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Analog computations enable information processing with negligible energy costs and massively parallel
architectures, but currently are limited to process macroscale waveforms with characteristic lengths much larger
than the operating wavelength λ0. We explore here, in contrast, the differentiation of subwavelength waveforms
by using an elastic computational metasurface. We find that the numerical aperture of metasurface governs
the threshold of the characteristic length of waveforms, below which the metasurface outputs an identical
differentiated pattern. Remarkably, for a subwavelength waveform below the threshold, the metasurface can
locate the source because the differentiated pattern is of cylindrical wavefronts centered at the source, which
can be harnessed to detect single or multiple subwavelength-scaled scatterers. The detectability reaches a deep
subwavelength of 0.12λ0, and the localization error stays smaller than λ0. Our work elucidates the physical
image of subwavelength differentiations, which may promote promising applications in nondestructive testing,
signal processing, and computational acoustics.
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By avoiding the use of analog-to-digital convertors, ana-
log computations have recently caught substantial attention
to exhibit high energy utilization efficiencies and massively
parallel computing capabilities [1–5]. Although it has a long
history traced back to the Antikythera mechanism in an-
cient Greece [6], this field is revitalized by the concept of
computational metamaterials [3], which can perform com-
plex mathematical operations with subwavelength footprints.
To date, computational metamaterials have been extended
to various disciplines including optics, electromagnetics, and
acoustics [7–20], offering novel avenues towards sound iden-
tification, signal processing, and augmented reality [21–23]. It
is noted that current computational metamaterials are mostly
exploited at the macroscale, where the characteristic lengths
of constituent waveforms in input signals are much larger than
the wavelength λ0 [7,9–13,17,18,20]. For example, differenti-
ation metasurfaces have been used to process waveforms with
characteristic lengths of dozens of λ0 [7,9,17]. As exemplified
in Fig. 1(a), differential operators lead to drastic changes near
where signals suddenly appear/disappear, while differentiat-
ing a constant becomes zero elsewhere. As a result, optical
differentiation metasurfaces have been exploited to extract the
object edges in images with dimensions of at least hundreds
of λ0 [11–13,18]. An all-optical deep learning framework
based on multiple layers of diffractive surfaces was developed
to perform classifications of centimeter-scale images [20].
However, when the characteristic length of the signal reduces
to roughly the wavelength λ0, it will be hard to do edge
detection due to the intermingling of differential signals. For
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an extreme case, the analog computation of subwavelength
input waveforms remains an open question. In fact, this issue
is physically fundamental to the resolution limits of devices,
which are restricted to the diffraction limit (λ0/2NA, where
NA is short for numerical aperture of an imaging system) [24],
and definitely plays an important role when analog computa-
tion comes into the subwavelength scale.

In contrast, we will explore the possibility and its appli-
cations of doing subwavelength differentiation by using an
elastic computational metasurface in this Letter. We find that
the underlying physics for this operation does not contra-
dict the theory of diffraction limit, where any device cannot
distinguish two scatterers (or corresponding wavefronts)
closer than it. However, we must emphasize that one is still
able to observe the existence (and even the location) of
the scatterers below the diffraction limit. As illustrated in
Fig. 1(b), the subwavelength differentiations in this Letter are
featured by the input waveform with a characteristic length
smaller than the diffraction limit λ0/2NA. Considering the
subwavelength size of the waveform, we can regard it as a
point source to generate the Green’s function as the input field.
After processing by the computational metasurface, the differ-
ential Green’s function will still be centered at the point source
but with a redistribution in amplitude. Similarly, if the sub-
wavelength waveform is generated by a subwavelength tiny
scatterer, the scattering wave field will be centered at the tiny
scatterer after analog differentiations. We will prove that, after
processing by the computational metasurface, the impercepti-
ble scattering wave becomes conspicuous in amplitude dis-
tributions, allowing the detection and localization of the tiny
scatterer. We would like to stress that the practical applications
of subwavelength analog computations are worth exploration,
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FIG. 1. Macroscale and subwavelength analog differentiations
by using metasurfaces. (a) For macro analog differentiation, the
characteristic length of the input waveform is much larger than the
operating wavelength λ0. Its typical application is edge detection,
where the sizes of scatterers are generally hundreds of λ0. (b) For
subwavelength differentiation, the characteristic length of the input
waveform is less than the diffraction limit λ0/2NA. One may find
applications in detecting a subwavelength tiny scatterer.

