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Long-living prethermalization in nearly integrable spin ladders
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Relaxation rates in nearly integrable systems usually increase quadratically with the strength of the pertur-
bation that breaks integrability. We show that the relaxation rates can be significantly smaller in systems that
are integrable along two intersecting lines in the parameter space. In the vicinity of the intersection point, the
relaxation rates of certain observables increase with the fourth power of the distance from this point, whereas
for other observables one observes standard quadratic dependence on the perturbation. As a result, one obtains
exceedingly long-living prethermalization but with a reduced number of the nearly conserved operators. We
show also that such a scenario can be realized in spin ladders.
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Introduction. The time evolution of generic quantum
systems tends towards the thermal equilibrium [1–5] inde-
pendently of the initial state. In recent years, systems in
which thermalization occurs very slowly [6] or can be com-
pletely eliminated [7] have attracted a lot of interest. Particular
attention was paid to integrable systems which avoid thermal-
ization and evolve towards a generalized Gibbs state [8–12].
The crucial role in the behavior of such systems is played by
local (or quasilocal) integrals of motion (LIOMs) whose pres-
ence prevents thermalization of local observables [13,14] and
has important consequences for the transport properties of in-
tegrable systems [15–18]. However, more realistic models as
well as experimental setups contain small, but non-negligible,
perturbations which break the integrability [19–25]. While
one expects that the asymptotic dynamics of such nearly in-
tegrable (NI) systems is diffusive [26–28], the dynamics at
intermediate timescales resembles that of integrable models.
The latter transient dynamics of NI systems is known as
prethermalization [29–32].

A particularly important example of the integrability
breaking occurs in systems of weakly coupled integrable
chains [6,33]. While the interchain coupling can be well
controlled in the cold-atom experiments [34], it is not al-
ways possible to completely eliminate this interaction [35].
Quite obviously, a nonvanishing interchain coupling is un-
avoidable in solid-state systems [36,37]. Moreover, recent
quasiclassical studies based on the Boltzmann collision inte-
gral approach [38,39] indicate that extremely long relaxation
times may occur in such NI systems.

It is rather obvious that one is most interested in NI systems
in which the relaxation times are as long as possible. While
an NI system may host very distinct relaxation times [32,40–
42], the corresponding relaxation rates typically scale quadrat-
ically with the strength of the integrability-breaking perturba-
tion [21,22,40,42,43]. Under such a scenario, the only way
to increase the relaxation times is to reduce the perturbation.
In this Letter, we establish another possibility of decreasing
the relaxation rates in NI systems. Namely, we consider a

system that is integrable along two intersecting lines in the
parameter space (see, e.g., Refs. [44–46] for an example of
such systems). If certain LIOMs on both lines have large
overlaps, then the corresponding relaxation rates increase with
the fourth power of the distance (in the parameter space) from
the intersection point. Relaxation rates for LIOMs that do
not have such overlaps exhibit standard quadratic dependence
on the perturbation. As a consequence, extremely small re-
laxation rates and arbitrary larger ratios of relaxation times
appear in the studied NI system. Finally, we show that such a
scenario can be implemented in nearly integrable spin ladders
introduced below.

Spin ladder. We investigate a spin ladder consisting of two
XXZ chains coupled via anisotropic spin-spin interaction of
strength U :

H =
2∑

�=1

H� + U
L∑

j=1

Sz
j,1Sz

j,2, (1)

H� = J

2

L∑

j=1

(S+
j,�S−

j+1,� + H.c.) + �

L∑

j=1

Sz
j,�Sz

j+1,�. (2)

The subscripts � = 1 and 2 and j = 1, . . . , L denote, respec-
tively, the leg and the site within a leg on which the spin-1/2
operators act. From now on we set J = 1, fix the total magne-
tization to Sz

tot = 0, and assume periodic boundary conditions
along the legs of the ladder.

The ladder is shown schematically in Fig. 1(a). It is inte-
grable for U = 0 and inherits a complete set of LIOMs {Qn,1}
and {Qn,2} from both XXZ chains. In this work we use analytic
forms of LIOMs and the notation from Ref. [47]. In particular,
Q1,� and Q2,� denote respectively the total magnetization and
the Hamiltonians of the chain �. Here, we focus on the dy-
namics of the first two nontrivial XXZ LIOMs, namely, Q3,�

and Q4,�, supported on three and four sites, respectively. This
choice is motivated by the fact that Q3,� is the energy current
and thus it is an experimentally relevant quantity. In order to
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FIG. 1. (a) Sketch of the ladder in Eq. (1) with marked Sz-Sz

interactions (�,U ) and nearly conserved operators (Q±
n ). (b,c) Cor-

relation functions C±
n (t ) defined in Eq. (3) obtained for a ladder

with L = 14 rungs. (b) Dashed and continuous curves show C+
3 (t )

and C−
3 (t ), respectively. (c) The same as in panel (b) but for C±

4 (t ).
Horizontal dotted lines in panels (b) and (c) define times, t±

n,γ , when
C±

n (t±
n,γ ) = γ = 0.3. The legends in panels (b) and (c) are common

for both panels. Panels (d) and (e) show 1/t±
3,γ and 1/t±

4,γ for NI
systems with U = � and γ = 0.3 (see text for details).

