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Signatures of parafermion zero modes in fractional quantum Hall–superconductor heterostructures
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Parafermion zero modes can arise in hybrid structures composed of ν = 1/m fractional quantum Hall edges’
proximity coupled by an s-wave superconductor. Here we consider a Josephson junction formed in such hybrid
structures in addition to parafermion tunneling, Cooper pair tunneling, and backscattering. We find that the
4πm periodicity due to parafermion-only tunneling reduces, in the presence of backscattering, to 4π -periodic at
zero temperature and 2π -periodic at finite temperature unless the fermion parity is fixed. Nevertheless, a clear
signature of parafermion tunneling remains in the shape of the current-phase relation.
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Introduction. Non-Abelian topologically ordered phases
are among the most promising platforms for fault-tolerant
quantum computation [1]. The excitations in these phases
are non-Abelian anyons that have nontrivial fusion rules and
braiding statistics [2]. These fusion rules provide a source
of topological ground-state degeneracy, which allows for
nonlocal storage of information and anyon braiding that
is topologically protected against decoherence [3–7]. While
there has been significant interest in using Majorana zero
modes (MZMs) for topological quantum computation [1],
the ZN generalization of MZMs, parafermion zero modes
(PZMs) [8], is necessary to perform universal topological
quantum computation. It was shown in Ref. [9] that an ar-
ray of PZMs provides a realization of Fibonacci anyons
that is capable of universal topological quantum computation
[1,10–12].

It has been theoretically proposed that PZMs can arise in
fractional topological superconductors (FTSCs) [13–15]. A
key example of an FTSC comprises edge states of a ν = 1/m
fractional quantum Hall (FQH) system proximitized with an
s-wave superconductor. The physics of proximitized FQH
edges is particularly relevant at the moment due to recent ex-
periments demonstrating the viability of experimental setups
to manipulate and control parafermions in hybrid structures
at moderate magnetic fields [16,17]. In particular, a recent
experiment has focused on implementing such a structure in
graphene and observed crossed Andreev reflection (CAR),
which was suggested to indicate the presence of PZMs [18].
A theoretical analysis in Ref. [19] showed that CAR is a nec-
essary but not sufficient condition for the existence of PZMs.

In this Letter, we consider an FTSC resulting from the
proximity effect between an s-wave superconductor and two
edges of a ν = 1/m FQH state and we identify the PZM at one
end. We demonstrate that a Josephson junction consisting of
two copies of such FTSCs captures unique features due to the
fractionalization of PZMs. In the low-energy effective Hamil-
tonian, we determine the energy spectra and current-phase
relation in the presence of parafermion tunneling, Cooper

pair tunneling, and backscattering. We find that backscattering
explicitly breaks the Zm symmetry present in the junction,
which results in the periodicity of the Josephson phase being
the same for PZMs and MZMs. While the periodicity is an in-
sufficient distinguishing metric, additional features arise in the
thermally averaged current-phase relation that discriminates
between PZMs and MZMs. As an alternative measure, we
propose the parity-projected thermally averaged current-phase
relation which results in a temperature-dependent 4π -periodic
fractional Josephson effect that occurs only in the presence of
parafermion tunneling.

Model for FTSC and PZM. We first discuss our model for
an FTSC, which consists of two edges from a (fully spin-
polarized) ν = 1/m FQH system proximity coupled by an
s-wave superconductor (SC) finger as in Fig. 1. Since at each
finger, the edges are in proximity with an s-wave supercon-
ductor finger, we include a density-density interaction term
and a pairing term �ψLψR + H.c. Here we denote by L and R
the top and bottom FQH edges’ states in contact with the SC
finger. The corresponding bosonized [20] Hamiltonian is

H =
∫ 0

−L
dx

{
mvF

4π
[(∂xφR)2 + (∂xφL )2]

+ mU

2π
∂xφR∂xφL − �

�2
0

cos [m(φR − φL )]

}
, (1)

where vF is the Fermi velocity of the edges, φR/L are the
bosonic fields on the top/bottom edge, U is the interaction
strength, � > 0 is the (dimensionless) proximity gap, and �0

is the magnetic length which plays the role of a UV cutoff.
It is useful to rewrite the bosonic fields as φR/L = ϕ ± ϑ ,

which obey the commutation relation

[ϕ(x), ϑ (x′)] = i
π

m
�(x − x′), (2)
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FIG. 1. The Josephson junction includes two copies of FTSCs,
parafermion tunneling �P, Cooper pair tunneling ��, and backscat-
tering �B. Each FTSC consists of two edges from ν = 1/m FQH
system (pink) proximity coupled by an s-wave SC (cyan). The spac-
ing between the two FTSCs is exaggerated to emphasize the presence
of a junction.