especially in the fields of nondestructive testing or signal pro-
cessing. Pioneers have harnessed the bandgap-based metama-
terials to detect defects through the generated higher harmonic
waves, bridging the gap between metamaterials and nonde-
structive testing [25–27]. Different from those bandgap-based
metamaterials, the proposed computational metasurfaces ex-
hibit exotic angular dispersive behaviors, and thereby hope-
fully bring new insights to nondestructive testing of subwave-
length defects. In addition, towards subwavelength detections,
the hyperlens technique provides a successful paradigm [28].
Although the hyperlenses can achieve far-field superresolu-
tion imaging, they are required to be placed at the near-field
proximity of objects to transform the scattered evanescent
waves into propagating ones. In contrast, the proposed method
is based on the analog differentiations directly to scat-
tered propagating waves, and thereby avoids the overstrict
near-field manipulation conditions required by the hyperlens
technique and other evanescent wave-based methods [29].

To exemplify our proposal, we first design an elastic meta-
surface to implement the second-order differentiation to the
A0 mode Lamb waves on a 0.5 mm-thickness plate. For
an nth − order spatial differentiation, the transfer function
of the metasurface needs to present an angular response of
t (θ ) ∝ (iky)n [3], where ky = k0 sin θ is the tangential wave
number, with k0 the wavenumber in free space and θ the
direction of the input wave, respectively. For an even-order
differentiation, the metasurface should be mirror symmetric
along the x direction because of reciprocity [7]. Based on the
above considerations, we propose a dual-layer configuration

FIG. 2. Elastic computational metasurface for the second-order
spatial differentiation. (a) Dual-layer configuration of the metasur-
face. The enlarged view shows the unit cell, which consists of
only one cascaded zigzag subunit. (b) Transmitted amplitude |t | and
phases ∠t of the optimized metasurfaces. The solid lines are exact
values.

of the metasurface with only one symmetric cascaded zigzag
subunit, as depicted in Fig. 2(a). The geometric parameters
of metasurfaces involve zigzag heights h1 and h2, spacings
b and s, and interlaminar gap size �. In order to ensure the
purity of the output waves, we design the metasurface so that
it can only excite the zeroth-order diffracted waves, which
requires the lattice constant H to be less than 0.5λ0 [30].
By tailoring the coupling effect between two layers, one can
engineer angular dispersions of the metasurface [31]. Herein,
an optimization formulation based on the genetic algorithm is
developed to design the metasurfaces (see Supplemental Ma-
terial [32] for details. As an example, we choose 304 stainless
steel as the raw material to design the metasurface plate, with
Young’s modulus 200 GPa, mass density 7900 kg/m3, and
Poisson’s ratio 0.3, respectively. The wavelength λ0 is thus
10.3 mm at the operating frequency 40 kHz. The optimized
metasurface consists of two cascaded sublayers with thick-
nesses less than 0.7λ0, and thus shows a much more compact
configuration than current computational devices based on
bulky Fourier transforming systems [8,9]. Figure 2(b) presents
the transmitted amplitudes |t | and phases ∠t of the designed
metasurface, which exhibit a perfect agreement with the exact
values (solid lines). For the passive metasurfaces in this work,
the exact angular responses for the second-order differential
function should be t (θ ) = η(ik0 sin θ )2, where η is a factor
normalizing the amplitude transmission. The phase responses
are constant with variations of sin θ , because the sign of
t (θ ) stays fixed. By considering a full transmission at the
NA point that |tNA| = 1 = ηk2

