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Understanding the relationship between quantum geometry and topological invariants is a central problem
in the study of topological states. In this work, we establish the relationship between the quantum metric and
the Euler curvature in two-dimensional systems with space-time inversion IST symmetry satisfying I2

ST = +1.
As IST symmetry imposes the reality of the wave function with vanishing Berry curvature, the well-known
inequality between the quantum metric and the Berry curvature is not meaningful in this class of systems. We
find that the non-Abelian quantum geometric tensor of two real bands exhibits an intriguing inequality between
the off-diagonal Berry curvature and the quantum metric, which in turn gives the inequality between the quantum
volume and the Euler invariant. Moreover, we show that the saturation condition of the inequality is deeply
related to the ideal condition for Euler bands, which provides a criterion for the stability of fractional topological
phases in interacting Euler bands. Our findings demonstrate the potential of the quantum geometry as a powerful
tool for characterizing symmetry-protected topological states and their interaction effect.

DOI: 10.1103/PhysRevB.109.L161111

Introduction. The geometry of quantum states is char-
acterized by the quantum geometric tensor (QGT) whose
symmetric real and antisymmetric imaginary parts correspond
to the quantum metric (QM) and Berry curvature (BC), re-
spectively. The integral of local geometric quantities such
as QM and BC often gives information about the global
topology [1–11]. A well-known example is the first Chern
number that is given by the integral of the BC over a closed
two-dimensional (2D) space. The first Chern number governs
the topological properties of 2D insulators in the absence of
symmetry constraints [1–9], which clearly demonstrates the
intimate relationship between the geometry and topology of
quantum states.

Not only the BC, but the QM also carries information
about global topology. For instance, the quantum volume,
the volume of the parameter space measured by the QM,
has a lower bound determined by the first Chern num-
ber [10,12–15]. However, when the system is under certain
symmetry constraints, its global topology is not necessarily
characterized by the first Chern number as shown in various
symmetry-protected topological states, while the definition of
the quantum volumes remains the same [16–19]. Therefore, it
remains a question whether symmetry-protected topology can
give a bound of the quantum volume or even be related to it.
In particular, when symmetry constraints force the BC to be
strictly zero, revealing the relationship of the quantum volume
to global topology is an intriguing open question.

In fact, the relation between the quantum volume and the
Chern number arises from the fundamental local inequality
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between the QM and BC. In particular, when the local in-
equality saturates, the corresponding Chern band is expected
to host fractional Chern insulators when an interaction effect
is included [20–23]. Thus, extending the fundamental local
inequality between the QM and BC to systems with vanishing
BC is an important step towards the complete understanding
of many-body instabilities in interacting symmetry-protected
topological bands.

In this Letter, we establish the relationship between the
quantum metric and Euler band topology in 2D systems with
space-time inversion IST symmetry. When the antiunitary IST

symmetry satisfying I2
ST = 1 exists, there is a basis in which

the Bloch Hamiltonian and the relevant wave functions be-
come real. Thus, the BC vanishes at every momentum and
the first Chern number is always zero. However, interestingly,
two isolated bands in IST symmetric systems carry another
integer Z topological invariant, called the Euler number e2

[24–28]. Here, we derive the fundamental local inequality
between the QM and Euler curvature. Based on this, we es-
tablish the relation between the quantum volume and the Euler
number. Moreover, from the saturation condition of the local
inequality, we derive the ideal condition for topological Euler
bands, and demonstrate the band geometric criterion on the
correlation effect in interacting Euler bands. Considering the
recent discovery of the Euler band topology in the nearly flat
bands of twisted bilayer graphene (TBG) at magic angles, our
theory will shed light on their fascinating correlated topologi-
cal properties [29–34].

Quantum geometry of Chern bands. Generally, the non-
Abelian QGT is given by

Qi j
μν (k) = 〈∂μui(k)| [1 − P(k)] |∂νu j (k)〉 , (1)
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where μ, ν = x, y, z denote spatial coordinates, ∂μ = ∂/∂kμ,
and P(k) = ∑N

i=1 |ui(k)〉 〈ui(k)| indicates the projection oper-
ator to the space spanned by the states {|u1,...,N (k)〉} [35–42].
The quantum metric gμν (k) ≡ 1

2 Tr[Qμν + Qνμ] and the Berry
curvature �μν (k) ≡ iTr[Qμν − Qνμ] with the trace over band
indices are generally invariant under U (N ) gauge transforma-
tion for complex wave functions.