where ρ ≡ ∂xϕ/π = ρR + ρL is the total charge density oper-
ator. The Hamiltonian in the new basis is

H =
∫ 0

−L
dx

{
mu

2π

[
K (∂xϕ)2 + 1

K
(∂xϑ )2

]
− �

�2
0

cos(2mϑ )

}
,

(3)

with effective velocity mu/π with u =
√

v2
F − U 2 which we

set to 1 in the following sections and Luttinger parameter
K = (vF + U )/

√
v2

F − U 2 , making this theory a sine-Gordon
theory on a finite interval. In the vicinity of the critical point,
the proximity gap � and the distance of the Luttinger param-
eter to the critical point x ≡ 2 − mK parametrize Kosterlitz
renormalization group (RG) [20–22]:

d�

dl
= x�,

dx

dl
= 128m2π5�2. (4)

For the FTSC to be in the superconducting phase, either
the Luttinger parameter must satisfy K < Kc = 2/m [23]
for the superconducting term to be relevant, which requires
a sufficiently large attractive interaction, or strong pairing
� > �c is required. This is different from the ν = 1 case
where the superconducting term is always relevant even in the
absence of a density-density interaction (K = 1) [20]. Deep in
the superconducting phase, the ϑ field is pinned to one of the
2m minima of the cosine term in Eq. (3), ϑ (x) = ñπ

m , where
ñ ∈ Z2m is an integer-valued operator which is related to the
clock operator in the N-state clock model on a single site with
N = 2m [2,20].

This Hamiltonian has a Z2m symmetry, ϑ → ϑ + π
m , repre-

senting charge conservation modulo e/m. The corresponding
symmetry generator is a Z2m generalization of the fermion
parity operator (−1)F , which we call quasiparticle parity,

P̂ ≡ exp(iπQ̂) = exp [i(ϕ0 − ϕ−L )], (5)

where Q ≡ ∫ 0
−L dx ρ(x) is the number operator and ϕ0 ≡

ϕ(x = 0). One can check that this is indeed the symmetry
generator since

P̂−1ϑP̂ = ϑ + π

m
. (6)

In the ground state, the Z2m symmetry sends the system from
one pinned minima to another, ñ → ñ + 1 mod 2m, imply-
ing a 2m-fold ground-state degeneracy and the existence of

parafermion zero modes at the ends of the FTSC [20]. The
parafermion operator localized at one end of the FTSC is

α0 = 1

b

∫ 0

−b
dx eiϑ (x) ∝ eiϑ0 , (7)

where ϑ0 ≡ ϑ (x = 0), and b denotes the length of the region
where a PZM is localized and is comparable to the coherence
length ξ . From the solutions of the sine-Gordon equation, ϑ

has exponentially small fluctuations for x ∈ [−b, 0]; hence,
we can treat eiϑ (x) as a constant in this region as well. From the
form of the PZM, we can interpret it as “half” of a quasiparti-
cle pair, which reflects the fractionalized nature of the system.
One can check α0 is the PZM operator by the commutator
between the Hamiltonian and the PZM,

[H, α0] = −K∂xϕ0eiϑ0 = 0. (8)

The commutator vanishes since the total current density j =
∂xϕ/π is 0 at x = 0, representing no total current flowing
from the edge to the FQH background [24]. The commutation
relation between the parafermion zero mode operator α0 and
the quasiparticle parity P̂ is

P̂α0 = ei π
m α0P̂. (9)

Physically this means that the parafermion operator changes
the number operator by 1.

Josephson junction and tunneling. One way to experi-
mentally identify topologically nontrivial zero modes is the
fractional Josephson effect [13–15,25], i.e., 4mπ -periodic sig-
nal in the current-phase relation. The Josephson junction of
interest consists of two copies of FTSCs as in Fig. 1,

H =
∫ 0

−L
dx

{ ∑
i=1,2

m

2π

[
K (∂xϕ

(i) )2 + 1

K
(∂xϑ

(i) )2

]

− �

�2
0

cos(2mϑ (1) ) − �

�2
0

cos(2mϑ (2) − δφsc)

}
, (10)

where δφsc is the Josephson phase between the two SCs,
and i = 1 and 2 describes the edges near the left and
right SC, respectively. This system has symmetries including
an overall Z2m quasiparticle parity and charge conjugation:
ϑ (i) → −ϑ (i), ϕ(i) → ϕ(i). The allowed tunneling between
two FTSCs are parafermion tunneling (charge e/m), Cooper
pair tunneling (charge 2e), and backscattering (charge 0).
There are additional symmetry-allowed terms involving tun-
neling of a group of parafermions, e.g., Majorana fermion
tunneling can be understood as tunneling of a group of m
parafermions. Here we study the simplest terms as higher-
order terms are exponentially suppressed.