0NA2, the scaling factor η is
determined to be 1/k2

0NA2. As a result, the exact amplitude
responses |t (θ )| = (sin θ/NA)2 can be obtained. The NA of
the proposed metasurface reaches sin π/3, corresponding to
a resolution limit of λ0/2NA = 0.58λ0. This value defines
the threshold of characteristic lengths of waveforms, below
which the length information is lost by metasurfaces due to
the Abbe’s limit of diffraction for an optical lens [24]. This
is in contrast with the macroscale analog differentiation that
is almost immune from the effect of device resolutions. In
Supplemental Material [32], we further design a first-order
differentiation metasurface, also with NA = sin π/3, confirm-
ing the robustness of the proposed design paradigm. It is noted
that the mirror symmetry along the x direction is broken for an
odd-order differentiation, which may lead to a more complex
configuration of the unit cell.
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FIG. 3. Subwavelength differentiation by using an elastic computational metasurface. (a) Photograph of the fabricated elastic computa-
tional metasurface. The enlarged view shows that the point source is placed ahead of the metasurface along its middle line at a distance of
2λ0. (b) Simulated output wave field under illumination of the input signal in (c) impinges on the metasurface. The characteristic length of
incident waveform is 0.2λ0. (d) The tested wave field for a point source to stimulate the input waveform. The solid box marks the region for
experimental measuring. (e) Output amplitude and phase distributions on the dashed lines in (b) and (d) that are behind the metasurface at a
distance of 5λ0. (f) Output amplitude profiles with different characteristic lengths of the input waveforms ranging from 0.2λ0 to λ0. Note that
(b) and (d) display the out-of-plane displacement fields that are normalized by the maximal magnitudes of differentiated waves.

The elastic computational metasurface is then fabricated by
wire cutting technology, as shown in Fig. 3(a). The thickness
of the dual-layer metasurface is 16.8 mm and the period of
the unit cell is H = 3.5 mm. Figure 3(b) presents the sim-
ulated wave field for the elastic computational metasurface
under illumination of the input signal in Fig. 3(c), where the
characteristic length of the input waveform is 0.2λ0. It is clear
that the output wave patterns are centered at the source, with
amplitudes decreasing from both sides to the middle area.
In fact, such a subwavelength waveform excites a cylindrical
wave field, and thereby can be approximated by a point source
(see Supplemental Material [32] for details). As a verification,
we put a piezoelectric patch as a point source ahead of the
metasurface along its middle line at a distance of 2λ0, as
shown by the enlarged view in Fig. 3(a). The output wave
field is experimentally measured by using a laser Doppler
vibrometer (NLV-2500, Polytec). As expected, a cylindrical-
like wave field centered at the point source but with obvious
amplification along with the distance from the middle line
is observed in Fig. 3(d). For quantitative comparison, the
output amplitude and phase distributions on the dashed lines
in Figs. 3(b) and 3(d) are presented in Fig. 3(e), showing ex-
cellent agreement with each other. Manufacturing errors result
in leaked energy around the middle area (see Supplemental
Material for the sensitivity of the performance of metasurfaces
to the geometric errors [32]). In Supplemental Material [32],
we also provided the output wave pattern processed by a
first-order differentiation metasurface. As expected, an asym-

metric cylindrical-like wave pattern is observed, with a linear
amplification along with the distance from the middle line.

