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Dynamical separation of charge and energy transport in one-dimensional Mott insulators
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One-dimensional Mott insulators can be described using the sine-Gordon model, an integrable quantum
field theory that provides the low-energy effective description of several one-dimensional gapped condensed
matter systems, including recent realizations with trapped ultracold atoms. Employing the theory of generalized
hydrodynamics, we demonstrate that this model exhibits separation of the transport of topological charge
vs energy. Analysis of the quasiparticle dynamics reveals that the mechanism behind the separation is the
reflective scattering between topologically charged kinks/antikinks. The effect of these scattering events is most
pronounced at strong coupling and low temperatures, where the distribution of quasiparticles is narrow compared
to the reflective scattering amplitude. This effect results in a distinctively shaped “arrowhead” light cone for the
topological charge.
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Introduction. One-dimensional (1D) quantum systems are
well known to exhibit anomalous transport behavior com-
pared with their higher-dimensional counterparts. In particu-
lar, transport in integrable quantum many-body systems [1]
is strongly influenced by ergodicity breaking captured by
the Mazur inequality [2,3] and it is primarily characterized
by ballistic transport and finite Drude weights [4]. Another
prominent anomaly is spin-charge separation, where the re-
spective degrees of freedom in a one-dimensional quantum
wire move with different velocities [5], as observed exper-
imentally [6–11]. This phenomenon is best understood in
terms of bosonization leading to two Tomonaga-Luttinger liq-
uids [12,13] with different speeds of sound. More recently, it
was also understood directly in terms of the interacting Fermi
gas [14–17].

In this Letter, we demonstrate a similar, yet, at the same
time, substantially different separation of energy and charge
transport velocities by considering nonequilibrium dynam-
ics in one-dimensional Mott insulators. Mott insulators are
materials that are expected to be conducting based on con-
ventional band theory; however, they fail to do so due to
a gap induced by electron-electron interactions [18]. In the
Tomonaga-Luttinger description of the charge sector of 1D
systems, the gap is induced by Umklapp processes [19]. These
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1D Mott insulators include carbon nanotubes and organic con-
ductors; their charge sector is described by the sine-Gordon
field theory, which can be obtained via bosonization of the
Hubbard model [20].

Besides electronic systems, the sine-Gordon field theory
has numerous further applications ranging from spin chain
materials [21–24] through arrays of Josephson’s junctions
[25,26] to trapped ultracold atoms [27–32] and can also be
realized via quantum circuits [33] and coupled spin chains
[31]. Recently, it was shown that the topological charge Drude
weight in this model exhibits a fractal structure [34], similar
to that found for the spin Drude weight in the gapless XXZ
spin chain [35–39].

To study transport phenomena, we exploit the break-
through of Ref. [34], which enabled applying generalized
hydrodynamics (GHD) [40,41] to the sine-Gordon model at
generic values of the coupling. GHD gives access to the ex-
act large-scale dynamics of integrable systems and has been
immensely successful in numerous applications (see reviews
[42–46]), including the quantitative description of dynam-
ics in several cold gas experiments [47–50]. Using GHD,
we demonstrate that the dynamical separation of conserved
quantities also occurs in the quantum sine-Gordon model in
the form of topological charge and energy, as illustrated in
Fig. 1. Similarly to the Fermi gas, the phenomenon follows
from separate excitations, featuring different dispersion rela-
tions, being responsible for carrying the relevant quantities.
However, a key difference from spin-charge separation is that
energy-charge separation occurs in a gapped system. In ad-
dition, it also has a fractal structure analogous to the Drude
weight when considered as a function of coupling. Lastly,
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FIG. 1. Illustration of the mechanism behind charge-energy sep-
aration and the three-staged “arrowhead” light-cone propagation of
the topological charge in the bump release: (i) Outwards propagating
solitons, whose front follows the dashed line, push all background
magnons with them, following reflective kink/antikink scattering.
(ii) Magnons flow inwards to fill the depleted central region. (iii)
The remaining magnon depletion propagates outwards. The duration
of each stage depends on the coupling strength and temperature.

reflective scattering events can influence the ballistic transport
of the topological charge in a peculiar fashion, which we
demonstrate by considering a bump release protocol.

