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Dynamical localization and slow dynamics in quasiperiodically driven quantum systems
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We investigate the role of a quasiperiodically driven electric field in a disordered fermionic chain. In the
clean noninteracting case, we show the emergence of dynamical localization—a phenomenon previously known
to exist only for a perfect periodic drive. In contrast, in the presence of disorder, where a high-frequency
periodic drive preserves Anderson localization, we show that the quasiperiodic drive destroys it and leads to slow
relaxation. Considering the role of interactions, we uncover the phenomenon of quasiperiodic driving-induced
logarithmic relaxation, where a suitably tuned drive (corresponding to dynamical localization in the clean,
noninteracting limit) slows down the dynamics even when the disorder is small enough for the system to be
in the ergodic phase. This is in sharp contrast to the fast relaxation seen in the undriven model, as well as the
absence of thermalization (drive-induced many-body localization) exhibited by a high-frequency periodic drive.
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Introduction. The nonequilibrium properties of a quan-
tum system subjected to a time-dependent drive have been
a topic of great interest [1–10]. Some notable phenomena
associated with such driven systems include dynamical local-
ization in kicked rotors [11–13], dynamical freezing [14–19],
Floquet topological insulators [20–22], Floquet prethermal-
ization [23–32] and time crystals [33–37], and Floquet
many-body localization (MBL) [38–40]. An intriguing cate-
gory of periodically driven systems involves an electric-field
drive, which gives rise to a range of fascinating phenomena,
including dynamical localization [41–45], coherent destruc-
tion of Wannier-Stark localization [45–49], and super-Bloch
oscillations [50,51]. Incorporating many-body interactions
further opens up fascinating possibilities, such as Stark-MBL
[52–61], drive-induced MBL [49,62], and Stark time crystals
[63,64]. A crucial question that arises is whether these char-
acteristics persist in the absence of a perfectly periodic drive.

While an enormous body of work has been devoted to
periodic drives, the exploration of the role of quasiperiodic
driving has recently gained traction [65–81]. Features such
as prethermalization [73–75], coherence restoration [82], and
quasitime crystals [68,70,74,83] are associated with such
drives. Furthermore, experiments have realized dynamical
phases employing quasiperiodic driving [84]. In this Letter,
we explore the properties of a system driven by a quasiperi-
odic electric field. Specifically, we address the question of
whether a quasiperiodic electric-field drive can give rise to
dynamical localization, and if it does, what the effect of inter-
actions and disorder on dynamical localization would be. We
address these questions by considering two discrete forms of
quasiperiodic driving: Fibonacci and Thue-Morse [67,69,72].
For these sequences, we find that in the noninteracting limit,
the phenomenon of dynamical localization occurs when the
parameters of the drive are tuned appropriately. We derive
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the conditions under which it is realized and numerically
demonstrate this using the dynamics of return probability and
entanglement entropy. In the presence of disorder, where the
undriven system exhibits Anderson localization [85,86], we
find that the quasiperiodic drive destroys it and leads to a slow
relaxation of the return probability together with a sublinear
growth of entanglement entropy.

In the presence of many-body interactions, dynamical
localization is lost, and the system approaches the infinite-
temperature state. However, the approach is notably slower
when the parameters are specifically tuned at the dynamical
localization point, as opposed to arbitrary parameter choices.
This follows from the fact that the drive suppresses the hop-
ping significantly at the dynamical localization point. Next,
we demonstrate how the hopping suppression can be exploited
to manipulate the dynamical behavior of a disordered many-
body interacting system. Starting from the ergodic phase in
the weak disorder limit of the undriven model, where the
autocorrelation function is known to exhibit power-law decay
[87], we show that a quasiperiodic electric-field drive can in
fact lead to a slow logarithmic relaxation. This is in sharp
contrast to the drive-induced MBL [62] that is seen for a
high-frequency periodic drive. In Table I, the chief findings
from our work are summarized alongside already established
results in the literature.

