
quantum dots.
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