The BC �n(k) and QM gn
i j (k) of a band with index n

satisfy the following inequality [15],√
det

[
gn

μν (k)
]
� 1

2 |�n(k)|, (2)

whose physical significance can be understand in the fol-
lowing context. First, when both sides of the inequality are
integrated over the 2D Brillouin zone (BZ), we obtain the
relation volg � π |C|, where C is the Chern number and volg

is the quantum volume defined as volg ≡ ∫
d2k

√
det[gn

μν (k)],
which is the volume of the parameter space computed us-
ing QM as the metric. volg is an excellent measure of
the Chern band topology in many systems including Lan-
dau levels and two-band Hamiltonians where the equality
volg = π |C| holds as well as the flat band systems where
volg ≈ π |C| [15].

Second, the saturation of the inequality in Eq. (2) provides
an important criterion to achieve fractional topological phases
in interacting Chern bands [43–45]. The saturation of the
inequality with nonzero BC means that the QGT Qn

μν (k) =
gn

μν (k) − i 1
2εμν�

n(k) has a null vector, which in turn gives
the relation gn

μν (k) = 1
2�n(k)ωμν (k) where ωμν (k) is a k-

dependent symmetric matrix with unit determinant [46] (see
the Supplemental Material (SM) [47]). To mimic the lowest
Landau level (LLL) under uniform magnetic field, we further
assume k independence of ωμν (k) leading to the following
ideal condition for Chern bands,

gn
μν (k) = 1

2�n(k)ωμν, (3)

where ωμν is a constant symmetric matrix with unit determi-
nant [46,48]. If Eq. (3) is satisfied, the equality in Eq. (2) also
holds. According to [46,49], the Bloch wave function |u(k)〉
of an ideal Chern band can be decomposed, like LLL wave
functions, as

|u(k)〉 = 1

Nk
|ũ(k)〉 , (4)

where |ũ(k)〉 is a holomorphic function of a complex num-
ber k ≡ λxkx + λykx and Nk is the normalization factor. The
complex numbers λx,y satisfy ωμν = λ∗

xλy + λxλ
∗
y and iεμν =

λ∗
μλν − λμλ∗

ν where εμν is a fully antisymmetric tensor.
Moreover, when the BC of an ideal Chern band is con-

stant, the corresponding projected density operator ρ̄n(k) =
Pneik·rPn where Pn = ∫ |un(k)〉 〈un(k)| dk satisfies the so-
called Girvin-MacDonald-Platzman (GMP) algebra,

[ρ̄n(k), ρ̄n(q)]

= 2iekμgn
μνqν sin

[(
kxqy − kyqx

)
�n

xy

]
ρ̄n(k + q), (5)

as in LLL [50,51], which indicates the stability of the many-
body ground state with fractional topology [43–45,50,51].
Interestingly, recent numerical studies have shown that what

is essential to achieve the fractional Chern band is not the
constant BC but the ideal condition in Eq. (3) [43,46].

Non-Abelian quantum geometry of two real bands. In two
dimensions, IST symmetry appears in the form of IST = PT
with time-reversal T and inversion P symmetries in spinless
fermion systems, or IST = C2zT with twofold rotation C2z

symmetry about the z axis in both spinless and spinful fermion
systems. As the antiunitary IST symmetry is local in mo-
mentum space and satisfies I2

ST = 1, it can be represented by
IST = K with the complex conjugation operator K . Then, the
IST symmetry of the wave function |ui(k)〉 (i is a band index)
imposes the reality condition IST |ui(k)〉 = |ui(k)〉∗ = |ui(k)〉,
which forces the Berry curvature to vanish at every momen-
tum k. Thus, the Chern number of IST symmetric systems
is always zero. However, two real bands can have nontrivial
band topology characterized by the integer Euler invariant as
explained below.