Model Hamiltonian and driving protocol. We consider
a disordered interacting one-dimensional tight-binding chain
subjected to a time-dependent electric field F (t ). The model
Hamiltonian can be written as
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TABLE I. Schematic of the main results for the quasiperiodic drive and a comparison with existing results for the undriven and high-
frequency periodic driving cases based on an analysis of the autocorrelation function and entanglement entropy. The third row contains the
central findings of our work. Here, W,U refers to disorder and interaction strength, respectively.

Driving W = 0 W �= 0 W �= 0, U �= 0
Protocol U = 0 U = 0 Ergodic regime

Undriven Fast relaxation Anderson localization [85] Fast relaxation [87]
Periodic Dynamical localization Anderson localization [88] Drive-induced MBL [62]

(Periodic oscillation) [41]
Quasiperiodic Dynamical localization Slow relaxation Drive-induced logarithmic relaxation

(Periodic oscillation) S(t ) ∝ tγ , γ < 1 S(t ) ∝ log t

where c j and c†
j are fermionic annihilation and creation oper-

ators, respectively, n j are number operators, � is the hopping
strength, U is the strength of the nearest-neighbor interaction,
and h j is the on-site potential taken from a uniform distribu-
tion, h j ∈ [−W,W ]. For the undriven case (F (t ) = 0), Eq. (1)
is the standard model of MBL where a transition from an
ergodic phase to an MBL phase occurs on varying the disorder
strength [89–92], although the precise value of the critical
disorder strength is still controversial [93,94]. In this work,
we focus only on the ergodic side of the MBL transition. For
a periodic drive with time period T , F (t + T ) = F (t ), the
clean noninteracting limit (W = 0,U = 0) exhibits dynami-
cal localization for appropriately tuned driving amplitude and
frequency [41,42,49], while for a randomly fluctuating field
there is no dynamical localization [48]. In this work, we focus
on the case where the time-dependent field is neither periodic
nor random but is rather quasiperiodic in nature and contains
many frequencies in the Fourier spectrum. We allow the field
F to oscillate between ±F after each period T mimicking the
Fibonacci and Thue-Morse sequences [67,68,74].

In order to describe our driving protocol, it is convenient
to introduce the unitary operators UB/A = e−iT HB/A where HA/B

are the Hamiltonians corresponding to the field F (t ) = ±F ,
respectively [Eq. (1)]. For the Fibonacci sequence, we start
from the unitary operators U0 = UA and U1 = UB, and gen-
erate the subsequent evolution according to the Fibonacci
sequence [72],

Un = Un−2Un−1, n � 2. (2)

The Thue-Morse sequence (TMS), on the other hand, can be
generated using the recurrence relation [74]

Un+1 = ŨnUn, Ũn+1 = UnŨn, (3)

where we start with the unitary operators U1 = UBUA, Ũ1 =
UAUB. The time evolution of an initial state can be expressed
as |ψn〉 = Un|ψ (0)〉.

Dynamical localization. We first consider the clean nonin-
teracting limit (W = 0, U = 0). In this case, the Hamiltonian
(1) can be written in terms of the unitary operators [95]
K̂ = ∑n=∞

n=−∞ |n〉〈n + 1|, K̂† = ∑n=∞
n=−∞ |n + 1〉〈n|, and N̂ =∑∞

n=−∞ n|n〉〈n|, as

Ĥ = −�

4
(K̂ + K̂†) + F (t )N̂ . (4)

These operators follow the commutation relations [K̂, N̂] =
K̂ , [K̂†, N̂] = −K̂†, [K̂, K̂†] = 0. With this form of the

Hamiltonian and the commutation relations, we can write
down the effective Hamiltonian Heff. For Thue-Morse driv-
ing, we work out an expression for the stroboscopic unitary
operator defined at the mth Thue-Morse level, U (N = 2m).
With the aid of Eq. (3), we can express U as a product of a
string of the unitary operators UA and UB, which, using the
Baker-Campbell-Hausdorff formula [96], can be written in
terms of Heff as [97]