The parafermion tunneling Hamiltonian can be written as

HP = �Pα
(1)†
0 α

(2)
0 + H.c. = �Pei(ϑ (1)

0 −ϑ
(2)
0 − δφsc

2m ) + H.c., (11)

where �P is the parafermion tunneling amplitude, and for
ν = 1, �P represents Majorana tunneling. For clarity, we de-
note the Majorana tunneling amplitude as �M . Similarly, the
Cooper pair tunneling can be written as

H� = ��e2mi(ϑ (1)
0 −ϑ

(2)
0 − δφsc

2m ) + H.c. (12)

We can see the Josephson phase δφsc is 4mπ -periodic.
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Another process consistent with symmetry is the tunneling
of “half” of a quasiparticle-quasihole pair, which we call
backscattering,

HB = �Bei(ϕ(1)
0 −ϕ

(2)
0 ) + H.c. (13)

This tunneling term tunnels 0 charge; hence, it does not couple
to the electromagnetic field and does not contribute to tunnel-
ing current.

To see the behaviors of these tunneling terms, we consider
energies below the superconducting gap, |E | � � [26], where
the system can be described by an effective Hamiltonian
including all of the tunneling processes. The effective
Hamiltonian can then be written in the basis where exp(iϕ(i)

0 )
are diagonal, with eigenvalues exp(in(i)π/m), where n(i)

can be thought of as the eigenvalue of the number operator
n(i) ∈ Z2m. In this basis, the parafermion operator eiϑ (i)

0 shifts
n(i) by 1 and the Cooper pair tunneling term shifts n(i) by
2m, which is equivalent to not changing n(i). The effective
Hamiltonian is

Heff =
2m−1∑

n(1),n(2)=0

{
2|�B| cos

[
(n(1) − n(2) )π

m

]
+ 2|��| cos(δφsc)

}
|n(1), n(2)〉〈n(1), n(2)|

+ |�P|(e−i δφsc
2m |n(1) + 1, n(2) − 1〉〈n(1), n(2)| + ei δφsc

2m |n(1), n(2)〉〈n(1) + 1, n(2) − 1|). (14)

Since n(i) ∈ Z2m and all tunneling terms conserve the total
quasiparticle parity n(1) + n(2) mod 2m, this Hamiltonian
can be block diagonalized. In the following, we only consider
the effective Hamiltonian in the sector where the total
quasiparticle parity is zero. Sectors with nonzero quasiparticle
parity have spectra that differ by multiples of 2π . The wave
function �r (δφsc) satisfies a Harper-like equation [27],

|�P|[e−i δφsc
2m �r+1(δφsc) + ei δφsc

2m �r−1(δφsc)]

+
[
2|�B| cos

(
2π

r

m

)
+ 2|��| cos(δφsc)

]
�r (δφsc)

= Er (δφsc)�r (δφsc), (15)

with 1 � r � 2m. The eigenstates satisfy the periodic
boundary condition �r ( δφsc

2m + 2πk) = �r ( δφsc

2m ), with k ∈ Z.
We can see the effect of each tunneling term from Eq. (14)
and Fig. 2. The Cooper pair tunneling term is proportional
to identity; hence, it only provides a δφsc-dependent
shift to all states. With no backscattering, the eigenstates
satisfy the boundary condition �r (δφsc + 2π ) = �r+1(δφsc)
and the Hamiltonian is invariant under the Z2m transformation
n(1) → n(1) + 1 mod 2m. The backscattering term explicitly
breaks the Z2m down to Z2, corresponding to n(1) → n(1) + m
mod 2m. The eigenstates now satisfy a different boundary
condition, �r (δφsc + 2π ) = �r+m(δφsc).