For two real bands |u1,2(k)〉, the invariance of the
non-Abelian QGT under O(2) gauge transformation leaves
gμν (k) = Q11

μν (k) + Q22
μν (k) as the only gauge-invariant com-

bination. On the other hand, under SO(2) gauge transfor-
mation that preserves the orientation of two real bands,
one can find another gauge-invariant linear combination
Q12

μν (k) − Q21
μν (k), which gives the off-diagonal Berry cur-

vature F12(k) ≡ Q12
xy (k) − Q21

yx (k) = ∇ × 〈u1(k)| ∇ |u2(k)〉.
When the orientation of two real bands is fixed, the integral
of F12(k) becomes the Euler invariant

e2 = 1

2π

∫
BZ

d2kF12(k), (6)

which classifies the topology of orientable real two bands
[24–28]. For real bands |u1,2(k)〉, one can find a Chern
basis |u±(k)〉 = 1√

2
[|u1(k)〉 ± i |u2(k)〉] satisfying that when

|u1,2(k)〉 have the Euler number e2, |u±(k)〉 have the Chern
numbers ±e2, respectively.

Quantum volume and topology of Euler bands. The local
geometric quantities gμν (k) and F12(k) of two real bands
|u1,2(k)〉 satisfy the inequality

√
det[gμν (k)] � |F12(k)|, (7)

which gives tighter bounds than in previous works [30,52,53]
as shown in SM [47]. By integrating both sides over 2D BZ,
we obtain

volg �
∫

d2k|F12(k)| �
∣∣∣∣
∫

d2kF12(k)

∣∣∣∣ � 2π |e2|. (8)

As a direct consequence of this inequality, if volg < 2π ,
then |e2| = 0; i.e., two isolated real bands are topologically
trivial. In systems with volg � 2π , the inequality does not
give definite information about topology. However, as shown
below with several examples, volg/2π often gives an excellent
estimate of topology and approaches the Euler number from
above in a proper limit.

Three-band models. Let us illustrate the relationship
between the Euler topology and quantum volume by con-
structing minimal model Hamiltonians. Since two real bands
with nonzero Euler invariant have fragile Wannier obstruction
[54–59], the minimal lattice model for an Euler insulator
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FIG. 1. (a), (b) The change of the quantum volume and Euler
invariant of the lower two flat bands for three-band models where a
direct transition between a topological insulator (TI) with e2 �= 0 and
a normal insulator (NI) with e2 = 0 occurs.

should have at least three bands with two Euler bands (bands
1 and 2) decoupled from the third band (band 3).

In general, such three-band models have two special
properties. First, there must be a point in the BZ where
det[gμν (k)] = |F12(k)| = 0 for two Euler bands as proved in
SM [47]. As a consequence, neither gμν (k) nor F12(k) can
be nonzero while remaining uniform in the BZ. Second, the
equality

√
det[gμν (k)] = |F12(k)| always holds as shown in

SM [47]. A simple consequence is that, if F12 has the same
sign over the entire BZ, volg = 2π |e2|. In this case, the quan-
tum volume directly measures e2.

A three-band model possessing two bands with e2 �= 0 can
be constructed by using a two-band Chern insulator model

HChern(k) = a(k)σx + b(k)σy + c(k)σz, (9)

where a(k), b(k), c(k) are real functions and σx,y,z are Pauli
matrices. The corresponding real three-band model is given
by

HEuler (k) =
⎛
⎝ a(k)2 a(k)b(k) a(k)c(k)

a(k)b(k) b(k)2 b(k)c(k)
a(k)c(k) b(k)c(k) c(k)2

⎞
⎠, (10)

which has two degenerate flat bands at zero energy and a
dispersive band with energy a(k)2 + b(k)2 + c(k)2. The BC
�(k) of Eq. (9) and the off-diagonal BC F12(k) of the two flat
bands of Eq. (10) satisfy

|F12(k)| = 2|�(k)|, (11)

as proved in SM [47]. Let us note that regardless of the
band dispersion of the Chern insulator, the resulting two Euler
bands are perfectly flat.