demonstrate that the discussed properties are not unique to
just a single quantity, we study also Q4,�.

It is convenient to introduce symmetrized combinations of
the latter LIOMs, Q±

n ≡ Qn,1 ± Qn,2. In the case of uncou-
pled chains, Q+

n and Q−
n are strictly conserved and thus the

correlation functions are time independent, i.e., 〈Q±
n (t )Q±

n 〉 =
const, and we use a simplified notation Q±

n ≡ Q±
n (t = 0).

However, the interaction term U �= 0 breaks the integrability
of the studied model so that 〈Q±

n (t )Q±
n 〉 decay in time. In the

following we show that the sums of the XXZ LIOMs, Q+
n ,

decay much slower than their differences, Q−
n . We present an

explanation of this unexpected behavior, by inspecting a dual
point of view, in which the intrachain term ∝ � is also treated
as an integrability-breaking perturbation. Namely, for � = 0,
the Hamiltonian of the ladder reduces to the Hubbard chain, in
which the leg index � labels the spin projection of fermions.
This view introduces another set of LIOMs {In}, originating
from the integrability of the Hubbard chain. Here, we argue
that the decay of Q+

n or In in the NI model (U �= 0, � �= 0) is
significantly slowed down due to large overlaps of both sets
of LIOMs.

Dynamics of nearly conserved observables. To probe the
dynamics of the nearly integrable spin ladder, we calculate
the real-time correlation functions

C±
n (t ) = 〈eiHt Q±

n e−iHt Q±
n 〉. (3)

Here, 〈AB〉 = 1
Z Tr(AB) is the Hilbert-Schmidt inner prod-

uct for Hermitian operators A and B, and Z = Tr(1) is the

dimension of the Hilbert space. We recall that the Hilbert-
Schmidt product is mathematically equivalent to the ensemble
average at infinite temperature.

We note that Q4,� and I4 in Ref. [47] are not orthogonal
to the respective integrable Hamiltonians, H� and H (� = 0).
Therefore, we first subtract their projections on the Hamilto-
nians and obtain orthogonal sets of LIOMs. All considered
LIOMs are also Hilbert-Schmidt normalized, i.e., ‖Q±

n ‖2 =
〈Q±

n Q±
n 〉 = 1, and thus the correlation functions in Eq. (3) are

equal to 1 at t = 0. We refer to the Supplemental Material [48]
for explicit forms of LIOMs and their overlaps.

Utilizing the Lanczos time-evolution method [52,53] com-
bined with the dynamical typicality [54–58], we calculate
correlation functions introduced in Eq. (3); see Ref. [48] for
the details of numerical calculations. Figures 1(b) and 1(c)
show, respectively, C±

3 (t ) and C±
4 (t ) calculated for small

anisotropy � = 0.15 and different strengths of the interchain
interaction, U = 0.1, 0.3, and 1. In the regime of small
U one observes that the correlation functions obtained for
Q+

n (dashed lines) decay much slower than the correlation
functions determined for Q−

n (continuous lines). In the Sup-
plemental Material [48] we show that the differences between
C+

n (t ) and C−
n (t ) become significant for much shorter times

than the timescale at which C+
n (t ) develops the finite-size

effects. Therefore, the exceedingly different relaxation times
for Q+

n and Q−
n do not emerge as finite-size artifacts.

In order to capture the differences between relaxation of
Q+

n and Q−
n in a quantitative manner, we determine times

when the correlation functions decay to a fraction of γ of
their initial value, such that C±

n (t±
n,γ ) = γ [see dotted lines

in Figs. 1(b) and 1(c)]. While the accessible system sizes do
not allow us to reliably establish the true relaxation rates, we
assume that their dependence on U and � can be estimated
from t±

n,γ . In Figs. 1(d) and 1(e) we show the corresponding
relaxation rates 1/t±

3,γ and 1/t±
4,γ for an NI system along the

line U = � where we set γ = 0.3. In the regime of weak
interactions, one observes that the relaxation rates for Q+

n
increase only as U 2�2; i.e., they are much smaller than the
squared strengths of integrability-breaking interactions U 2 or
�2. However, the relaxation rates for the other set of nearly
conserved operators, Q−

n , show much weaker dependence on
perturbations and may be larger than 1/t+

n,γ by a few orders of
magnitude.