U (N = 2m) ≡ exp(−i2mT Heff ). (5)

Here, Heff is given by

Heff ≡ �eff(K̂ + K̂†), �eff = −�

4

[
sin (2Fπ/ω)

(2Fπ/ω)

]
, (6)

where ω = 2π
T . Thus we see from Eq. (6) that the coefficients

of K̂ and K̂† get renormalized. When the amplitude of the
drive is tuned at F

ω
= n

2 (n ∈ Z), �eff vanishes and any state
will return to itself after a time period T , and thus the system
remains dynamically localized. Similar results are obtained
for Fibonacci driving [97].

The return probability, which is a measure of the probabil-
ity of finding a particle at an initially localized site n after
a time t is defined as P(t ) = |〈ψ (0)|ψ (t )〉|2; in our study,
we take n = L/2. The dynamics of the return probability for
the Thue-Morse driven system is plotted in Fig. 1(a). For the
ratio F/ω = 2, we find that the return probability has oscilla-
tory behavior. We have checked using stroboscopic dynamics
that it periodically returns to its original value of unity even
for very long times. On the other hand, tuning the ratio at
F/ω = 1.3, we see that the return probability is vanishingly
small. A similar observation can be made when looking at the
growth of entanglement entropy defined as [98–100], S(t ) =
−Tr(ρL/2 ln ρL/2), where ρL/2 = Tr1�i�L/2{|ψ (t )〉〈ψ (t )|} is
the reduced density matrix of half the chain obtained by
tracing out the other half of the chain. Starting with an ini-
tial Néel state |ψ (0)〉 = ∏L/2

i=1 ĉ†
2i|0〉, we study the dynamics

of the entropy in Fig. 1(c). Again, when F/ω = 2, we find
oscillatory behavior, while for F/ω = 1.3, S(t ) starts to grow
in time. These observations confirm the analytical prediction
that when the ratio F/ω is tuned properly, the system exhibits
dynamical localization; else, it behaves as a nearest-neighbor
chain with renormalized hopping.

Slow dynamics in the disordered noninteracting system. We
now consider the disordered case, which leads to Anderson
localization for any nonzero value of the disorder strength in
the undriven model [85]. We study the stroboscopic evolution
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FIG. 1. (a), (b) Return probability P(t ), and (c), (d) entanglement
entropy S(t ) for a Thue-Morse driven clean (W = 0.0) and disor-
dered (W = 5.0) system at dynamical localization (DL) (F = 2.0ω)
and away from it (ADL) (F = 1.3ω). The other parameters are � =
4.0, ω = 1.0, L = 200. We take the time discretization dt = 0.001
for (a) and (c). The data are averaged over 100 realizations of dis-
order for (b) and (d). The black dashed line provides a guide to the
ballistic growth.

of the return probability and the entanglement entropy for
disorder strength W = 5.0. From Fig. 1(b), we see no sign
of either dynamical or Anderson localization; instead, we
observe that Thue-Morse driving leads to a slow decay of
the return probability accompanied by a sublinear growth of
the entropy S(t ) ∝ tγ where γ < 1 [101]. This is in stark
contrast with the effect of a high-frequency periodic drive,
where Anderson localization remains stable [88,102].

An understanding of the slow dynamics of a quasiperi-
odically driven system can be obtained by performing a
high-frequency expansion for the first two cycles, for which
the effective Hamiltonian can be written as