To elucidate the diffraction limit effect of the computa-
tional metasurface, we take different characteristic lengths
of input waveforms ranging from 0.2λ0 to λ0. The output
amplitude profiles are displayed in Fig. 3(f). For characteristic
lengths less than the resolution limit 0.58λ0, almost identical
output amplitude profiles are obtained, which means that the
metasurface cannot distinguish the waveforms in this case.
However, the output amplitudes on both sides sharply de-
crease when the characteristic lengths increase to larger than
0.58λ0, verifying the resolving capability of the metasurface.
In particular, for the case of a large characteristic length
of λ0, the output amplitudes at two sides approach to zero,
which implies the output pattern turning into two beams,
and thereby confirms the edge extraction of macroscale
wavefronts [9–13,17,18]. In Supplemental Material, we de-
termine the maximal sampling distance for the data in
Fig. 3(f) [32].

It is noteworthy that for an input waveform with a
characteristic length smaller than the resolution limit, the dif-
ferentiated waves still carry the location information of the
input source, allowing the detection and localization of a sub-
wavelength tiny scatterer. Figure 4(a) illustrates the proposed
detection principle. For a plane wave wp = Apeik0x impinging
on a subwavelength scatterer, the scattering wave ws is in
the form of wave expansion and can be approximated by
the zeroth-order term in the far field, which corresponds to
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FIG. 4. Subwavelength scatterer detection and localization by using a computational metasurface. (a) Schematic of the detection principle.
(b) Simulated plane wave field perturbed by a subwavelength circular cavity with diameter d = 0.4 λ0. (c) The counterpart of (b) with an elastic
computational metasurface behind the cavity at a distance of 2λ0. (d) Simulated resulted wave field for the metasurface filtering out the incident
plane wave. (e) Localization of cavities at different positions. (f) Variations of the scattering cross section γ̄ with the cavity diameter d . Note
that (b)–(d) display the out-of-plane displacement fields normalized by the magnitudes of incident waves. To clearly display the differentiated
scattered waves, the scale of (c) is decreased to ±0.05.

a cylindrical wave [33],

ws = AsH
(1)
0 (k0r), (1)

where H (1)
0 is the zeroth-order Hankel function of the first

kind, r =
√

(x − xs)2 + (y − ys)2 with (xs, ys ) the coordinate
of the scatterer. The subwavelength scatterer is generally un-
detectable, because the amplitude of the scattering wave is
much smaller than that of the incident wave As � Ap. Fig-
ure 4(b) shows a plane wave field under the disturbance of a
subwavelength circular cavity with diameter d = 0.4λ0. One
can see that the plane wave field is barely distorted. How-
ever, after the operation of the second-order differentiation,

the incident wave wp can be filtered out by ∂2wp/∂y2 = 0.
Meanwhile, the differentiated scattering wave becomes

∂2ws

∂y2
= 1

2
k2

0sin2αAs
(
H (1)

2 (k0r) − H (1)
0 (k0r)

)

− cos2αAs
k0

r
H (1)

1 (k0r), (2)

where α is the central angle with respect to the scatterer and
H (1)

2 is the second-order Hankel function of the first kind. In
the far-field region where k0r � 1, it can be deduced that
∂2ws/∂y2 ∼= k2

0sin2αws, which means that the amplitudes of
scattering waves are redistributed through a factor of k2

0sin2α.
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As shown in Fig. 4(c), if one places the computational meta-
surface behind the tiny scatterer (at a distance of 2λ0, for
example), cylindrical-like transmitted wavefronts will be ob-
served with significantly increased amplitudes along with the
central angle α. Figure 4(d) provides the numerical verifi-
cation of filtering out an incident plane wave by using the
computational metasurface. The stark contrast between the
wave patterns in Figs. 4(b) and 4(c) confirms the proposed
principle to detect a subwavelength scatterer. In Supplemental
Material [32], we further verify the robustness of this prin-
ciple by detecting a cavity near the metasurface edge and by
detecting a subwavelength cylinder glued on the plate as a tiny
scatterer.