For example, let us consider a variant of the square lattice
Chern insulator model introduced in [60] with a(k) = (2 −√

2)t sin(kx ) sin(ky) − m2, b(k) = √
2t[cos(ky) + cos(kx )] −

m1, c(k) = √
2t[cos(ky) − cos(kx )]. When m2 = 0, the Chern

number of the lower band is −2 (0) when |m1| < 2
√

2|t |
(|m1| > 2

√
2|t |). Accordingly, two degenerate flat bands of

the corresponding three-band model have e2 = 4 (e2 = 0)
when |m1| < 2

√
2|t | (|m1| > 2

√
2|t |). The change of volg/2π

and e2 as a function of m1 is plotted in Fig. 1(a). Figure 1(b)
is a similar plot when m2 is varied with m1 = 0. In both cases,
volg/2π is an excellent approximation of e2 when e2 �= 0.
But depending on which parameter is changed, the quantum
volume can change either continuously or discontinuously.

We note that when the degeneracy of the two flat Euler
bands is lifted, a topological phase transition changing e2 is

mediated by an intermediate semimetal phase [24]. Interest-
ingly, although e2 is not well defined in the gapless region,
when gap closing points have linear dispersion, the quantum
volume is finite and changes smoothly even in the gapless
region, as shown in SM [47].

Multiband models. Here, we propose a general way to
construct a 2N-band model with two Euler bands decoupled
from other bands by superposing two N-band Hamiltonians
with an isolated Chern band (N is an integer). One advantage
of this construction is that the well-established inequality in
Eq. (2) and its saturation condition for a Chern band [15]
naturally extend to similar relations for Euler bands.

Explicitly, let us superpose an N-band Hamiltonian
HChern(k) having an isolated Chern band with its complex
conjugate as

HEuler (k) =
(

HChern(k) 0
0 H∗

Chern(k)

)
. (12)

Then, each band of HEuler is doubly degenerate, and the Chern
band of HChern(k) turns into degenerate Euler bands of HEuler.
After a unitary transformation described in SM [47], HEuler (k)
can become real and commute with a matrix τy as

H̃Euler (k) = Re[HChern(k)] ⊗ τ0 − Im[HChern(k)] ⊗ iτy,

(13)

where τx,y,z are Pauli matrices connecting two N-band Hamil-
tonians and τ0 is the relevant 2 × 2 identity matrix.

The BC �(k) and QM gChern
i j (k) of the Chern band in HChern

and the Euler curvature F12(k) and QM gEuler
i j (k) of the Euler

bands in H̃Euler (k) satisfy the following relation,

|F12(k)| = |�(k)|,√
det

[
gEuler

i j (k)
] = 2

√
det

[
gChern

i j (k)
]
, (14)

as proved in SM [47]. This clearly demonstrates that the band
topology of the mapped Euler bands can be well approximated
by the quantum volume in the same manner as the Chern band
case.

For example, let us construct a four-band model which
can be mapped to two superposed two-band Chern insula-
tors in certain limits. In such limits, as the inequality in
Eq. (2) becomes the equality for two-band Chern insulators,
a similar equality should hold for Euler bands. Explic-
itly, we consider the Hamiltonian Ha

4 (k) with components
Ha

4 (k) = a(k)σx + b(k)τy ⊗ σy + c(k)σz + m3τx ⊗ σx where
σx,y,z,, τx,y,z are Pauli matrices, and a(k), b(k), c(k) are the
same as those in the previous three-band model with t = 1
and m1 = m2 = 0. The band dispersion at m3 = 0 is shown in
Fig. 2(a). When m3 = 0, the Hamiltonian commutes with τy,
and thus can be written as in Eq. (13). As shown in Fig. 2(c),
volg/2π and |e2| of lower degenerate bands coincide only at
m3 = 0. The same also holds for upper degenerate bands.