Sine-Gordon hydrodynamics. Sine-Gordon dynamics is
driven by the Hamiltonian

H =
∫

dx

[
1

2
(∂tφ)2 + 1

2
(∂xφ)2 − λ cos(βφ)

]
, (1)

where φ(x) is a real scalar field, β is the coupling strength,
and the parameter λ sets the mass scale. The spectrum of the
sine-Gordon model consists of topologically, and oppositely,
charged kinks/antikinks that are relativistic particles of mass
mS interpolating between the degenerate vacua of the cosine
potential. In the repulsive regime 4π < β2 < 8π , kinks and
antikinks comprise the entire spectrum, while in the attractive
regime 0 < β2 < 4π , kink-antikink pairs can form neutral
bound states dubbed breathers. Introducing the renormalized
coupling constant ξ = β2

8π−β2 , the breather masses are mBk =
2mS sin( kπξ

2 ), where k = 1, . . . , nB = �1/ξ�. For β2 > 8π ,
the cosine term of the Hamiltonian (1) becomes irrelevant and
the system reduces to the Luttinger liquid model. We use units
given by the kink mass mS , h̄ = 1, and the speed of light (the
sound velocity in condensed matter context) c = 1, as well as
setting the Boltzmann constant kB = 1. As a result, energies
and temperatures are measured in units of mS , while distances
and times are measured in units of 1/mS .

The root cause of the transport phenomenon lies in the
dual nature of kink-antikink scattering, which can be both
transmissive and reflective with respective amplitudes

ST (θ ) = sinh (θ/ξ )

sinh [(iπ − θ )/ξ ]
S0(θ, ξ ), (2)

SR(θ ) = i sin (π/ξ )

sinh [(iπ − θ )/ξ ]
S0(θ, ξ ), (3)

where θ is the rapidity difference between the excitations and
S0(θ, ξ ) is a phase factor. All other scattering processes are
purely transmissive, with explicit expressions of their am-
plitudes given in the Supplemental Material [51] (see also
Refs. [52–54] therein). For integer values of 1/ξ , the kink-
antikink reflection amplitude (3) vanishes; at the aptly named
reflectionless points of the coupling all topologically charged
particles propagate at the same velocities, whereby any sepa-
ration in transported quantities vanishes.

Thermodynamic states of the system can be described
using the Bethe ansatz [55,56] and formulated in terms of
quasiparticle excitations consisting of the breathers Bk , a
single solitonic excitation S accounting for the energy and
momentum of the kinks, and also partly for the charge, and
additional massless auxiliary excitations, dubbed magnons,
which account for the internal degeneracies related to the
charge degrees of freedom of the kinks. While solitons carry a
positive topological charge, magnons are negatively charged
(see [51]). The magnons can be classified by writing the
coupling ξ as a continued fraction

ξ = 1

nB + 1

ν1 + 1

ν2 + · · ·

, (4)

with nB breathers and νk magnon species at level k. The
generic description of thermodynamic states was derived in
[34]. It contains a set of equations of the overall form

ρ tot
a = ηasa +

∑
b

ηb�ab ∗ ρb, (5)

where the star denotes convolution, ρ tot
a (θ ) is the total den-

sity of states for excitations of type a in rapidity space,
ρa(θ ) are the densities of occupied states, �ab are kernels
describing quasiparticle interactions, and ηa are sign factors
ensuring the positivity of the densities. The source terms sa =
ma cosh θ/2π contain the mass ma of the corresponding exci-
tations, which is mS for solitons, mBk for the kth breather, and
ma = 0 for magnons. The above equations only fix the relation
between the total and occupied densities of states; in thermo-
dynamic equilibrium, at temperature T and chemical potential
μ for the topological charge, all of them are fixed uniquely by
the thermodynamic Bethe ansatz (TBA) equations in terms of
the pseudoenergy functions εa = ln(ρ tot

a /ρa − 1)

εa = wa −
∑

b

ηb�ab ∗ ln(1 + e−εb ), (6)

where the source terms are wa = ma cosh θ/T − μqa/T with
qa giving the topological charge carried by the excitation
of species a. More details, including the system’s partially
decoupled form and a graphical representation, can be found
in [34,51].