Next we check how the differences between t+
n,γ and t−

n,γ

depend on the parameters of the studied model. To this end
we calculate the ratio Rn(γ ) = (t+

n,γ − t−
n,γ )/(t+

n,γ + t−
n,γ ). Nu-

merical results for this ratio are shown in Fig. 2 on an evenly
spaced rectangular grid in the parameter space (�,U ). Blank
parts on the plots correspond to the situation when t+

n is larger
than the longest time accessible in our numerical calculations,
t ∼ 104. For small � and U , we observe that Rn(γ ) is close to
1 for both n = 3 and n = 4. This means that the decay times
for Q−

n are negligibly small when compared to the timescale
that corresponds to the slow relaxation of Q+

n . For large � and
U , we observe that Q+

n and Q−
n relax rather quickly and with

roughly the same relaxation times, t+
n,γ 	 t−

n,γ .
Significance of overlapping LIOMs. In order to explain the

origin of the exceedingly different and long relaxation times,
we turn to a dual picture. Namely, we consider the anisotropy
term (∼�) as a perturbation to the integrable Hubbard chain
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FIG. 2. Ratio Rn(γ ) calculated for L = 12. Blank regions cor-
respond to parameters for which C+

n (t ) > γ for the numerically
accessible times t ∼ 104, e.g., see C+

n (t ) for U = 0.1 in Fig. 1(b).

described by the Hamiltonian H (� = 0). The latter Hamil-
tonian possesses another complete set of LIOMs {In}. In what
follows, we demonstrate that the slower decay of the operators
Q+

n in the nearly integrable ladder (� �= 0 and U �= 0) can
be linked to their substantial overlaps with In. Such overlaps
do not exist for the quickly decaying operators Q−

n . We note
that Q−

n operators are odd under the spin-flip transformation,
� → 3 − �, whereas the Hubbard LIOMs, In, are even under
such spin-flip so that one obtains 〈Q−

n In〉 = 0.
In Fig. 3 we present the overlaps 〈Q+

n In〉. In order to
completely eliminate the finite-size effects, the overlaps were
calculated analytically in the full Hilbert space that includes
all of the Sz

tot sector. In particular, one finds

〈Q+
3 I3〉 = J2

√
(J2 + 2U 2)(J2 + 2�2)

, (4)

and the explicit form of the other overlap 〈Q+
4 I4〉 is shown

in Ref. [48]. We have also checked that the numerically ob-
tained overlaps in the sector with Sz

tot = 0 (not shown) are

FIG. 3. Overlaps 〈Q+
n In〉 calculated analytically for L → ∞, see

Eq. (4) and Ref. [48] for more details. Black solid curves are isolines.
Note that Q+

n and In are strictly conserved for U = 0 and � = 0,
respectively.

FIG. 4. (a)–(d) Relaxation rates 1/t±
n,γ estimated from the corre-

lation functions in Eq. (3) via relation C±
n (t±

n,γ ) = γ for γ = 0.3 and
L = 12. Continuous curves represent isolines. Dashed lines in panels
(a) and (b) mark parameters for which relaxation rates are shown in
Figs. 1(d) and 1(e). Panels (e) and (f) show relaxation rates 1/t−

n,γ

along the dashed lines marked in panel (c).

qualitatively the same as the results in Fig. 3. Comparing
Fig. 2 with Fig. 3, we find that the differences in relaxations
of Q+

n and Q−
n are most pronounced for the same parameters

where the overlaps 〈Q+
n In〉 are large.

Finally, we establish a simple link between the overlaps of
LIOMs of integrable models (U = 0 or � = 0) and the slow
dynamics of Q+

n in the nearly integrable ladder with (U �= 0
and � �= 0). To this end we conjecture that in the regime
of small U and �, the relaxation rates for Q+

n and Q−
n can

be expanded in powers of �2 and U 2. Since Q−
n are strictly

conserved only for U = 0 and arbitrary �, the lowest-order
contributions to their relaxation rates are 1/t−

n,γ ∝ U 2, as it
is expected for a generic integrability-breaking perturbation.
However, due to large overlaps 〈Q+

n In〉, the relaxation rates
for Q+

n vanish for both U = 0 and � = 0. Therefore, these
relaxation rates cannot contain terms which depend solely
on either U or �, and thus the lowest-order contributions
are 1/t+