Considering that Eq. (2) exhibits a circular isophase con-
tour centered at the scatterer, we can further localize it by
reversing the center of the output wavefronts (see Supple-
mental Material [32] for details). As exemplified in Fig. 4(e),
we position subwavelength cavities at different locations. The
largest distance between the cavity and the elastic computa-
tional metasurface in Fig. 4(e) reaches up to 12λ0, ensuring
its far-field testability of the proposed method. The local-
ization error, defined as the distance between the detected
location (solid square) and the exact one (hollow circle), stays
smaller than one wavelength. For the metasurface length of
700 mm and cavity diameter of 0.4λ0 in Fig. 4(e), we can
obtain that the maximal detectable distance between the scat-
terer and metasurface, Dmax = 202.1 mm (∼ 19.6λ0) (see the
Supplemental Material for detailed analyses on Dmax [32]).
To further investigate the detectivity of the metasurface, we
define the scattering cross section as γ̄ = 1

N

∑N
j=1 γ j , where

γ j = (|w|max, j − |w|min, j )/(|w|max, j + |w|min, j ), |w|max, j and
|w|min, j are the maximal and minimal amplitudes on a wave-
front numbered by j, and N is the number of wavefronts
for calculation, respectively [34]. Apparently, the condition
that γ̄ → 0 corresponds to a nearly perfect plane wave field,
whereas γ̄ → 1 indicates drastically distorted wave fields due
to the existence of the scatterer. Figure 4(f) displays the sim-
ulated γ̄ as a function of the diameter of the cavity d . The
distance between the scatterer and the elastic metasurface is
fixed as 2λ0, and five isophase output wavefronts (N = 5)
are used here. An over-small scatterer cannot be detected as
expected, corresponding to a low value of γ̄ . Meanwhile, one
can see that γ̄ rapidly increases with the diameter d and then
comes into a plateau, which verifies the detectability of the
scatterer. To intuitively show the effect of scatterer size, the

output wave fields for cavity diameters of 0.04λ0, 0.12λ0,

and 0.60 λ0 are provided in Supplemental Material [32]. We
calculate the wave field for a cavity with diameter d = λ0

without the metasurface [32] and take the corresponding scat-
tering cross section as the critical value (γ̄c = 0.33). Based on
this value, it is found that the detectability of the metasurface
reaches a deep subwavelength to 0.12λ0. In Supplemental
Material, we demonstrate the localizations on a Mie-type
subwavelength scatterer [32]. The detections on multiple
scatterers are also demonstrated by replacing the incident
plane waves by beam scans [32]. For experimental verifica-
tion, the machining accuracy cannot meet the requirement
for detections on a scatterer. Detailed analyses are given in
Supplemental Material [32]. Experimental verification is ex-
pected in the future at larger operating wavelengths to enhance
the fabrication tolerance of designed metasurfaces. Further-
more, the proposed method can be extended to other classic
waves because the subwavelength differentiation, which is the
kernel of the proposed detecting method, is generic. Specif-
ically, the subwavelength differentiation is implemented to
the propagating components of flexural waves and is irrel-
evant to the evanescent components. In this condition, the
differential equation for flexural waves (∇4 − k4)w = 0 can
be approximated as the Helmholtz equation (∇2 + k2)w = 0
[35]. Hence, the subwavelength differentiations and the pro-
posed detecting method can be extended to other classic waves
governed by the Helmholtz equation, such as acoustic and
optical waves.

In conclusion, we have explored the possibility of doing
subwavelength differentiation by using an elastic compu-
tational metasurface, and then proposed its application in
detecting tiny scatterers by harnessing the subwavelength
differentiation to filter out incident waves and to amplify
the scattered waves. For subwavelength circular cavities,
the detectable sizes reach deep subwavelength (0.12λ0),
and the localization error remains smaller than λ0. The
detection method works for cases with multiple scatter-
ers. Our work uncovers the fundamental differences be-
tween macroscale and subwavelength differentiations, and
provides avenues to the design of high-Q devices with
preferable compactness for nondestructive testing and signal
processing.

This work was supported by the National Science Founda-
tion of China (Grants No. 12172271 and No. 12372122).
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