The large-scale dynamics of an inhomogeneous system can
be expressed in terms of the evolution of the quasiparticle den-
sities ρa(z, t, θ ) via the theory of generalized hydrodynamics
(GHD). In the absence of inhomogeneous couplings, the GHD
equation reads [40,41]

∂tρa(z, t, θ ) + ∂z
[
veff

a (z, t, θ ) ρa(z, t, θ )
] = 0. (7)
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We omit the (z, t ) dependence for a lighter notation in the
following. The effective velocity veff

a (θ ) represents the ballistic
propagation velocity of a quasiparticle of type a with rapidity
θ and is given by

veff
a (θ ) = (∂θea)dr (θ )

(∂θ pa)dr (θ )
, (8)

where ea(θ ) = ma cosh θ is the bare energy of the quasiparti-
cle type a and pa(θ ) = ma sinh θ is their bare momentum. The
superscript “dr” indicates that the quantity has been dressed,
that is, it has been modified through interactions with other
quasiparticles. As a result, the effective velocity carries an im-
plicit dependence on the quasiparticle densities ρa at the point
z and time t . The exact definition of the dressing operation and
the TBA scattering kernels can be found in the Supplemen-
tal Material [51]. Physically, the effective velocity originates
from the propagation of the quasiparticle excitations through
the finite density medium [57]; in the semiclassical picture,
this modification can be understood as the accumulated effect
of Wigner time delays associated with the phase shifts occur-
ring under elastic collisions [58,59].

Finally, thermodynamic expectation values of local oper-
ators can be computed from the quasiparticle densities. Thus
expectation values of densities of conserved quantities h (such
as topological charge and energy) are

〈h(z, t )〉 ≡ h(z, t ) =
∑

a

∫ ∞

−∞
dθ ρa(z, t, θ ) ha(θ ), (9)

where ha(θ ) is the single-particle, bare eigenvalue of the cor-
responding conserved quantity, such as ea(θ ) for the energy
[51].

Charge-energy separation. In the limit of weak inhomo-
geneities, the separation of topological charge and energy
follows from the different effective velocities of magnons and
solitons. To quantify the separation, we compute the charge-
charge and energy-energy correlators at the hydrodynamic
scale in thermal states, which indicate the maximal velocity
of an energy or charge disturbance spreading on the thermal
background, following [60,61]:

Ch1,h2 (z, t ) = 〈h1(z, t )h2(0, 0)〉c

= t−1
∑

a

∑
θ∈θ∗

a (ζ )

ρa(θ )[1 − ϑa(θ )]∣∣(∂θveff
a

)
(θ )

∣∣ hdr
1,a(θ )hdr

2,a(θ ),

(10)

where ζ = z/t , and θ∗
a (ζ ) are the set of rapidities for which

the effective velocity takes the value ζ , i.e., the solution of the
equation veff

a (θ ) = ζ . The separation (and its absence) on the
full range of the coupling β2/8π and for four different temper-
atures is shown in Fig. 2. The figure depicts the half-width (in
ζ ) of the correlators (see [51]). It indicates that the separation
strongly depends on the temperature in the attractive regime
(where it is only visible at low temperatures), while it is more
robust in the repulsive regime. These dependencies follow
from the relative rapidity width of the quasiparticle density
to the reflective scattering amplitude—the former increasing
with temperature, while the latter increases with coupling β.
Thus, in the repulsive regime, the amplitude SR(θ ) is generally
wide compared to ρ(θ ) up to high temperatures, while in the