These effects demonstrate that the Zm part of the symmetry
is inherently different from the Z2 fermion parity. The unbro-
ken Z2 represents the topologically protected fermion parity
and can only be broken by nonlocal terms like tunneling of
parafermion across the FTSC, α

†
−Lα0, whereas the Zm sym-

metry can be broken by local tunneling terms like tunneling
of a quasiparticle and a quasihole, ψ

(1)†
R,qpψ

(1)
L,qpψ

(2)
R,qpψ

(2)†
L,qp +

H.c. ∼ cos[2(ϕ(1)
0 − ϕ

(2)
0 )]. This suggests that in systems with

backscattering, one cannot distinguish PZM from MZM tun-
neling from the periodicity of the energy-phase relation since
both of them have Z2 symmetry.

Tunneling currents. The difference between the Z2 and Zm

parts of the quasiparticle parity can also be seen in the current-
phase relation where the Josephson phase is 4mπ -periodic
without the backscattering term and 4π -periodic with it, as

FIG. 2. Spectra of tunneling effective Hamiltonian as functions
of the Josephson phase δφsc with (a) only parafermion tunneling,
(b) parafermion and Cooper pair tunneling, (c) parafermion tunneling
and backscattering, and (d) backscattering, parafermion, and Cooper
pair tunneling. Ground states at each δφsc are indicated by thin lines.
Dashed thin lines can be mapped to solid thin lines by a symmetry
transformation. In panels (c) and (d), excited states are indicated with
bold lines.

shown in Fig. 3. From our effective Hamiltonian, the tunnel-
ing current operator is given by the commutator between the
tunneling Hamiltonian and the total number operator N̂ (2) =
(ϕ(2)

−L − ϕ
(2)
0 )/π ,

Î (δφsc) = e
dN̂ (2)

dt
= ie[Heff, N̂ (2)]

= 2e

m
|�P| sin

(
ϑ

(1)
0 − ϑ

(2)
0 − δφsc

2m

)

+ 4e|��| sin
[
2m

(
ϑ

(1)
0 − ϑ

(2)
0

) − δφsc
]
. (16)
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FIG. 3. Single-channel current-phase relations Ir (δφsc ) with ν =
1/3 for (a) only parafermion tunneling, (b) parafermion and Cooper
pair tunneling, (c) parafermion tunneling and backscattering, and
(d) backscattering, parafermion, and Cooper pair tunneling. Currents
associated with additional parafermion states that are not shown are
related to the currents in this figure by symmetry transformations of
the eigenstates, represented by 2π shifts in the Josephson phase. The
currents have the same color as the corresponding energy states in
Fig. 2.

As an operator, this definition is equivalent to Î (δφsc) =
2e dHeff

dδφsc
. The tunneling current for each eigenstate |�r〉 of

Eq. (14) is then given by

Ir (δφsc) = 〈�r |Î|�r〉
〈�r |�r〉 = 2e

dEr

dδφsc
. (17)

We can see from Figs. 3(c) and 3(d) that the backscattering
term explicitly breaks the Zm symmetry and results in a 4π

periodicity in the Josephson current.
If no terms violate the total quasiparticle parity at the

junction, e.g., terms proportional to α
(1)†
L α

(1)
0 , there will be no

transitions between different channels of the tunneling cur-
rent. However, at finite temperature, thermal excitations can
break fermion parity where the thermally averaged current is

〈Î (δφsc)〉β = tr(e−βHeff Î )

tre−βHeff
, (18)

at inverse temperature β = 1/T . For ν = 1 with
|��| = |�B| = 0, Eq. (18) reduces to the known result
in Refs. [28,29]. In the thermally averaged current-phase
relation, Eq. (18), each of the tunneling terms has different
contributions. The thermally averaged current-phase relations
for parafermion and Majorana fermion tunneling are shown in
Figs. 4(a) and 4(b). Both parafermion and Majorana fermion
terms exhibit a zig-zag pattern with a slope proportional to
β, whereas the Cooper pair tunneling term has a sine-wave
contribution. There is a difference in the relative amplitude
between the Majorana fermion/parafermion tunneling
and the Cooper pair tunneling contribution in Eq. (16).

FIG. 4. Thermal average of the current-phase relation with all
tunneling terms for different values of β for (a) ν = 1 and (b) ν =
1/3. Projected thermal average of the current-phase relation with all
tunneling terms for different values of β for (c) ν = 1 and (d) ν =
1/3. β = 0.01 (blue), 0.1 (orange), and 1 (green) in units of |�M |−1

in panels (a) and (c) and |�P|−1 in panels (b) and (d).