n,γ ∝ �2U 2. Consequently, for small �, one obtains
t+
n,γ � t−

n,γ .
This scenario is clearly confirmed by the results in

Figs. 4(a) and 4(b). In these plots we show heat maps for
1/t+

n,γ using logarithmic scales for U and �. One observes
that the isolines roughly follow straight lines consistent with
the dependence 1/t+

n,γ ∝ (�U )α = const. Numerical results
obtained in a direction that is perpendicular to the isolines
(U = �) are shown in Figs. 1(d) and 1(e), demonstrating that
the exponent α = 2. Using parametrizations U = d cos(φ)
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and � = d sin(φ), we find that the relaxation rate for Q+
n

grows as d4. Here, d is the distance from the intersection of
two lines, � = 0 and U = 0, along which the studied model
is integrable.

In the case of 1/t−
n , one observes very different isolines

with positive slopes [see Figs. 4(c) and 4(d)]. The latter
are consistent with the conjecture that 1/t−

n,γ are determined
mostly by the interchain interaction U . For the sake of com-
pleteness we have calculated 1/t−

n,γ in the directions that are
roughly perpendicular or parallel to the corresponding iso-
lines, i.e., for � = const or U = const. Numerical results
shown in Figs. 4(e) and 4(f) confirm the standard quadratic
dependence of 1/t−

n,γ on the perturbation U .
Since the proximity of two integrable lines is responsible

for the long-living prethermalization in the studied ladder,
one may expect to find a broader class of operators which
exhibit slow relaxation. In the Supplemental Material [48] we
show that linear combinations of Q+

n and In show very similar
dynamics. As expected, breaking of integrability along one
of the lines (e.g., via other forms of the coupling between
the legs) destroys the exceptional properties of the studied
system [48].

Conclusions. We have considered a ladder consisting of
two XXZ chains (each with spin anisotropy �) coupled via
interaction of strength U . The studied model is integrable
along two lines in the parameter space. Namely, for � = 0 the
ladder represents the Hubbard chain with one set of LIOMs
{In}, whereas for U = 0 one obtains two uncoupled XXZ
chains. In the latter case we have introduced LIOMs which
are symmetric, {Q+

n }, or antisymmetric, {Q−
n }, with respect

to exchanging the chains. Studying the dynamics of a nearly
integrable ladder with (U �= 0 and � �= 0) we have found that
correlation functions for Q+

n decay much slower than those
for Q−

n and that the difference of relaxation times is most
pronounced for small U and �.

We have linked this result with large overlaps between
Q+

n and In and vanishing overlaps between Q−
n and In. As a

consequence of the former overlaps, the relaxation rates for
Q+

n must vanish for both U = 0 and � = 0, so that the lowest-
order contribution to the relaxation rates is at most of the order
of �2U 2. In contrast to this, the relaxation rates for Q−

n are of
the order of U 2. Such behavior explains exceedingly different

relaxation times observed for Q+
n and Q−

n in the regime of
small U and �. Consequently, in this regime of parameters
one deals with a rather specific prethermalization. Namely, the
number of nearly conserved quantities, Q+

n , is twice smaller
than the number of LIOMs in the uncoupled chains, where
both Q+

n and Q−
n are conserved.

These findings can be further examined from the point
of view of quasiclassical analysis based on the Boltzmann
collision integral [38,49] (see also Refs. [32,41] for the hy-
drodynamic perspective on the integrability breaking). The
central assumption here is that each leg of the spin chain is
in a state described by the generalized Gibbs ensemble (GGE)
of the XXZ spin chain [50]. The whole system is then in the
product state of the two GGE states. The coupling between
the legs leads then, by Fermi’s golden rule, to an evolution
of states of each leg. As we show in the Supplemental Ma-
terial [48], both families of charges Q±

n are conserved during
this evolution up to order �2U 2 in a case when the anisotropy
parameters and the states of the two legs are identical. Oth-
erwise, Q−

n may acquire dynamics at lower orders while Q+
n

does not. Our results reinforce this quasiclassical picture.
Our reasoning is general and is expected to hold true also

for other systems which are integrable along two intersecting
lines in the parameter space. However, this should be verified
by direct calculations. The essential condition is that the LI-
OMs on both integrable lines have large mutual overlaps in the
vicinity of the crossing point. Then, in the vicinity of this point
one may expect long-living prethermalization with relaxation
rates that increase with the fourth power of the distance in the
parameter space from the intersection point. This is in contrast
to the case of generic nearly integrable systems where relax-
ation rates increase with the second power of the perturbation.
The long-living prethermalization in the studied ladder leads
to a very slow relaxation of the energy current [48] that should
also be visible as a high thermal conductivity.
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