FIG. 2. Half-width of the support of charge-charge (blue) and
energy-energy (red) correlators in a bipartition protocol as function
of the coupling strength β2/8π . The correlators are computed for
dynamics at different temperatures and values of ξ with at most two
magnonic levels in the TBA system. The results are computed at
discrete points, joined by a line in the plot to emphasize the discon-
tinuous nature of the charge-charge case. The vertical dotted lines
indicate the reflectionless points. Dimensionful quantities are given
in units defined by setting mS = 1, h̄ = 1, and c = 1 as specified in
the main text. Note the logarithmic scale of the horizontal axis.

attractive regime, the width of ρ(θ ) is comparable to SR(θ )
even at low temperatures. In contrast, the kink-antikink scat-
tering at reflectionless points is purely transmissive, whereby
charge and energy propagate at the same velocity. Notice the
characteristic fractal structure in the dependence of the charge
correlator half-width on the coupling, which is parallel to that
found for the charge Drude weight in [34]. Calculations of the
half-width of topological charge- and energy-current profiles
in a bipartition protocol with infinitesimal chemical potential
and temperature differences of the two system halves reveal
similar structures. For more details on the calculations for the
bipartition protocol, see [51].

“Arrowhead” light cone. In the presence of strong inho-
mogeneities, reflective scattering events can lead to peculiar
dynamics, which we demonstrate in a repulsive system with
coupling ξ = 3, with one solitonic and ν1 = 3 magnonic
excitation species. The system is initialized in a local
thermodynamic equilibrium at a given temperature T and
an inhomogeneous chemical potential profile μ(z), such
that the initial topological charge density follows q(z) =
qmax exp(− z2

2σ 2 ), where qmax = 0.4 and σ = 0.5. This realizes
a central region containing an excess of positively charged
solitons and depletion of negatively charged magnons; in the
charge-neutral background, their contribution is equal and
opposite. The dynamics is initiated by quenching the potential
to zero at time t = 0. Below we use veff

a (θ ) to denote the
effective velocity of quasiparticle species a evaluated in the
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FIG. 3. Evolution of topological charge density q and energy
density e following a bump release in the repulsive ξ = 3 sine-
Gordon model at three different temperatures T . Dashed and dotted
lines indicate the position of the fastest traveling soliton and magnon
for the background state, respectively. The densities are scaled with
the factor (1 + t ) to emphasize features at later times. Dimensionful
quantities are given in units defined by setting mS = 1, h̄ = 1, and
c = 1 as specified in the main text.

background state. To simulate the GHD dynamics, we employ
the backwards semi-Lagrangian method with a fourth-order
scheme [62,63].

Figure 3 depicts the simulated charge and energy density
evolution for temperatures T = 0.3, 0.5, 1. For the energy
density, a clear light cone is visible for all three temperatures,
with higher temperatures featuring a sharper expansion pro-
file. The front of the light cone propagates with the velocity

of the fastest solitons in the initial charge bump, indicated
by the dashed line, which is obtained by first finding the end
point of the rapidity interval containing 98% of the soliton
quasiparticles in the bump θmax, then evaluating veff

S (θmax).
The match between energy transport and soliton propagation
is expected since only the solitonic excitations contribute to
the energy.

In contrast, the evolution of the topological charge density
exhibits a three-staged (“arrowhead”) light cone. The mech-
anism behind this dynamics is illustrated in Fig. 1, while the
underlying quasiparticle distribution is plotted at select times
in Fig. 4 [64]: in the first stage, dynamics is dominated by the
reflective scattering between kinks and antikinks; the energy-
carrying solitons push all the background magnons with them
and the charge propagation matches the energy light cone. The
soliton propagation is hardly affected by interactions with the
magnons. This is evident from the soliton distribution of the
initial bump dispersing according to their effective velocity
in the background state veff

S , which is indicated by a dashed
line in Fig. 4. Meanwhile, for lower temperatures, the magnon
propagation deviates strongly from their background velocity
veff