When the real Hamiltonian hosting Euler bands has ad-
ditional chiral S symmetry satisfying S2 = 1 and [S, IST ] =
0, two Euler bands can appear as isolated zero-energy flat
bands when Tr[S] = ±2. Especially, the zero-energy states of
a (2N + 2)-band real Hamiltonian with chiral symmetry can
be considered as those of a related (N + 2)-band Hamiltonian
sharing the same Euler band topology (see SM [47]). This
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FIG. 2. (a) The band structure of the four-band model Ha
4 (k)

when m3 = 0. Both red and blue bands are doubly degenerate when
m3 = 0 while the degeneracy is lifted when m3 �= 0. (b) The quantum
volume and Euler invariant of the red band in (a).

means that a 4-band chiral symmetric Hamiltonian with zero-
energy flat Euler bands, satisfying

√
det[gμν (k)] = |F12(k)| as

in 3-band models, can also be constructed.
On the other hand, if {S, IST } = 0 is satisfied, two isolated

bands cannot have e2 �= 0 in periodic real Hamiltonians as
shown in SM [47]. One exception is when Euler bands appear
as effective low-energy bands of quasiperiodic systems as in
TBG discussed below.

Ideal Euler bands and correlation effect. Here, we address
the question of possible fractional topological phases in in-
teracting Euler bands from the band-geometric point of view.
First, we define ideal Euler bands as two real bands |u1,2(k)〉
whose QGT satisfies

gμν (k) = F12(k)ωμν, (15)

which is equivalent to the ideal condition for Chern bands
in Eq. (3). Ideal Euler bands always satisfy the equality of
Eq. (7). We note that the corresponding Chern basis |u±(k)〉 =

1√
2
[|u1(k)〉 ± i |u2(k)〉] satisfies the ideal condition in Eq. (3).
Since Eq. (15) is equivalent to the condition that the QGT

Gμν (k) ≡ gμν (k) + iεμνF12(k) with F12(k) �= 0 has a con-
stant null vector, the wave function for ideal Euler bands and
the corresponding Chern basis can always be written as in
Eq. (4), analogous to LLL (see SM [47]). This indicates the
potential that fractional topological insulators may appear in
partially filled interacting ideal Euler bands [46]. Moreover,
when F12(k) of ideal Euler bands is constant in momen-
tum space, the projected density operators ρ̄αβ (k) = Pαeik·rPβ

where Pα = ∫ |uα (k)〉 〈uα (k)| dk (α = ±) for the Chern basis
|u±(k)〉 also satisfy the algebraic relation similar to the GMP
algebra when α = β, which further supports the possible frac-
tional topological phases. However, as ρ̄αβ (k) with α �= β do
not satisfy closed algebraic relations, ideal Euler bands are
different from two copies of ideal Chern bands; thus one may
expect distinct many-body ground states in interacting Euler
bands (see SM [47]).

Unfortunately, both ideal Chern and ideal Euler bands
cannot be realized in periodic lattice Hamiltonians where the
atomic positions are given by a linear combination of primi-
tive lattice vectors with rational coefficients, which includes
most of known lattice systems. This happens because the de-
composition in Eq. (4) is not compatible with nonzero Chern
or Euler number, as shown in SM [47]. However, ideal bands
can be realized in continuum models, as an effective periodic
low-energy model of quasiperiodic systems such as TBG.

In general, one can construct a continuum model hosting
ideal Euler bands as follows. For given ideal Euler bands
|u1,2(k)〉, the Chern basis |u±(k)〉 can be written as

|u+(k)〉 = [|u−(k)〉]∗ = 1

Nk
|ũ(k)〉 , (16)

where Nk is the normalizaton factor. The holomorphic func-
tion |ũ(k)〉 satisfies (i) [〈ũ(k)|]∗ |ũ(k)〉 = 0 because of the
normalization of |u1,2(k)〉, and (ii) ∀k, 〈ũ(k)| |ũ(k)〉 �= 0 be-
cause of the normalization condition in Eq. (16). Using
|u+(k)〉 and |ũ(k)〉, the Euler curvature and quantum metric
of the Euler bands can be calculated as

F12(k) = i(λ∗
yλx − λ∗

xλy) 〈v(k)| |v(k)〉 = 〈v(k)| |v(k)〉 ,

gαβ (k) = (λ∗
αλβ + λ∗

βλα ) 〈v(k)| |v(k)〉 = ωαβ 〈v(k)| |v(k)〉 ,

(17)

where

|v(k)〉 = 1

Nk
[1 − |u+(k)〉 〈u+(k)|] |∂kũ(k)〉 . (18)