Heff = �eff{K̂e−iFT/4 + K̂†eiFT/4} + D0 + HLRH, (7)

where D0 is the static disorder term and HLRH contains the
longer-range hopping terms. A derivation of Eq. (7) and the
form of HLRH is provided in Ref. [97]. When dealing with
higher-order terms and a higher level of the quasiperiodic
sequence, the calculations become more complex. However,
valuable information can still be extracted from Heff at this
level. For frequencies larger than the local bandwidth �ξ

of a system of size of the order of the localization length
ξ , HLRH can be neglected since it contains factors involving
powers of the time period T which becomes very small.
Moreover, due to the renormalization �eff, the effective dis-
order increases, i.e., Heff(J,W ) ≈ H (J,W/Jeff ), and hence a
stronger localization would be expected. Thus Heff obtained
for two cycles suggests the stability of Anderson localization
in the presence of a high-frequency drive. For a periodic
drive, these two cycles repeat indefinitely; therefore, indeed
this robustness of Anderson localization in the presence of a
high-frequency periodic drive has been reported [88,102]. For
our drive protocol, however, we must incorporate higher lev-
els of the quasiperiodic sequence. This introduces a mixture

of low- and high-frequency components. While frequencies
larger than the local bandwidth ω 
 �ξ do not influence
localization, lower frequencies ω � �ξ initiate transitions
between the localized states. This competition gives rise to
a gradual relaxation of P(t ) and a sublinear growth of S(t ),
ultimately leading to delocalization.

Slow dynamics in the disordered interacting system.
Having discussed the emergence of dynamical localization
under quasiperiodic driving, we now explore the interplay of
quasiperiodic driving, many-body interactions, and disorder.
We employ exact diagonalization for a system of size L = 16
at half filling and focus on the dynamics of entanglement
entropy and the autocorrelation function. For driven quantum
systems, the entanglement entropy typically saturates to the
Page value, SPage = 1

2 (L ln 2 − 1), which corresponds to the
infinite-temperature state [103]. The autocorrelation function
is defined as [87,104–106]

C(t ) = 4
〈
Ŝz

L/2(t )Ŝz
L/2(0)

〉
, (8)

where Ŝz
i = n̂i − 1

2 . While in the localized phase, the auto-
correlation function C(t ) saturates to a nonzero value, in the
ergodic phase, it rapidly goes to zero [68,87].

We first start with the clean limit W = 0, and observe
that dynamical localization is destroyed in the presence of
many-body interactions. However, for Fibonacci driving (and
also Thue-Morse [97]), the dynamics is found to be very slow
if the interactions are turned on at the dynamical localization
point as opposed to any arbitrary choice of the parameters.
In Figs. 2(a) and 2(d), we plot the dynamics of autocor-
relation C(t ), and entanglement entropy S(t ) for F

ω
= 2 (at

DL) and F
ω

= 1.3 (away from DL) and a range of driving
frequencies. We average the quantities over 50 different initial
product states close to the Néel state. The entanglement en-
tropy rapidly reaches the Page value while the autocorrelation
function quickly decays to zero for F

ω
= 1.3 for all the driving

frequencies considered. On the other hand, for F
ω

= 2, C(t )
exhibits a slow decay accompanied by a slow relaxation of
S(t ) to the Page value [Figs. 2(a) and 2(d)]. On increasing the
driving frequency, the growth further slows down, suggesting
slow heating.

We next consider the disordered case with W = 1.0, which
in the undriven model lies in the ergodic region where C(t )
shows fast decay [87]. We plot the autocorrelation and the
entanglement entropy for Fibonacci driving in Figs. 2(b) and
2(e) for different driving frequencies and with the parame-
ters tuned at the dynamical localization point. Although the
undriven system lies in the ergodic regime, we see that the
quasiperiodic drive induces logarithmically slow relaxation of
the autocorrelation and a slow growth of the entropy. Earlier
work has reported a logarithmic relaxation in the MBL phase
alone [68].