M (θ ) (plotted as a dotted line in Fig. 4), due to the magnons
being pushed outwards by the expanding soliton bump. The
first stage lasts roughly until the charge contribution of the
accumulated magnons cancels out that of the solitons; at this
point, the outwards propagating charge front vanishes and
magnons can propagate past the soliton front and start filling
up the central depletion, thus shrinking the positively charged
region. In the final stage, as the inwards propagating magnons
cross the center (z = 0), a second outgoing light cone appears,
effectively caused by the magnon depletion propagating out-
wards with velocity veff

M .
We find that the duration of the first and second stages

exhibits a strong dependence on the temperature T . For in-
creasing temperature, the density of solitons and magnons
in the background state grows, as seen in Fig. 4. Thus the
point where the topological charge of the soliton front is
canceled by the accumulated magnon charge (marking the
end of the first stage) is reached much sooner. In turn, this

FIG. 4. Soliton ρS and (last) magnon ρM distributions at different times t following a bump release in the repulsive ξ = 3 sine-Gordon
model for three temperatures: (a) T = 0.3, (b) T = 0.5, and (c) T = 1.0. The dashed and dotted lines indicate the positions z = veff

S (θ )t and
z = veff

M (θ )t , respectively. Dimensionful quantities are given in units defined by setting mS = 1, h̄ = 1, and c = 1 as specified in the main text.
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leads to the magnon depletion region being much narrower,
thereby reducing the duration of the second stage. Indeed,
the charge propagation of the higher temperature realiza-
tions in Fig. 3 follows almost solely stage three. In the third
stage, the initial, large perturbation has somewhat dispersed,
whereby the system is only weakly inhomogeneous. Thus the
charge-energy separation follows from the different effective
velocities of magnons and solitons in thermal states; this dif-
ference decreases as T increases, as the results shown in Fig. 2
demonstrate.

Additionally, we have simulated the bump release in the
attractive regime; see [51] for figures depicting the results.
Here, we find no clear “arrowhead” structure in the charge
propagation, as the different stages overlap. Similarly to the
repulsive case, the dispersing soliton bump pushes magnons of
the background state with it. However, as the rapidity width of
the reflective scattering amplitude is much narrower in the at-
tractive regime, the accumulated magnons can propagate past
the solitons and fill the central magnon depletion immediately.
Thus the charge front of the propagating solitons is never (or at
most only very slowly) canceled by the magnon accumulation,
whereby the first stage charge light cone (which follows the
energy light cone) persists.

Summary. We uncovered an effect of charge-energy sep-
aration in 1D Mott insulators, which manifests across a
wide range of coupling strengths and temperatures using the
framework of generalized hydrodynamics for the quantum
sine-Gordon model. In the partitioning protocol, we have
found that the separation exhibits a fractal structure similar
to the Drude weight; at low temperatures, a clear separation
is present at all coupling strengths except for the reflection-
less points, while at higher temperatures and lower coupling
strengths, the separation is suppressed. The bump release pro-
tocol sheds light on the underlying mechanism, which origi-

nates from the reflective part of the kink-antikink scattering.
This mechanism implies that the effect is of a purely quantum
origin and cannot be accounted for by the recent semiclassical
approach to sine-Gordon GHD [65,66] since the classical scat-
tering is purely transmissive. The role of reflective scattering
is enhanced at low temperatures, especially in the repulsive
regime, leading to a striking three-stage “arrowhead” light
cone effect in the evolution of the topological charge.

The bump release, and similar protocols, can be experi-
mentally realized by polarizing the 1D Mott insulator via a
locally applied voltage. Besides electronic systems, it can also
be implemented in other realizations of sine-Gordon theory:
for 1D magnets, the topological charge corresponds to spin,
whereas the bump release can be realized using a locally
applied magnetic field, while in cold atom systems, it can
be achieved via a local shaping of the condensate as recently
reported in [67].
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