Backscattering does not contribute to the shape of the
thermally averaged current. All thermally averaged currents
exhibit 2π -periodicity due to the contributions from states
with different quasiparticle parity.

The fractional Josephson effect can be detected at finite
temperatures if one is capable of projecting into individual
states. We can define the projected current using the projection
operator P̂r in the definition of trace in Eq. (18),

〈Ir (δφsc)〉β = tr(e−βHeff P̂r Î )

tr(e−βHeff P̂r )
. (19)

These projection operators P̂r are generalizations of the
fermion parity projection operators P̂± = [1 ± (−1)F ]/2, and
r depends on the parity symmetry of the system, i.e., it is
± if there is finite backscattering and ranges from 1 to 2m
otherwise. The projection operators can be obtained by a
linear combination of powers of the clock matrix σ [20]. In
experiments, these projections can be realized by fixing the
charge difference between the two FTSCs, represented by
n(1) − n(2) mod 2m in Eq. (14). If there is no backscattering,
the projected currents are equivalent to the single-channel
currents in Eq. (17), similar to the ν = 1 case in Fig. 4(c).
When there is backscattering, as in Fig. 4(d), the parafermion
tunneling adds a 4π -periodic contribution to the current with
the amplitude that scales as a power-law of the inverse tem-
perature β. This behavior is unique to parafermion tunneling
and, therefore, is a fingerprint of PZMs.

Discussion. We have presented a model for FTSC consist-
ing of two edge states from a ν = 1/m FQH system proximity
coupled by an s-wave superconductor and identified a PZM
at one end of the FTSC. We have constructed an effective
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Hamiltonian and shown the roles played by parafermion
tunneling, Cooper pair tunneling, and backscattering by iden-
tifying the symmetry of the ground states and Josephson
periodicity in different tunneling currents. We have shown that
for a Z2m FTSC, only the Z2 part of the symmetry is topolog-
ically protected, while the Zm part can be explicitly broken
by local tunneling terms like tunneling of a quasiparticle and
a quasihole. We have proposed using a projected thermally
averaged current to detect parafermion tunneling, which has a
4π -periodic fractional Josephson effect, in various supercon-
ducting qubit junctions [30–32]. We have also illustrated the
different behaviors in junctions of FTSCs between the ν = 1
and the ν = 1/3 cases, respectively.

Although the results we have presented hold for general
values of the tunneling amplitudes, the relative strength of
the tunneling terms is important for experimental detection
of the fractional Josephson effect; i.e., the parafermion tun-
neling term should be larger than the Cooper pair tunneling
and the backscattering term. For a Josephson junction with
gap distance l , the backscattering amplitude is expected to
scale as �B ∼ e−l/�0 . The parafermion and Cooper pair tun-
neling amplitude are expected to scale as �P, �� ∼ e−l/ξ . As
a realistic example, we can consider niobium nitride, which
under a magnetic field of ∼6 T, where ν = 1/3 has been
shown to arise in graphene-based structures [16,17], has a
coherence length (∼50 nm) larger than the magnetic length
(∼10 nm). Hence, we expect the backscattering to be much
weaker than both Cooper pair and parafermion tunneling. We
expect the Cooper pairing amplitude to be much smaller than
the parafermion tunneling amplitude because the tunneling of
multiple charges is suppressed through an FQH background.

The effects described in this Letter should therefore be ob-
servable in experiments. Additional screening layers may also
be beneficial for entering the regime where parafermion tun-
neling dominates.

In this Letter, we assumed an absence of disorder in the
FQH background. For FQH background with disorder, the
result would depend on details of the platform, and edge
reconstruction would lead to a discrepancy between theory
and experiment. For spin-unpolarized FQH background, there
are additional effects from spin-charge separation but such a
system is difficult to realize in a graphene-based device due
to its untunable g factor. In such a platform the spin-up and
spin-down branches of the edge states are spatially separated
due to the sizable Zeeman interaction, unlike in GaAs het-
erostructures where the g factor can be tuned.

Our results can be generalized to FTSCs with FQH back-
grounds at different filling fractions. For clean, spin-polarized
FQH systems in the Jain sequence [33], the proximity effect
on the spatially outermost edge is stronger than that on the
inner edges [18]. We expect to see only the behavior corre-
sponding to the outermost edge. For example, with ν = 2/5
FQH background, the thermally averaged current-phase rela-
tions should be similar to ν = 1/3 in Figs. 4(b) and 4(d).
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