These findings can be understood through a high-frequency
expansion analysis. Analogous to the noninteracting case,
by considering the first two cycles, we get Heff(�,W,U ) ≈
H (�eff,W,U ) [97]. This implies a suppression of hopping
or, conversely, an augmented effective disorder strength
W/�eff, driving the system towards the MBL regime [49,62].
However, when we incorporate higher terms of the quasiperi-
odic sequence, low-frequency components come into play,
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FIG. 2. Dynamics of the autocorrelation function C(t ) and the half-chain entanglement entropy S(t ) for the Fibonacci driven interacting
fermionic system. (a), (d) For W = 0.0. The red shades correspond to a tuning of the parameters away from dynamical localization (F = 1.3ω,
ADL), and blue shades correspond to a tuning at dynamical localization (F = 2.0ω, DL). The inset shows the heating time τh as a function of
ω. (b), (e) For W = 1.0. When disorder is present, we have averaged over 100 disorder realizations. In (e), the red dashed lines are fits to the
function a log t + b. (c), (f) Comparison of dynamics of differently driven and undriven interacting disordered systems. The other parameters
are � = 4.0, U = 1.0, F = 2.0ω, and L = 16.

prohibiting the possibility of MBL. Nevertheless, a com-
petition between the low- and high-frequency components
emerges, leading to the slow relaxation of C(t ) and a logarith-
mic growth of S(t ). The interplay between these components
is also reflected in the lifetime of the slowly relaxing phase ob-
served in the different driving protocols, as shown in Figs. 2(c)
and 2(f). While a random drive with numerous low-frequency
components yields fast relaxation, quasiperiodic driving
results in a prolonged relaxation phase, with Fibonacci driving
exhibiting even slower relaxation compared to Thue-Morse
driving. This distinction can be attributed to the additional
low-frequency components present in the Fourier spectrum
of the Thue-Morse drive. A similar argument holds for the
clean limit, where due to the hopping renormalization, we
see a slow heating at dynamical localization as compared to
away from it.

To investigate the impact of driving frequency on slow
dynamics, we examined the heating time τh defined as the
time when S(t ) attains half of the Page value [107], at different
driving frequencies tuned at the dynamical localization point.
We see that at the dynamical localization point, the heating
time is several orders of magnitude greater than when the
parameters are tuned away from it [Fig. 2(d) inset]. Fig-
ure 3 illustrates the relationship between τh and ω for both
Fibonacci and Thue-Morse driving, considering cases with
W = 0.0 and W = 1.0. For W = 0.0 [Figs. 3(a) and 3(b)], we
observe an exponential dependence of τh on ω for Fibonacci
driving, whereas Thue-Morse driving follows a subexponen-
tial (τh ∼ e[ln ω]2

) trend consistent with the theoretical bound
[24]. On the other hand, for W = 1.0, where drive induces
logarithmic relaxation, an extended heating time is evident.
Fibonacci driving now displays a superexponential depen-
dence (τh ∼ eωβ

, β > 1), while Thue-Morse driving exhibits
an exponential dependence.

Conclusions. We investigate the dynamics of fermions in a
disordered potential under the influence of a time-dependent
electric field generated from Fibonacci and Thue-Morse se-
quences. In the absence of interactions and disorder, we
demonstrate that dynamical localization can be achieved
through quasiperiodic driving and identify the conditions for
its realization. When disorder is introduced, the quasiperi-
odic drive disrupts Anderson localization but leads to a slow
relaxation of observables. By introducing interactions to a
system near the dynamical localization point, we show a
significant suppression of heating compared to cases where
parameters deviate from it. Furthermore, utilizing the concept
of hopping suppression, we show a logarithmic relaxation
induced by quasiperiodic driving in the ergodic regime of an
interacting system. This drive-induced slow relaxation alters
the dependence of heating time on the driving frequency,
resulting in a superexponential dependence for Fibonacci
driving and an exponential dependence for Thue-Morse driv-
ing, contrasting the expected exponential and subexponential
dependencies [68,75].

We look forward to our work inspiring ways to host
nonequilibrium phases of matter such as time quasicrystals
[68,74]. In general, it would be intriguing to explore the
possibility of using a quasiperiodic electric-field drive to
manipulate the properties of quantum systems in the same
spirit as a periodic drive. In the future, it will be interesting
to see features such as coherent/incoherent destruction of
Wannier-Stark localization [47,108], super-Bloch oscillations
[50,51], and the effect of long-range interactions in such
systems.
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