In Eq. (17), the ideality of Euler bands manifests.
Now, let us construct a 3-band continuum model hosting

ideal Euler bands. Defining |ũ(k)〉t = (ũ1(k), ũ2(k), ũ3(k)),
one can choose ũ1(k) = f1(k)2 − f2(k)2, ũ2(k) = i[ f1(k)2 +
f2(k)2], ũ3(k) = 2 f1(k) f2(k) where f1,2(k) are analytic poly-
nomial functions of k. The above choice of ũ1(k), ũ2(k), ũ3(k)
satisfies two conditions (i) [〈ũ(k)|]∗ |ũ(k)〉 = 0 and (ii)
〈ũ(k)| |ũ(k)〉 �= 0 for any k. The Hamiltonian H (k) =
|z(k)〉 〈z(k)| with

|z(k)〉 =

⎛
⎜⎝

f1(k)∗ f2(k) + f1(k) f2(k)∗
1
i [ f1(k)∗ f2(k) − f1(k) f2(k)∗]

| f2(k)|2 − | f1(k)|2

⎞
⎟⎠ (19)

has zero-energy degenerate flat ideal Euler bands and the
third band with energy [| f1(k)|2 + | f2(k)|2]2 > 0. Choosing
f1(k) = k, f2(k) = 1, the Euler bands have e2 = ±2. See SM
for more general discussion [47].

Twisted bilayer graphene. The nearly flat bands at charge
neutrality in TBG with small twist angle θ are the represen-
tative example of Euler bands with e2 = 1 [24], which can be
described by the continuum model HBM proposed by Bistritzer
and MacDonald [61]. The low-energy band structure of HBM

can be characterized by two dimensionless parameters ω0/ω1

and α = ω1/(v0kθ ) where ω0 and ω1 describe the interlayer
couplings between AA/BB sites and AB/BA sites, respec-
tively [see Fig. 3(a)] [61]. v0 is the Fermi velocity of Dirac
points and kθ = 8π sin(θ/2)/3a with lattice constant a (see
SM [47] for details).

When ω0/ω1 = 0, TBG has chiral symmetry S that anti-
commutes with C2zT . However, the flat bands in TBG can
carry nonzero e2 because of the quasiperiodicity of TBG
(see SM [47]). When chiral symmetry exists, volg/2π = e2 =
1 holds at each magic angle with flat bands as shown in
Fig. 3(b).

When chiral symmetry is broken, volg/2π > e2 holds
[Fig. 3(c)]. Also, the minimum quantum volume, minimum
bandwidth, and minimum Dirac velocity appear at differ-
ent θ ’s [Fig. 3(d)], each of which has its own physical
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FIG. 3. (a) The lattice structure of TBG with the twist angle θ .
(b) The change of the quantum volume and Euler invariant as a func-
tion of α at the chiral limit with ω0/ω1 = 0. volg/2π = |e2| holds
only at magic angles. (c) Similar plot for different ω0/ω1. (d) Plot of
αmin at which the Dirac velocity vD, the flat-band bandwidth W , or
volg becomes minimized at a given ω0/ω1 as a function of ω0/ω1.

significance. Considering interaction effect, however, θ with
minimum quantum volume is special because two quanti-

ties on both sides in Eq. (7) are closest at this point, thus
correlation-induced fractional topological phases should be
the most favorable around it.

Discussion. In the case of TBG in the chiral limit, because
chiral symmetry satisfies S2 = 1, {S, IST } = 0, the ideal Euler
bands at magic angle are reduced to two decoupled ideal
Chern bands on which most of the recent theoretical studies
on correlation effect are focused [23,46,62–64]. However,
as real TBG systems are not chiral symmetric, the Euler
bands and their ideal limit without chiral symmetry might
be a more appropriate starting point to examine correlation
effects.

Moreover, to observe the genuine properties of interacting
ideal Euler bands distinct from interacting ideal Chern bands,
finding proper material platforms hosting ideal Euler bands is
crucial. Thorough examination of the many-body instability
in interacting ideal Euler bands is an important problem which
we leave for future study.
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